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Abstract— The present study extends previous work in-
vestigating eye-movement control in a dynamic, time-
constrained task environment. Earlier studies showed that
the predictability of environmental dynamics influenced
fixation allocation and the initiation sites of smooth
pursuits. In those experiments, however, eye movements
were clustered solely based on whether a reference point
fell within foveal or peripheral vision, which may have
confounded the analyses. This study introduces a bottom-
up, data-driven clustering approach to identify fixation
types across multiple spatial and temporal dimensions. Six
participants steered a spaceship to avoid obstacles under
varying levels of motor control uncertainty. We identified
two fixation types: Type 0 fixations, which were longer
and centrally located near the spaceship, and Type 1
fixations, which occurred farther from the agent and were
directed toward more open areas of the screen. Linear
mixed modeling revealed that with increasing input noise,
Type 0 fixations became shorter and more focused, while
Type 1 fixations became longer and shifted farther from
nearby obstacles. These patterns suggest adaptive gaze
strategies, with Type 1 fixations potentially supporting
predictive tracking under high control uncertainty. Our
findings provide further evidence of how eye movements
flexibly support action in complex, real-time environments.

Keywords— Action control, Eye movements, Adaptive gaze
strategy, Unsupervised clustering, Linear mixed modeling

I. INTRODUCTION

Action control refers to the cognitive and motor pro-
cesses that allow humans to select, initiate, and adapt
actions in response to goals and changing environments.
It involves planning movements, predicting their sensory
consequences, and making adjustments based on feed-
back [1]. In dynamic environments, this process is not
linear or pre-scripted: actions are monitored in real time,
and behavior is constantly shaped by how well-intended
outcomes match actual results. Rather than following a
rigid plan, humans adapt their actions on the fly, correct
for errors, or abandon goals when needed.

A central component of action control is the visual
system. Vision provides real-time information about
the environment, allowing humans to plan and guide
their actions with precision. During movement, the
eyes actively support behavior by anticipating upcom-
ing demands, selecting relevant targets, and monitoring
progress [2]. Where we look often reflects our current
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goals and, in many cases, even predicts our next actions.
This close coupling between gaze and motor control
has been demonstrated across a wide range of tasks,
from simple everyday activities like tea-making [3] to
complex behaviors such as driving [4, 5] (for a review,
see Hayhoe & Ballard, 2005 [6]). In such contexts, gaze
not only signals intention but also enables rapid cor-
rections and flexible adjustments, particularly when the
environment changes unexpectedly. Moreover, beyond
guiding our own actions, gaze plays a crucial role in
predicting the actions of others [7].

Eye movements serve multiple roles during action
control. At times, fixations support immediate motor
guidance, for example, by locking onto a target that the
hand or body is moving toward [8]. In other moments,
they serve more exploratory functions, scanning ahead
to anticipate what is coming next (e.g., an obstacle or
a slippery surface) or checking task-relevant features
in the periphery (e.g., road markings on a bike lane).
Rather than sticking to a single function, gaze constantly
switches between these roles depending on the demands
of the task. In stable and predictable environments,
visual guidance often dominates, with the gaze closely
tracking the current goal. But as tasks become more
challenging or when uncertainty increases, exploratory
sampling becomes more prominent. In such cases, eye
movements reflect not just ongoing actions but also
internal processes like planning, monitoring, or even
doubt. The balance between these roles potentially of-
fers insights into how humans implement action control
strategies to proactively respond to moment-to-moment
changes of their environment.

