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Abstract— Electroencephalogram (EEG) signals are often
contaminated by cardiac artifacts, which can significantly
degrade the performance of downstream analysis. This
paper presents a Fourier Domain Denoising Convolutional
Neural Network (FD-DCNN) that leverages frequency
domain convolution to effectively suppress electrocardio-
gram (ECG) artifacts in single channel EEG signals.
Unlike conventional, time domain CNN-based approaches,
the proposed model operates entirely in the spectral
domain, replacing computationally expensive convolutions
with element-wise complex multiplications, suitable for
area and power constrained biomedical hardware. A
complex-domain non-linear activation, PhaseReLU, is in-
troduced after each spectral convolution to preserve mag-
nitude while enabling non-linear feature extraction. The
network is trained using a Morphology Preserving Loss
(MPL) combining mean squared error and correlation
to maintain amplitude fidelity and waveform morphol-
ogy. The publicly available EEGdenoiseNet and MIT-BIH
Polysomnographic databases were used to generate the
simulated dataset for model training and evaluation.
FD-DCNN achieves a lower Relative Root Mean Square
Error (RRMSE) of 0.4301 in the time domain and 0.3548
in the frequency domain, along with a higher correla-
tion coefficient of 0.8879, while requiring only 0.67M
parameters, 2.5MB of memory, and 2.31M floating point
operations per second (FLOPs), which is substantially less
than a comparable time domain CNN with similar archi-
tecture. These results establish FD-DCNN as a lightweight,
high-performance denoising architecture well-suited for
efficient hardware implementation and real-time EEG
processing.

Keywords— Electroencephalogram (EEG), Fourier, Cardiac
Artifacts, ECG, Convolutional Neural Network (CNN).

1. INTRODUCTION

Electroencephalography (EEG) is a non-invasive neu-
rophysiological recording technique that measures the
electrical activity of the brain with high temporal res-
olution [1][2]. However, EEG signals are inherently
low in amplitude and highly susceptible to contami-
nation from various physiological and environmental
artifacts and noises [3]. Cardiac artifacts are captured
in EEG recordings due to the volume conduction of
the electrical activity of the heart through body tissues,
allowing the strong electrocardiogram (ECG) potential
to propagate to scalp electrodes [4]. ECG artifacts
manifest as large-amplitude, quasi-periodic waveforms
that overlap with the EEG in both time and frequency
domains. Their spectral energy extends into low and
mid-frequency EEG bands, corrupting neural features
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essential for accurate analysis [5]. Thus, removing these
artifacts is crucial for downstream neural signal pro-
cessing pipelines. Single channel EEG enables portable
and computationally efficient brain monitoring but lacks
spatial diversity, making artifact removal more challeng-
ing than in multichannel EEG [6].

Several approaches have been proposed for ECG artifact
removal from single channel EEG, particularly in the
absence of a coherent ECG reference [7]. Early works
relied on energy-based QRS detection followed by sub-
traction techniques, such as ensemble average subtrac-
tion (EAS) [4] or adaptive filtering [8], but these often
suffered from over or under-correction and high com-
putational cost. Jiang et al. [9] later developed a fully
automated wavelet-based method without requiring an
ECG reference, achieving better detection accuracy and
high correlation. Patel et al. [10] subsequently proposed
an EEMD-based regression approach that suppresses
cardiac artifacts while minimizing spectral distortion.
Dora and Biswal [5] proposed a modified S-transform
(MST)-based method to improve QRS localization ac-
curacy, combined with a modified EAS to reduce over-
compensation. Their approach demonstrated superior
detection and correction performance over CWT and
EEMD methods. In subsequent work, they introduced a
correlation-based framework using modified variational
mode decomposition (mVMD) [11]. This method ex-
ploits correlation among band-limited IMFs to iden-
tify artifacts without requiring R-R interval estimation,
achieving high correlation while reducing computational
complexity compared to EEMD-based algorithms.

