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Introduction

- EEG analysis is a fundamental non-intrusive neuroscientific tool

- Functional Connectivity describe the statistics between sensors

Directed functional connectivity describes influence
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Background - What is PDC?

- Partial Directed Coherence (PDC) is a functional connectivity method
- Frequency domain measurement

- Answer the question “Does activity in region A drive activity in region B at a particular frequency” ?



Background - What is MVARICA ?

- Multivariate Autoregressive Independent Component Analysis (MVARICA)
- Multivariate Autoregressive (MVAR) modeling capture directional interactions

- ICA, separate statistically independent sources from the noise to improve the model

Jahanian-Najafabadi & Bagh, 2023, 20244, b, c, 20253, b, Bagh & Jahanian-Najafabadi, 2024



Background - MVARICA - Steps




Background - MVARICA - Hyperparameters

Model Order (a.k.a. lag):
The number of past points the MVAR uses to predict the next data point

Deltaridge penalty:
Regularization parameter meant to stabilize the coefficient of the MVAR model



Dataset

- Data from the Child Mind Institute (Healthy Brain Network)
- Datasets are from children and adolescents (age 5-21)

- Itis resting state EEG (eyes closed and open)

- 265 datasets (avg. 320 seconds)

- Data is processed following the pipeline in previous work [Jahanian-Najafabadi & Bagh, 2023, 20244, b, ¢, 20254, b, Bagh &
Jahanian-Najafabadi, 2024]



Offline System

- Implemented using scot package

- Optimizes model order using Akaike Information Criterion (AIC) score

- Deltaridge penalty is optimized using bisection search



Proposed Method



Method - Step 1

MVAR fitting:

- QR factorization (X is factorized into an orthogonal matrix Q and upper triangle matrix R)

- Incremental QR factorization using Given rotation (i.e. use the overlap instead of computing from
scratch)

- Add forgetting factor (with full refactorization after n steps)

- Use GPU for hardware acceleration



Method - Step 2

- Offline MVARICA uses ICA (specifically Fast-ICA)

- Online MVARICA uses Picard-O (Preconditioned ICA for Real Data - under an Orthogonal
constraint)

- Use GPU for hardware acceleration



Method - Hyperparameters - Model Order

Recursive AIC (RAIC):



Mean_t, std_t = mean(x), std(x)
Rolling_mean = abs (Mean_t - Mean_t_last_step)
rolling_std = abs (std_t - std_t_last_step)
mean_history <- Rolling_mean
std_history <-rolling_std
eps_mean = percentile (mean_history, change_percentile)
eps_std = percentile (std_history, change_percentile)
is_nonstationary = (Rolling_mean > eps_mean) or (rolling_std > eps_std)
If is_nonstationary:
Search_window =5
Else:
Search_window =1
For p in (current_model_order- Search_window, current_model_order+Search_window):
Fit MVAR model and compute AIC
If fitting fails, assign infinite AIC
Select model order with lowest AIC

Update current model order



Method - Hyperparameters - Delta

- Use Adam Optimizer

- Metricis Mean Absolute Error (MAE) of the predicted signal from MVAR coefficient compared to
the original data

- Gradient is computed based on the change in the MAE scores



Research Questions

Q1 - How good is the online system ?
i.e. How does it compare to standard offline system

Q2 - How well does it optimize hyperparameters ?
i.e. Does it converge ? What is the error ? How does it compare to standard
offline system

Q3-Howfastisit?

i.e. How does the latency change under different stress conditions.



Results



Picard-O

Parameters

- Used umixing matrix from the previous iteration for warm start
- Maximumi iterationis 10
- Toleranceis le-4

- Usedrelative error, defined as
norm(reconstructed_residual - residual) / norm(residual)

- Average relative error through the experimentation was 2.40E-15



Q1 - How good is the online system ?



Q1 - How good is the online system ?

Metrics:

- Bland Altman Plot: measures agreement and systematic Bias
- Mean Absolute Error (MAE): between output PDC of offline and online systems

- Correlation: between output PDC of offline and online systems



Q1 - How good is the

Mean: 0.009

Positive 95% percentile: 0.206

Negative 95% percentile: -0.188

Difference (Online - Offline)

Bland-Altman Plot: Online vs Offline PDC
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Q1 - How good is the online system ?

Metric

MAE

RMSE

Pearson Correlation

Spearman Correlation

Score
0.070
0.101
0.910 (P-Value <0.001)

0.421 (P-Value <0.001)



Mean Absolute Error (MAE)
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Q2 - How well does it optimize hyperparameters ?



Q2 - How well does it optimize hyperparameters ?

Metrics:

Convergence
Stability

Accuracy



Q2 -

Model Order

Model Order Convergence
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Q2 -

Model Order

Model Order Stability
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Q3 - How fastis it ?



Q3 - How fastis it ?

Chan | Duration MVAR Building PDC | Data Recursiv | Adam All

nel (second) fitting MVARICA | (ms) Packet e AIC (ms) Steps

Nbr. (ms) (ms) (ms) (ms) (ms)

12 1(75% 10.6 30.5 0.7 41.9 25.5 19.1 86.7
overlap)

12 2 (87.5% 10.6 32.8 0.7 442 25.5 19.1 88.8
overlap)

109 1(75% 92.6 523.4 27.0 643.0 124.8 166.7 934.5
overlap)

109 2 (87.5% 99.5 699.4 27.5 826.5 129.5 166.5 1222.5
overlap)




Packet Process Time (ms)

Time to Process a Data Packet (Every 250 ms)
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Conclusion

- Proposed a real-time MVARICA model
- Model is accurate with offline system
- Model hyperparameters optimizable in real-time

- Model runin real-time for lower channel numbers (Maybe use PCA?)



Thanks for Listening
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