In the present study, we use a continuous, dynamic
task with systematically varied levels of predictability
to investigate how gaze supports flexible action control
in a complex yet controlled setting. Participants steer
a spaceship through an environment featuring obstacles
and unpredictable steering, input noise, requiring con-
tinuous adjustments in their action control. Eye move-
ments were recorded at high sampling rates, tracking
rapid shifts in gaze allocation. With this setup, we
explored how gaze shifts between guiding immediate
actions, anticipating upcoming demands, and adapting
to uncertainty in real-time.
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This work extends on previous studies using the same
task environment. In Abalakin et al. (2024) [9], we
manipulated the predictability of environmental drift, a
passive displacement of the spaceship that was either
visually indicated or not. We found that fixational eye-
movements converged toward an optimal distance from
the spaceship when the drift was visible (predictable),
whereas invisible (unpredictable) drift prevented such
adaptation. In Heinrich et al. (2024) [10], unpredictabil-
ity in steering was varied on a smaller scale with less
distinct levels than in the present study. There, we
identified smooth pursuit eye-movements that moved
through the environment and typically terminated closer
to the spaceship than when they were initiated. These
pursuits were initiated closer to the spaceship under
mild steering uncertainty but farther away under mod-
erate steering uncertainty. In both studies, fixational eye
movements were clustered solely based on whether the
spaceship fell within the foveal/parafoveal region or the
peripheral field.

Building on these findings, the present study extends the
manipulation of input noise and introduces a bottom-
up, data-driven clustering approach to identify fixation
types from multiple spatial and temporal dimensions.
With this, we are aiming for a more comprehensive
characterization of how gaze supports real-time action
control under varying levels of motor uncertainty.

II. METHODS

This study was approved by the ethics committee of
the Technische Universitdt Berlin (proposal KMDS-
WS-01-20190814-E2). Six students at the University
of Potsdam were recruited through SONA system. All
participants had either normal or corrected-to-normal
vision (with contact lenses) and no known history of
neurological disorders. Before the experiment, informed
consent for research and publication was obtained from
all individuals. To prevent potential biases, participants
were not briefed on the study’s hypotheses but only
about the task itself. Participants were compensated with
1.5 participation hours.

II-A.  Experiment and Procedure

We used the same experimental environment as in our
previous studies: Dodge Asteroids, a custom environ-
ment built in Python [11] using the PyGame library
[? ]. The environment runs at 60 FPS and builds on
a simulation framework originally developed by Kahl
et al. (2022) [12] to evaluate a computational model
of action control. Dodge Asteroids provides a well-
controlled yet dynamic setting, where the environment
changes independently of the agent’s behavior, while
still allowing the agent to act freely and select sub-goals.
This combination makes it particularly well suited for
investigating the temporal dynamics of action control.
Paired with high-frequency eye tracking, the environ-
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ment allows us to examine how the statistical properties
of action goals evolve in response to increasing uncer-
tainty in the agent’s world model [9] or loss of motor
control [10, 13].

Obstacles are scattered throughout the environment,
with their x- and y-positions drawn from a uniform
distribution bound by the width and height of the
environment.

Participants steered a spaceship that automatically falls
through the environment but can be pushed in either
horizontal direction using the keyboard (Y = left, M
= right; QWERTZ layout). The task was to reach the
bottom end without crashing into obstacles.

The Dodge Asteroids environment had a width of 720
pixels and a height of 13,500 pixels. Free fall was 6
pixels each frame. Spaceship and obstacles were 36
pixels in width and height. At any moment during
gameplay, only a small part of the full environment, the
observation space, was visible (see left side of Figure 1
a). A full example layout is shown on the right of
Figure 1 a.

We manipulated the accuracy with which the spaceship
is steered by means of input noise. Each frame, a key is
down to steer the spaceship, its’ horizontal displacement
is drawn from a normal distribution centered above 6
pixels and with varying standard deviation. Increasing
standard deviations impose increasing uncertainty in
motor control. There were 5 levels of input noise given
by the standard deviations of 0 (no noise, i.e., accurate
control), 0.5, 1.0, 1.5, and 2.0.