Recent advances in data-driven learning have led to
the development of several neural architectures for
artifact suppression. Behera et al. [12] employed a Ran-
dom Vector Functional Link Network (RVFLN) with
recursive least squares learning to adaptively remove
ECG artifacts, achieving enhanced SNR and improved
spectral fidelity. Kalita et al. [13] proposed AnEEG, an
LSTM-based GAN that effectively suppresses multiple
physiological artifacts and outperforms wavelet-based
methods. Among deep architectures, CNNs remain the
most widely adopted due to their ability to hierarchically
capture localized temporal features [14]. Compared to
recurrent or adversarial models, CNNs provide a more
hardware-efficient structure with inherently paralleliz-
able operations, making them suitable for real-time
and embedded implementations. However, traditional
time domain CNNs perform convolution through sliding
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Figure 1. Flowchart of the proposed method.

kernels, resulting in high computational complexity
(O(N - K) for signal length N and kernel size K) [15].
Furthermore, their limited receptive field often requires
deeper or dilated layers for long-range dependencies,
and the implicit learning of spectral filters is ineffi-
cient for frequency-specific artifacts. Pratt et al. [16]
demonstrated that performing convolution entirely in
the Fourier domain can significantly reduce computation
while maintaining accuracy. Han et al. [15] further ad-
vanced this concept by introducing an efficient Fourier
CNN with random kernels and a novel activation func-
tion, achieving faster training and reduced parameter
count without sacrificing performance. These develop-
ments motivate exploration of frequency domain, low-
complexity, and hardware-efficient implementations.

In this work, we propose a Fourier Domain Denois-
ing Convolutional Neural Network (FD-DCNN), which
exploits the Convolution Theorem to transform convo-
lutions into element-wise multiplications in the spec-
tral domain. This reduces complexity and provides
explicit frequency domain representation for targeted
artifact removal, and achieves parameter efficiency,
critical for real-time, resource-constrained applications
like portable EEG systems [17]. The architecture also
integrates complex domain non-linear activation, resid-
ual learning, and a morphology-aware loss function to
preserve EEG signal integrity while effectively sup-
pressing the artifacts. The model is trained and evaluated
using the simulated synthetic EEG dataset. Figure 1
illustrates the flowchart of the proposed method. The
main contributions of this work are as follows:

1) A lightweight Fourier domain denoising CNN
that operates entirely in the spectral domain,
reducing computational cost, memory usage,
and latency compared to time domain CNNs.

2) Complex domain feature extraction using
PhaseReLU after each spectral convolution to
preserve magnitude while enabling non-linear
phase transformations for improved cardiac
artifact suppression.

3) A morphology-preserving loss function that
combines mean squared error and correlation
to jointly preserve amplitude fidelity and wave-
form morphology.
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The paper is structured as follows: Section II outlines
the methods, covering the architecture of the proposed
model, and performance evaluation metrics. Section III
details data preprocessing, model training protocols, and
an in-depth analysis of the results. Section IV concludes
the paper with a discussion of the findings and their
broader implications.

II. METHODS

In this section, we first describe the architecture of the
proposed FD-DCNN model, followed by a discussion
of the metrics used for performance evaluation.

1I-A. FD-DCNN Architecture

The proposed FD-DCNN network is designed to remove
cardiac artifacts from single channel EEG signals by
performing all convolutional operations directly in the
frequency domain. The overall architecture is shown in
Figure 2. FD-DCNN replaces conventional time domain
convolutions with efficient element-wise complex mul-
tiplications in the spectral domain [18]. The process
begins by transforming the input EEG signal z:(n) from
the time domain to the frequency domain using the
Discrete Fourier Transform (DFT) [19]:

N-1

X(k) = Z x(n)e_j%k”/N (D

n=0

The DFT of a signal of length N has computational
complexity O(N?), but the Fast Fourier Transform
(FFT) algorithm [20] reduces this to O(N log N), pro-
viding a significant computational speed-up [21].

