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Background : Microbiota

Trillions of microorganisms across gut, oral, skin, urogenital
sites

Key roles: Immunity, Metabolism, Pathogen resistance
Dysbiosis linked to major diseases:

a. Colorectal cancer

b. T2 Diabetes

c. IBD

d. Liver disease

High-dimensional, sparse, noisy data — analytical challenges
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Why Al For Microbiota?

Learns patterns in complex microbial ecosystems
Handles high dimensionality and non-linearity
Supports:

o Disease prediction

o Prognosis

o Patient stratification

o Biomarker discovery

Potential pathway to precision medicine
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Methodology( PRISMA INSPIRED)

Databases: PubMed, IEEE Xplore, ScienceDirect,
SpringerLink

Keywords: microbiota * microbiome * ML - DL - clinical
Inclusion:

e Human data

 Peer-reviewed

e Empirical AI models

Extracted: model type, data source, clinical goal,
performance, limitations
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Overview Of Selected Studies
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Majority use classical ML

Smaller but growing set
uses DL, especially CNNs

Data types:

e 16S rRNA

e Whole-metagenome
e Metabolomics

e Imaging + microbiota

Clinical focus: cancer, liver
disease, IBD, oral disease,
dermatology, drug
interactions
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Machine Learning Approaches
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« Dominant: Random Forest (robust, interpretable)
« Others: SVM - Logistic Regression * XGBoost - Extra Trees
 Applications:
e Cancer subtype prediction
e Liver disease prognosis
e CD vs UC classification
e Preterm birth prediction
e CVD screening
e Drug—microbiota interaction modeling 6/13
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Deep Learning Approaches

Mostly CNN-based architectures
Phylogeny-aware CNNs using
taxonomic structure

Used for:

e Liver disease staging

e Dermatology + microbiota
multimodal tasks

e High-resolution ASV
identification

Strength: feature
representation

Weakness: interpretability, data
requirements
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Clinical Applications of Al

Diagnosis / Classification

Colorectal cancer - Liver disease -
IBD * Oral lichen planus *
Dermatology

Prognosis / Risk Prediction

Survival - CVD * T2D (microbial
rhythmicity)

Therapeutic Support

Immunotherapy response * Drug
metabolism/bioaccumulation

Multi-disease frameworks emerging
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Data Types & Processing

Mostly gut microbiota (stool samples)
Growing use of oral & skin microbiota

Profiling methods: o

e 16S rRNA (common, low resolution)

e WGS (higher resolution, costly) ({Q\)/O _
Challenges: D D

e Heterogeneous preprocessing ﬂ

e OTUs vs ASVs \ y
e Compositionality (CLR, ALR, TSS) |
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o Small, single-center
datasets

o Weak external
validation

o Batch effects &
inter-study variability

o Inconsistent
preprocessing pipelines

Key Limitations o Limited interpretability

o Minimal code / pipeline
transparency
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Challenges: What They Mean

High AUC # reliable model

Models may learn site-specific artifacts instead of
biology

Poor generalization across regions, devices,
populations

Limited trust due to lack of explainability

Biological noise + sequencing differences distort
patterns
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Future Directions

|Future

EYW

—

MRH

4 IEEE

Standardize microbiome
preprocessing workflows
Multi-center, diverse datasets for
validation

Integrate explainability (SHAP, LIME,
attention)

Expand to oral, skin, vaginal niches
Multimodal learning (microbiota +
metabolomics + imaging +
metadata)

Causal ML & temporal modeling
Federated learning for
privacy-preserving cross-site
collaboration 12/13
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Conclusions

o Al shows strong promise for

microbiota-based clinical tasks ' :
: : Final Thoughts &
« ML dominates; DL excels in L

multimodal contexts ‘
« Major gaps: generalization,
standardization, interpretability
o Clinical translation requires
rigorous validation and
transparency
o Microbiota + Al — emerging
pillar for personalized
medicine
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