The experiment was presented on a 28” ASUS PB277Q
screen with a 1920x1080 resolution and a refresh rate
of 60Hz (equal to the FPS of the Dodge Asteroids
environment). Participants were seated with their heads
stabilized on a chin rest positioned 80cm from the
screen. Eye movements were recorded using a ViewPixx
TRACKPixx eye-tracker (VPixx Technologies, Saint-
Bruno, QC, Canada), which tracked both eyes at a
sampling rate of 2,000Hz. The setup was mounted
on a height-adjustable table, ensuring the chin rest
and participants’ faces remained at a consistent height
relative to the screen. The spaceships’ position on the
screen was kept constant as a static reference point,
fixed at coordinates x = 954 and y = 270 pixels (position
of the upper left corner of the sprite). Consequently, any
movement in the environment, whether due to free fall
or steering, caused the surroundings to move relative to
the spaceship at the screen center. New objects appear
at the bottom of the screen and travel upwards until
exiting at the top, taking approximately 2.45s from
bottom to top. A gray bar, 270 pixels in height and
spanning the full screen width, was displayed at the
bottom to discourage gaze shifts beyond the screen (in
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Figure 1. (a) Instance within the Dodge Asteroids experimental environment. The green spaceship remains static at this position
on the screen. Obstacles are spread throughout the instance. The full layout of this trial is shown on the right. (b) Simplified
representation of a (different) instance within the Dodge Asteroids environment. Here, the participant is steering to the left,
indicated by the bright green-colored triangle in the upper left corner. The red cross marks the gaze position.

the flight direction of the spaceship and where new
objects appear).

Before the experiment was conducted, we generated 6
distinct environment layouts by randomly placing 62
obstacles (sampling x- and y-positions from a uniform
distribution as described above). Participants completed
each layout under all five input noise levels, resulting in
30 unique combinations of layout and noise condition.

Prior to every session, the eye-tracker was calibrated
individually for each participant using a 9-point grid.
Participants then completed a training level measur-
ing 36,000 pixels in length to familiarize themselves
with the task. After training, participants solved the
30 unique combinations of layout and input noise that
were presented in a randomized order. If a participant
crashed during a trial, the same combination was rein-
troduced later in the session. Each combination could be
attempted up to three times. However, combinations that
resulted in three consecutive crashes were removed from
the participant’s remaining sequence. This procedure
was designed to prevent the learning of specific obstacle
patterns through repetition. Prior to each new trial, a 5-
point eye-tracker recalibration was performed, allowing
participants to take short breaks in between trials during
which they could disengage from the chin rest if needed.
Both the 9-point and 5-point calibrations were only
accepted if the mean error of both eyes during vali-
dation was below 50 pixels. Otherwise, the calibration
was repeated. Participants completed the experiment in
roughly 60 minutes.
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For the present analyses, we considered only trials with-
out crashes, since crash trials end prematurely, affecting
fixation counts and durations, and fixations just before
crashes may involve distinct action-related processes;
these will be examined in a separate study.

IITI. DATA ANALYSIS

Fixation detection was performed as follows. We iden-
tified saccades in the dataset using an established
velocity-based detection algorithm [14, 15]. A sample
was classified as part of a saccade if the eye moved
with a velocity of at least 0.5° for four or more con-
secutive samples (> 0.002s), with the velocity threshold
determined using a multiplier of A = 6. Periods in which
either eye signal was lost were labeled as blinks. Blinks,
as well as the events directly preceding or following a
blink (i.e. fixations or saccades), were excluded from
further analysis. Finally, fixations were defined as time
intervals between consecutive saccades. In total, we
identified 31,505 fixations on the basis of which we
conducted the analyses described below.

Briefly going over the structure of the data, each row is a
fixation which is linked to its distance to the spaceship
in visual degrees, its fixation duration in seconds, its
distance to the closest obstacle in visual degrees, and
the input noise in the trial the fixation occurred.

All data processing and analyses were conducted us-
ing Python (v3.9.18), and relevant scientific libraries
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(numpy [16] and pandas [17]). For reproducibility of
our results, we used a random seed(36)'.

