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Background : Microbiota
1. Trillions of microorganisms across gut, oral, skin, urogenital 

sites
2. Key roles: Immunity, Metabolism, Pathogen resistance
3. Dysbiosis linked to major diseases:

a. Colorectal cancer
b. T2 Diabetes
c. IBD
d. Liver disease

4. High-dimensional, sparse, noisy data → analytical challenges
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Why AI For Microbiota?
● Learns patterns in complex microbial ecosystems
● Handles high dimensionality and non-linearity
● Supports:

○  Disease prediction
○  Prognosis
○  Patient stratification
○  Biomarker discovery

● Potential pathway to precision medicine
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Methodology( PRISMA INSPIRED)

o Databases: PubMed, IEEE Xplore, ScienceDirect, 
SpringerLink

o Keywords: microbiota · microbiome · ML · DL · clinical

o Inclusion:

o • Human data

o • Peer-reviewed

o • Empirical AI models

o Extracted: model type, data source, clinical goal, 
performance, limitations
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Overview Of Selected Studies

o Majority use classical ML

o Smaller but growing set 
uses DL, especially CNNs

o Data types:

• 16S rRNA

• Whole-metagenome

• Metabolomics

• Imaging + microbiota

o Clinical focus: cancer, liver 
disease, IBD, oral disease, 
dermatology, drug 
interactions
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Machine Learning Approaches
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• Dominant: Random Forest (robust, interpretable)
• Others: SVM · Logistic Regression · XGBoost · Extra Trees
• Applications:

• Cancer subtype prediction
• Liver disease prognosis
• CD vs UC classification
• Preterm birth prediction
• CVD screening
• Drug–microbiota interaction modeling



Deep Learning Approaches
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● Mostly CNN-based architectures
● Phylogeny-aware CNNs using 

taxonomic structure
● Used for:

• Liver disease staging
• Dermatology + microbiota 
multimodal tasks
• High-resolution ASV 
identification

● Strength: feature 
representation

● Weakness: interpretability, data 
requirements



Clinical Applications of AI

o Diagnosis / Classification

o Colorectal cancer · Liver disease · 
IBD · Oral lichen planus · 
Dermatology

o Prognosis / Risk Prediction

o Survival · CVD · T2D (microbial 
rhythmicity)

o Therapeutic Support

o Immunotherapy response · Drug 
metabolism/bioaccumulation

o Multi-disease frameworks emerging
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Data Types & Processing

o Mostly gut microbiota (stool samples)

o Growing use of oral & skin microbiota

o Profiling methods:

• 16S rRNA (common, low resolution)

• WGS (higher resolution, costly)

o Challenges:

• Heterogeneous preprocessing

• OTUs vs ASVs

• Compositionality (CLR, ALR, TSS)
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Key Limitations

o Small, single-center 
datasets

o Weak external 
validation

o Batch effects & 
inter-study variability

o Inconsistent 
preprocessing pipelines

o Limited interpretability

o Minimal code / pipeline 
transparency
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Challenges: What They Mean

o High AUC ≠ reliable model

o Models may learn site-specific artifacts instead of 
biology

o Poor generalization across regions, devices, 
populations

o Limited trust due to lack of explainability

o Biological noise + sequencing differences distort 
patterns
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Future Directions ● Standardize microbiome 
preprocessing workflows

● Multi-center, diverse datasets for 
validation

● Integrate explainability (SHAP, LIME, 
attention)

● Expand to oral, skin, vaginal niches
● Multimodal learning (microbiota + 

metabolomics + imaging + 
metadata)

● Causal ML & temporal modeling
● Federated learning for 

privacy-preserving cross-site 
collaboration 12/13



Conclusions

● AI shows strong promise for 
microbiota-based clinical tasks

● ML dominates; DL excels in 
multimodal contexts

● Major gaps: generalization, 
standardization, interpretability

● Clinical translation requires 
rigorous validation and 
transparency

● Microbiota + AI → emerging 
pillar for personalized 
medicine

○
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