Let X (w) and H(w) denote the Fourier transform of
the input signal and the learnable convolutional ker-
nel, respectively. Instead of transforming time domain
kernels into the frequency domain, FD-DCNN directly
initializes and learns complex-valued kernels in the
spectral domain using Glorot initialization [22]. This
approach eliminates redundant kernel FFT computations
and ensures that all learnable parameters are optimized
for spectral operations.

According to the Convolution Theorem, convolution in
the time domain corresponds to element-wise multipli-
cation in the frequency domain [23]:

y(n) = (z(n) xh(n)) <= Y () = X(w) 0 H(w) ()

where ® denotes complex Hadamard pointwise multi-
plication. Both X (w) and H(w) are complex-valued,
therefore, the multiplication is carried out in the com-
plex domain, with real and imaginary components
learned and stored separately as Hgp(w) and Hj(w).
This complex multiplication effectively performs the
convolution operation without explicit sliding-window
computations and enables global frequency domain
learning. Each kernel has a length of N, the same as
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Figure 2. The architecture of the proposed Fourier Domain Denoising Convolutional Neural Network (FD-DCNN).
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Figure 3. Block diagram of the FConv1D layer.

the FFT size, ensuring full-band spectral interaction and
consistent dimensionality across layers.

The complete FD-DCNN architecture consists of a sin-
gle FFT input transformation, five stacked Fourier Con-
volution (FConv1D) blocks, residual skip connections,
an inverse FFT reconstruction stage, and a learnable
output scaling layer. The FFT and IFFT are computed
only once each for the entire network (before the first
FConv1D and after the last FConv1D block), while all
intermediate operations occur directly in the Fourier do-
main, significantly reducing computational overhead. In
the first three FConv1D layers, the number of complex
filters increases progressively (32 — 64 — 128) to cap-
ture diverse spectral structures and artifact patterns. The
subsequent layers (64 — 32) refine these features and
suppress residual interference. In each FConv1D layer,
multiple complex-valued filters are applied in parallel to
the input spectrum, producing a set of complex feature
maps. Let the input to a Fourier convolutional layer be
Zin (w) € CV, and suppose the layer has F' complex-
valued filters:

Wi(w) = Wi r(w) + jWi 1(w) 3
where £k = 1,2,..., F. After element-wise complex
multiplication, the k-th filter output is:

Uk(w) = Zin(w) ® Wk(w) “4)

This can be optimized using 3 multipliers and 2 adders
as [24][25]. Each Uy(w) is separated into its real and
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imaginary parts:

Urr(w) = R{UL(W)}, Ukr(w)=S{Ukw)} )
These real and imaginary feature maps from all F'
filters are then stacked along the channel dimension and
combined, producing a single complex-valued output
spectrum per layer:

F
Yr(w) =Y akrUs r(w)
o (6)
Y[(w) = ZCM}“[U]CJ(W)
k=1

where oy, r and oy, 7 are the learnable mixing weights
for the real and imaginary channels, respectively. The
final combined complex spectrum is:
Y(w) =Yr(w) + jYr(w) @)
This step aggregates all spectral responses and produces

the complex-valued output of each layer. Block diagram
of the FConv1D layer is shown in Figure 3.

Following the spectral convolution, a Phase Rectified
Linear Unit (PhaseReLU) activation is applied. For
a complex-valued spectral coefficient z = |z]e/?=,
PhaseReLU preserves the magnitude |z| and applies a
rectification to the phase ¢, [15]:

PhaseReLU (z) = |z|(cos(ReLU(¢.))

tisin(ReLU(6.)) O

This non-linearity suppresses components with nega-
tive phase while retaining positive-phase information,
thereby enabling non-linear feature extraction without
distorting spectral magnitudes. Residual skip connec-
tions are introduced to preserve uncorrupted spectral
components and improve gradient flow during training
[26]. After the final Fourier convolutional block, the
denoised complex spectrum is transformed back into
the time domain using the inverse FFT:

#(n) = R{IFFT(Y (w))} ©)
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As EEG is a real-valued signal, only the real component
is retained. Finally, a learnable scaling factor 7 is
applied to adjust the amplitude:

i'scaled (TL) =n: i’(n) (10)

The resulting #gcaeqa (1) represents the cleaned EEG
segment with significantly reduced cardiac interference.
Since FD-DCNN performs a single FFT and IFFT for
the entire network and employs L = 5 layers of point-
wise spectral multiplications, its total computational
complexity is O(2- Nlog N + L - N). In contrast, a
conventional time domain CNN with equivalent archi-
tecture, depth, and kernel configuration has a complexity
of O(L-N-K). Thus, FD-DCNN achieves over an order-
of-magnitude reduction in computation while preserving
spectral fidelity.