III-A. Principal Component Analysis

Principal Component Analysis (PCA) was applied us-
ing the scikit-learn (sklearn) library [18] to
explore the structure of visual and spatial informa-
tion related to participants’ fixations during spaceship
navigation. PCA is an unsupervised dimensionality re-
duction method that identifies orthogonal components
maximizing the variance in the feature space, without
reference to any target variable. We entered three fea-
tures: distance to the spaceship, fixation duration, and
distance to the closest obstacle. All features were z-
standardized prior to the analysis.

The PCA yielded three orthogonal components that
together explained 100% of the total variance in the
projected data, with individual components accounting
for 39.9%, 33.2%, and 26.9%, respectively. Since each
component explained a substantial portion of the vari-
ance, all three components were kept for the clustering
analysis described in the next section.

III-B. Quantile-Based Clustering

We applied quantile-based clustering [19] to the three
identified features using the QuC1lu library. Here, data
points were assigned to the closest quantile (or a
weighted sum of quantiles in higher dimensions). We
chose this clustering method over standard clustering
techniques (e.g., k-means) because it is more robust
to outliers and non-Gaussian or skewed distributions
and allows for variable-wise scaling and quantile nor-
malization [20]. This makes quantile-based clustering
especially beneficial for fixation data, where feature
distributions often exhibit heavy tails, unequal scaling,
and non-linear effects.

Clustering was performed with B = 50 resamplings to
ensure stability of the quantile estimates. The number
of clusters K was varied from 2 to 10. For each k,
we computed the silhouette score, a standard internal
validity index that quantifies how well-separated and
cohesive the resulting clusters are (Figure 2). The high-
est silhouette score was obtained for K = 2, suggesting
that the fixation data consists of two types of fixations.

All fixation events were assigned to the distinct fixation
types based on the resulting clusters (Type 0 and Type
1). Next, two fixation types were described based on
their original feature values, highlighting the differences
in spatial and temporal fixation patterns. Following the
descriptive analysis, we investigated whether these types

I Git repository containing experimental data and Jupyter Notebook
(Clustering&Analysis.ipynb) with code for all analyses de-
scribed in this paper.
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Figure 2. Silhouette scores (y-axis) for fixation data clustered
into various number of clusters (x-axis).

also show distinct sensitivity to input noise using linear
mixed modeling.

III-C. Descriptives

There could be a general difference in how often
fixations of the different types are initiated. Therefore,
we calculated the total number of fixations per fixation
type for each trial, resulting in one data point per
trial and fixation type (Ngxo and Njx 1). The mode of
Type 0 fixations per trial, estimated using kernel density
estimation (KDE), was 22.525. For Type 1 fixations, the
mode was 29.253 fixations per trial.

Type O fixations featured a mean distance to the space-
ship of 2.544° (1.489), a mean fixation duration of
0.240s (0.370), and a mean distance to the closest
obstacle of 3.305° (1.920).

Compared to Type O fixations, Type 1 fixations featured
a greater mean distance to the spaceship of 8.198°
(2.473), a shorter mean fixation duration of 0.178s
(0.363), and a greater mean distance to the closest
obstacle of 4.241° (1.917).

Note that the distributions of all variables of interest are
skewed to the right, with more probability density gath-
ered in the right tail compared to the left tail (Figure 3).
To mitigate potential violations of model assumptions,
we explored appropriate data transformations before
proceeding with linear mixed modeling.

III-D. Linear Mixed Modeling

Box-Cox distributional analyses were conducted [21]
using the scipy.stats library [22] for data trans-
formation. Applied transformations and correspond-
ing lambda values are stated in the individual para-
graphs. Linear mixed models were built using the
statsmodels.formula.api library [23] and in
every model, the participant ID was entered as a random
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Figure 3. Kernel density estimates (KDEs) for 4 different metrics (columns) of Type O and Type 1 fixations (rows) identified
through quantile-based clustering. The first column shows the number of fixations of the respective type in a given trial. Columns
2 to 4 are the metrics based on which the 2 fixation types were identified in the clustering process.

intercept effect and input noise as a numerical fixed
effect.

First, we investigated whether the number of fixations of
each type varies systematically with input noise, under
the hypothesis that different fixation types i.e. their
roles become more or less relevant as uncertainty in
motor control increases. Nixo was log transformed (4
=0.239). The number of Type O fixations decreased with
increasing input noise (§ = -0.181, ¢ = 0.079, 95% CI -
0.335--0.027, p = .021). Njx,1 was also log transformed
(A =0.042). We also found a significant decrease in the
number of fixations with increasing input noise (f = -
0.415, o = 0.069, 95% CI -0.550 - -0.279, p < .001).

We then turned to more detailed analyses, using indi-
vidual fixations as data points for the respective cluster.
Each fixation was linked to its specific characteristics
(distances to objects on the screen and its‘ duration)
and the input noise level of the trial during which it
occurred.

Type 0 fixations® distance to spaceship in visual degrees
was square root transformed (A = 0.539). We found that
the higher the input noise level was, the closer Type 0
fixations were allocated to the spaceship (8 = -0.023,
o = 0.006, 95% CI -0.035 - -0.012, p < .001).

A reciprocal transformation was applied to the distance
to the spaceship in Type 1 fixations (A = -0.909). There
was no significant effect of input noise on distance to
spaceship (8 = -0.001, ¢ = 0.000, 95% CI -0.001 -
0.000, p = .248).

Fixation duration of Type O fixations was log-
transformed (A = 0.093). Input noise had a significant

979-8-3503-4125-6/25/$31.00 ©2025 IEEE

IEEE SPMB 2025

negative effect (B = -0.097, o = 0.018, 95% CI -
0.132 - -0.063, p < .001), meaning that the higher the
uncertainty in motor control was, the shorter Type 0
fixations lasted.

Type 1 fixations‘ duration was also log-transformed (A
=-0.017). Contrary to the effect of input noise in Type O
fixation duration, increasing input noise was associated
with longer fixation durations (8 = 0.043, o = 0.016,
95% CI 0.011 - 0.075, p < .009).

We log-transformed the distance to the closest obstacle
of Type O fixations (A = 0.163). Input noise had no
significant effect on the variable of interest (8 = -0.001,
o =0.007, 95% CI -0.014 - 0.013, p = .981).

For the distance to the closest obstacle in Type 1 fixa-
tions, the Box-Cox distributional analysis also indicated
a log transformation (A = 0.246). Increasing input noise
was associated with longer distances to the closest
obstacle (B = 0.034, o = 0.005, 95% CI 0.023 - 0.044,
p < .001).

IV. DISCUSSION

With the experiment described here, we continue a
series of experiments investigating the relationship be-
tween oculomotor control and action control. Partici-
pants navigated a spaceship through a dynamic but well-
controlled environment, attempting to avoid collisions
with obstacles while dealing with varying levels of mo-
tor noise that impaired their control. We recorded their
eye movements throughout gameplay to investigate how
gaze supports action control under uncertainty. Based on
the assumption that fixations serve different functional
roles during action control, we expected that distinct
types of fixations could be distinguished statistically. We
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therefore applied quantile-based clustering and analyzed
the obtained clusters using linear mixed modeling.

Type O fixations were initiated less often in a trial than
Type 1 fixations. In both fixations types, the number of
fixations decreased with increasing input noise.

Type O fixations were generally closer to the spaceship
and longer in duration than Type 1 fixations. As input
noise increased, they became even more tightly focused
on the ship and decreased in duration. Their distance
to the nearest obstacle, however, remained unaffected.
These fixations may be used to monitor the regions
in the immediate vicinity of the spaceship, and the
effects of input noise indicate that monitoring becomes
more rigorous with heightened demands on real-time
motor control. Interestingly, the spatial pattern of Type 0
fixations resembles the center bias in fixations reported
by Burlingham et al. (2024) [24]. In the context of our
task, Type O fixations are allocated near a central refer-
ence point, potentially to optimize energetic efficiency,
particularly under conditions of control loss or increased
task difficulty.