1I-B. Morphology Preserving Loss (MPL)

The FD-DCNN is trained using a custom Morphol-
ogy Preserving Loss (MPL) function that combines
the Mean Squared Error (MSE) with a correlation-
based similarity term. The MSE component penalizes
amplitude deviations between the predicted denoised
EEG Z(n) and the clean reference EEG Z¢jean (n) [27]:

N
1 .

Luise = Z:jl (@atean (n) = 2(n))* (1)

The correlation term measures the normalized inner

product between the prediction and reference, encour-

aging the network to preserve signal morphology [28]:

Loy — 2k ) (12)
[@ctean [| 12 ]]
The overall MPL loss is then expressed as:
ﬁ - EMSE - )\»Ccorr (13)

where A is a hyperparameter. This formulation ensures
that the network not only minimizes reconstruction error
but also maximizes structural similarity between the
cleaned and reference EEG signals.

II-C. Performance Metrics

To assess the effectiveness of the proposed FD-DCNN
in suppressing ECG artifacts in single channel EEG,
the following quantitative performance metrics were
employed:

II-C1. Relative Root Mean Square Error (RRMSE)

RRMSE quantifies the amplitude deviation between the
denoised output z and ground-truth reference EEG z,
providing a measure of denoising accuracy [29]:

_ RMS(z-2)
RRMSE, =~ (14)
 RMS(PSD(:) - PSD(3))
RRMSEr = =3 15(PSD(3)) (1)
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where RRMSE, and RRMSE; are the temporal and
spectral domain RRMSE, respectively, and PSD refers
to the Power Spectral Density.

1I-C2. Correlation Coefficient (CC)
The Pearson correlation coefficient assesses waveform
and morphological similarity between z and Z, reflecting
how well the neural dynamics are preserved [29]:
cov(z, %)

cC = (16)

0220z%
where cov(-) denotes the covariance between z and Z,
and o.) represents their respective variances.
1I-C3. Average Power Ratio (APR)

The APR quantifies the proportion of energy contained
within a specific frequency band relative to the total
energy across the entire frequency range [6]:

P . s
App - Powerina specific frequency band

17
Total power across all frequencies )
This measure provides insight into how well the net-
work preserves physiologically relevant EEG frequency
components while attenuating ECG artifacts.

III. EXPERIMENTS AND RESULTS

This section presents the experimental validation of the
proposed FD-DCNN framework. First, the data prepa-
ration process are discussed, followed by the details of
the model training procedure. Finally, the performance
is evaluated against baseline methods using multiple
quantitative metrics.

III-A. Experimental Dataset

In this study, two publicly available datasets are em-
ployed to generate simulated data for model training and
evaluation: the EEGdenoiseNet dataset [14], providing
single channel clean EEG recordings, and the MIT-
BIH Polysomnographic Database [30][31], containing
single-lead ECG signals. As no publicly available
dataset includes both naturally ECG-contaminated EEG
and corresponding clean references, simulated datasets
were generated to enable objective evaluation using the
selected metrics. This approach aligns with standard
practice in EEG denoising research [6][11][14][29] and
ensures reproducibility under controlled SNR condi-
tions. The EEG signals from EEGdenoiseNet were
band-pass filtered between 1 Hz and 80 Hz to remove
slow drifts and high-frequency noise, resampled to
256 Hz, and segmented into non-overlapping 4 sec-
ond epochs (N = 1024). This segmentation length
is selected through grid search optimization to bal-
ance denoising accuracy and computational efficiency.
Similarly, the ECG recordings from the MIT-BIH
Polysomnographic Database were filtered and resam-
pled to 256 Hz to ensure temporal alignment with the
EEG data, followed by segmentation into matching 4
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Figure 4. A segment of (a) Uncontaminated EEG, (b)
Contaminating ECG, and (c) Contaminated EEG signal.