Type 1 fixations, in contrast to Type O, tended to occur
farther from both the spaceship and the nearest obstacle
and were shorter in duration. As input noise increased,
these fixations were allocated even farther from obsta-
cles and became longer in duration, while their average
distance to the spaceship remained stable. Notably, they
were often directed toward relatively empty regions
of the screen, as indicated by their greater distance
from nearby obstacles. This spatial pattern suggests that
Type 1 fixations may serve to track anticipated target
locations, the positions of which change over time due
to the dynamic visualization of the task. In line with this
interpretation, our findings appear to recover the two
types of fixation roles described in Lisberger (2015) [8],
with Type O fixations anchored near the spaceship and
relying on peripheral vision to monitor environmental
features, while Type 1 fixations are more directly locked
onto target positions. Moreover, the increasing distance
to obstacles under higher input noise, when control out-
comes become more uncertain, may reflect an adaptive,
forward-looking gaze strategy aimed at reducing risk
by gathering information about future action-relevant
locations.

If Type 1 fixations are directed toward target positions,
and these target positions move because the environment
shifts around a spaceship that remains centered on the
screen, then they are not fixations in the strict sense.
Rather, they likely represent smooth pursuit eye move-
ments, with their velocity corresponding to the motion
of anticipated target positions across the screen (similar
to the foveated action goals described by Heinrich et al.,
2024 [10]). Smooth pursuits can directly support motor
behavior, as the pursuit signal itself may be sufficient
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to improve (hand) motor control during interactions
with moving objects [25]. This characteristic could be
another distinguishing feature between Type 1 and Type
0 fixations. Type O fixations are primarily directed at the
spaceship itself, an object whose position remains stable
on the screen, and thus would not elicit smooth pursuit.
Investigating whether Type 1 fixations indeed exhibit
smooth pursuit-like properties could be a valuable di-
rection for future experiments.

Beyond their role in efficient visuomotor control, Type
0 and Type 1 fixations may reflect distinct modes of
self—environment coupling. Stable, Type O fixations help
maintain a coherent perceptual anchor and predictable
sensory input, whereas Type 1, pursuit-like fixations
support adaptive engagement with dynamically chang-
ing action goals. Smooth pursuits rely on predictive
mechanisms, such as corollary discharge, to maintain
accurate tracking once the fovea is stabilized on a mov-
ing target, and disrupted predictive signals can impair
pursuit performance [26]. This functional distinction
suggests that the balance between Type O and Type
1 fixations may be critical for efficient action control:
Type 1 fixations allow participants to track anticipated
target locations, especially when motor control is un-
certain, while Type O fixations preserve stability when
cognitive resources cannot be fully allocated to action
selection. Notably, these same perceptual and oculomo-
tor processes are often disrupted in clinical populations,
such as patients with schizophrenia and borderline per-
sonality disorder, who exhibit unstable self-perception,
altered smooth pursuit, and difficulties maintaining spa-
tial anchoring. Our classification framework could thus
provide a computational or behavioral marker of how ef-
ficiently individuals balance sensory stability and goal-
directed engagement, a balance that appears perturbed
in disorders involving self-disturbances.

This study may present a novel approach to studying eye
movements in dynamic, time-constrained environments.
It is inspired by scenarios such as natural driving but
simplified in terms of complexity and participant behav-
ior (e.g., head movements constrained by a chin rest) for
better experimental control. The paradigm combines a
screen-based task, where participants freely choose sub-
goals, with high-frequency eye tracking. With this setup,
we explore the functional roles of eye movements in
real-time action and how these roles adapt under varying
levels of control uncertainty. We are continuously refin-
ing the paradigm to validate our findings, and welcome
discussions and collaborations.
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