second epochs. This preprocessing ensured that both
EEG and ECG datasets were time-synchronized and
suitable for subsequent artifact mixing and model train-
ing. The ECG signals were then combined with clean
EEG using the formula below [11]:

EEG sy = EEGciean +0 - ECG (18)

where 6 is the mixing constant that regulates the signal-
to-noise ratio (SNR) of the resulting noisy EEG signal,
expressed as [14]:

RMS(EEG cean)
RMS(0- ECG)

where RMS is the root mean square of the signal.
Previous studies on EEG artifact removal have reported
that single channel EEG recordings contaminated by
cardiac or physiological artifacts typically exhibit SNRs
in the range of 5-15 dB [5][11][32][33]. This range
is therefore adopted to generate realistic contamination
levels for the simulated dataset. Figure 4 shows a
segment of clean EEG, a contaminating ECG signal, and
an EEG contaminated by an ECG signal. The dataset
comprises 1,128 epochs across all three categories,
which were randomly divided into training, validation,
and test sets using an 80:10:10 split. All EEG inputs
were standardized using z-score normalization for stable
and consistent model training. Clean EEG epochs were
used as ground-truth for evaluating the performance of
the FD-DCNN.

SNR = 10log

19)

III-B. Model Training

The FD-DCNN architecture was implemented using the
Keras API with TensorFlow 2.0 framework and trained
on a high-performance computing server equipped
with an Intel Xeon Gold-6248 CPU (2.5 GHz), 192
GB DDR4-2933 MHz RAM, and an NVIDIA Tesla
V100-PCIle GPU with 32 GB of VRAM. The train-
ing parameter and hyperparameter configurations are
summarized in Table 1. The optimal hyperparameters
were selected through a grid search based on valida-
tion performance. The network was trained using the
proposed Morphology Preserving Loss (MPL), which
simultaneously optimizes amplitude accuracy and pre-
serves waveform morphology. Parameter updates during
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Table 1. The training parameters and hyperparameters for the
proposed model.

Parameters/Hyperparameters Value
Activation Function PhaseReLU
Loss Function MPL (A = 0.2)
Optimizer RMSprop
Learning Rate 0.0005

Batch Size 32

Epochs 50

Early Stopping No

Weight Initializer Glorot Uniform
Random Seed 42

Trainable Parameters 656, 010

= Training Loss
== Validation Loss

0 10 20 30 40 50
Epochs

Figure 5. Training and validation loss curve comparison.

backpropagation were performed using the RMSprop
optimizer with an adaptive learning rate schedule to en-
sure stable and efficient convergence. Figure 5 illustrates
the training and validation loss curves for the proposed
FD-DCNN model over 50 epochs, trained with a batch
size of 32. Both curves exhibit a steep decline during
the initial epochs, converging to around 0.0099 for the
training loss and 0.0177 for the validation loss. The
close alignment and smoothness of the training and
validation loss curves arise from the synthetic, noise-
controlled nature and statistically similar distribution of
the simulated data, as well as the stable optimization
behavior of the frequency domain architecture.

III-C. Performance Evaluation

The performance of the trained FD-DCNN model was
quantitatively and qualitatively evaluated using the test
dataset. Figure 6(a) and 6(b) show an example EEG
segment in the temporal and spectral domains, respec-
tively, illustrating the noisy, cleaned, and ground-truth
signals. In the time domain plots, the reconstructed
EEG waveform closely matches the ground-truth signal,
effectively suppressing ECG-related distortions present
in the contaminated input. In the frequency domain
plots, the PSD of the cleaned EEG exhibits a substantial
reduction in artifact-induced distortions while preserv-
ing the spectral characteristics of the ground-truth EEG.
Time—frequency (TF) plots of EEG signals obtained
using the Morlet wavelet transform are shown in Figure
7 to illustrate the distribution of signal power across
time and frequency. The TF plots indicate that the
noisy EEG is heavily contaminated by cardiac artifacts,
particularly in the low-frequency band (1-20 Hz). The
cleaned EEG generated by the FD-DCNN effectively
suppresses these artifacts while preserving the essential
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Figure 6. Reconstructed clean EEG by the FD-DCNN model
in comparison with the noisy and ground-truth EEG,
(a) Time domain, and (b) Frequency domain representation.
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Figure 7. Time-frequency plots of noisy, cleaned, and
ground-truth EEG, generated using Morlet wavelet transform.

temporal and spectral characteristics, closely matching
the ground-truth signal.

For a consistent performance evaluation, a time do-
main CNN (TD-CNN) with an architecture identi-
cal in depth and filter configuration to FD-DCNN
(32-64-128-64-32) was implemented as the baseline.
Each layer employed 1-D convolutions with a kernel
size of 9, ReLU activation, and residual skip connec-
tions at symmetric layers to mirror the structure of FD-
DCNN. This design was selected to ensure that both
models differ only in their convolutional domain (time
vs frequency), thereby isolating the impact of Fourier
domain processing on performance and computational
efficiency. The baseline thus serves to validate the ad-
vantage of FD-DCNN in achieving comparable denois-
ing accuracy with substantially reduced computational
cost. Table 2 demonstrates significant advantages of FD-
DCNN in both computational complexity and denoising
efficacy. With only 0.67M parameters (vs. 33.67M),
2.5MB memory (vs. 128.42MB), and 2.31M FLOPs
(vs. 290.39M), the FD-DCNN is much lighter, making
it ideal for FPGA-based real-time EEG processing.
Additionally, it achieves better cardiac artifact removal,
with lower RRMSE in time (0.4301 vs. 0.5672) and
frequency (0.3548 vs. 0.3748) domains, while main-
taining higher signal correlation (0.8879 vs. 0.7674),
confirming its effectiveness for portable EEG systems.
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Table 2. Comparison of the proposed FD-DCNN with the
baseline TD-CNN model.

Metrics FD-DCNN TD-CNN
Total parameters 0.67"M 33.6’TM
Memory 2.50MB 128.42MB
FLOPs 2.3IM 290.39M
Inference latency (GPU) 2.46 ms/seg 16.12 ms/seg
Throughput (GPU) 406.5 seg/s 62.03 seg/s
RRMSE; 0.4301 0.5672
RRMSE ¢ 0.3548 0.3748
Correlation 0.8879 0.7674

Table 3. Average power ratios in different frequency bands for
noisy EEG, cleaned EEG, and the ground-truth EEG signals.

Frequency/Bands Noisy Cleaned Ground-
EEG EEG truth
Delta (1 — 4 Hz) 0.264 0.211 0.225
Theta (4 — 8 Hz) 0.168 0.151 0.163
Alpha (8 — 13 Hz) 0.314 0.440 0.426
Beta (13 — 30 Hz) 0.231 0.155 0.171
Gamma (30 — 80 Hz) 0.045 0.094 0.072

Table 4. Performance analysis of our proposed method.

Method RRMSE; | RRMSE; | CC 1

FCNN [14] 0.6832 0.6422 0.7266
Simple LSTM [14] 0.5668 0.5879 0.7951
Simple CNN [14] 0.5715 0.4826 0.8133
ResNet [26] 0.5497 0.4728 0.8379
1D-CDAE [29] 0.4622 0.4148 0.8442
FD-DCNN 0.4301 0.3548 0.8879

We further evaluated the proposed FD-DCNN against
several baseline deep learning models, including Fully
Connected Neural Network (FCNN) [14], simple CNN
and Long Short-Term Memory (LSTM) [14], Residual
Network (ResNet) [26], and Convolutional Denoising
Autoencoder (1D-CDAE) [29], as summarized in Table
4. As no existing studies report comparable quantitative
results for cardiac artifact removal in single channel
EEG, we evaluated FD-DCNN against these models
trained under identical conditions. Among these, CNN-
based architectures consistently outperformed recurrent
models such as LSTM, primarily due to their stronger
capability to capture localized temporal structures of
ECG artifacts and their more stable gradient propa-
gation over long input sequences. FD-DCNN further
advanced over conventional CNN performance by lever-
aging spectral-domain convolution, achieving the lowest
RRMSE and highest correlation coefficient with sub-
stantially reduced computational complexity. These re-
sults confirm that performing convolution in the Fourier
domain enables efficient, low-cost, and accurate EEG
denoising suitable for real-time applications.

Table 3 reports the average power ratios across standard
EEG frequency bands (Delta: 1-4 Hz, Theta: 4-8 Hz,
Alpha: 8-13 Hz, Beta: 13-30 Hz, and Gamma: 30-80
Hz) for noisy, cleaned, and ground-truth signals. The
cleaned EEG exhibits power ratios that closely align
with the ground-truth across all bands. Alpha and Beta
powers were most affected by cardiac artifacts; how-
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Table 5. Ablation study showing the effect of PhaseReL.U, MPL (A variation), and skip connections on FD-DCNN performance.

Variant RRMSE; | RRMSE; | Correlation 1 Remarks

Bascline (PhaseReL.U + MPL, A =0.2, 0.4301 0.3548 0.8879 Full model

with residuals)
PhaseReLU only, without MPL (A = 0, 0.4653 0.3813 0.8671 Tests effect of correlation term in MPL

MSE only)
e . Tests effect of PhaseReLU by replacing
ReLU (real and imag), with MPL 0.5119 0.4155 0.8267 with standard ReLU
A variation (0 — 1.0) 0.4301 0.3548 0.8879 Sensitivity °fAM_PL0 ge‘gh" best at
No Residuals 0.4721 0.3853 0.8434 Tests skip-connection effect
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Figure 8. Bar plot for comparison of APR between noisy,
cleaned, and ground-truth EEG in different frequency bands.

ever, the proposed method effectively restored them
to near-ground-truth levels. Figure 8§ shows a bar plot
comparison of these ratios, demonstrating the method’s
ability to remove cardiac artifacts in single channel EEG
while preserving essential spectral features.

To quantify the contribution of individual components,
an ablation and sensitivity analysis is performed on
PhaseReLLU, the MPL, and the residual connections. As
summarized in Table 5, removing the correlation term in
MPL (X = 0) or replacing PhaseReLU with a standard
ReLU increased both temporal and spectral RRMSE
while reducing correlation, confirming their importance
in preserving EEG morphology and waveform fidelity.
A sensitivity analysis through a grid search across
A € {0,0.05,0.1,0.2,0.5,1.0} identified A = 0.2 as
the optimal trade-off between amplitude accuracy and
morphological preservation. The exclusion of residual
connections also degraded performance, emphasizing
their role in stabilizing training and reconstruction.

IV. CONCLUSION

This paper introduced FD-DCNN, a Fourier domain
convolutional neural network for efficient removal of
cardiac artifacts in single channel EEG signals. By oper-
ating entirely in the spectral domain, the model replaces
costly time domain convolutions with element-wise
complex multiplications, significantly reducing compu-
tational complexity. Trained using the proposed Mor-
phology Preserving Loss (MPL), FD-DCNN achieves
superior denoising performance compared to a con-
ventional time domain CNN, attaining lower RRMSE
and higher correlation with fewer parameters, reduced
memory requirement, and substantially lower FLOPs.
With its lightweight architecture and superior perfor-
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mance over conventional CNN, FD-DCNN presents a
promising solution for area and power efficient hard-
ware implementation in real-time EEG processing. One
limitation of this study is the use of synthetically
generated EEG rather than naturally contaminated EEG
recordings. Future work will focus on validating the
proposed FD-DCNN on real EEG data and implement-
ing it on FPGA and ASIC for real-time, low-power
deployment in portable EEG systems.
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