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Motivation

Current Challenges:
Deep Learning (CNNs, ViTs)

Impacts: MLLMs show promise as baselines; PEFT significantly enhances performance & clinical utility.

Multimodal Large Language 
Models (MLLMs)

Benchmarking Need

Large Labeled 
Datasets

Task Specific 
Models

Needs massive data
Lacks flexibility
Limited explainability

• Systematic benchmarking of 
MLLMs vs. domain-specific 
models

• Statistically Rigorous 
Comparisons (Z-test) 

Low Resource

New Task

Generate Reasoning

In-Context Learning (ICL)
Parameter Efficient Fine-tuning 
(PEFT)

No retraining is needed
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• Models perform new tasks by interpreting instructions and 
examples in the prompt, without updating model weights.

• For vision, MLLMs can:
q Accept both images + text as input
q Produce class labels and natural language reasoning as output.

• As a result, organizations can deploy powerful models without the 
cost and time of domain-specific fine-tuning.

In-Context Learning (ICL)

• In biomedical imaging, this allows:
q Zero-shot classification with only guidelines and a few examples
q Rapid adaptation to new image types and label sets.

• Prior work shows GPT-4V can match or surpass specialized networks 
on some histopathology tasks and radiology question answering under 
carefully designed prompts.

• This makes large models more clinically useful, especially in settings 
with limited annotations or rapidly changing imaging protocols.
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• Data source: Natus Ambulatory EEG Corpus (NAEG v1.0.0).

• 104 EEG images sampled to maximize patient diversity 
and seizure/background variability.

• Annotation follows TUH EEG Seizure Corpus guidelines:
q 25 event types including multiple seizure subtypes 

and non-epileptic artifacts.
q Events annotated with start/stop times and channel localization.

• Key seizure criteria:
q Morphology (e.g., spike-and-slow-wave)
q Rhythmicity and synchrony
q Evolution over time
q Duration (≥ 3 s for absence; ≥ 10 s for other seizures).

• Decade of experience in EEG annotation and more than 11K subscribers of the TUH EEG dataset.

• For this study, non-seizure events are collapsed into background (bckg); seizure classes include 
generalized seizure (gnsz), focal non-specific seizure (fnsz), absence seizure (absz).

The Natus Continuous EEG Corpus
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The EEG Annotation Process
• EEG signals are annotated with our open-

sourced NEDC EEG annotation tool (Python-
based, integrated with cohort retrieval).

• We take screenshots of the EEG signals and use 
these image frames in our experiments.

• Do not use raw time-series EEG because:
q To test the visual reasoning capability of 

MLLMs using EEG images
q Mirroring how neurologists visually inspect 

EEGs to decide whether a seizure is present or 
not.

• Before querying the MLLMs, we carefully 
designed the prompts so that no ground-truth 
label names or hints were exposed, ensuring no 
label leakage into the model inputs.
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• Data source: TUH Digital Pathology (TUDP) Corpus of breast tissue slides.

• Label taxonomy:
q Non-cancerous: normal (norm), background (bckg), null, artifacts (artf)
q Cancerous: ductal carcinoma in situ (dcis), invasive ductal carcinoma (indc)
q Neoplastic-associated/benign: non-neoplastic (nneo), inflammation (infl), suspicious (susp)

• Imaging characteristics:
q Image patches extracted from whole slides
q Window size: 1024x1024, frame size: 512x512
q Curated to capture diverse architectures and clear label-defining features.

• Study subset: 10–12 images per label, total 101 images across 9 classes.

dcis indc nneo infl norm susp

The Digital Pathology Annotation Process
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• Two-stage workflow:
q Prompt engineering + zero-shot evaluation with ChatGPT

o3-mini-high.
q Parameter-efficient fine-tuning (PEFT) of Qwen2-VL using

expert-validated reasoning.
• Stage 1 (prompt engineering):

q Load EEG/DPATH images and guidelines.
q Initialize chat with system instructions.
q Present one image per query with the structured JSON prompt.
q Collect model label + reasoning; have experts review and curate 

correct reasoning samples.
• Stage 2 (fine-tuning):

q Convert curated samples into instruction-tuning format 
(system / user / assistant messages).

q Initialize Qwen2-VL-7B Instruct backbone.
q Apply LoRA-based PEFT and train on expert-validated reasoning 

examples.
q Evaluate fine-tuned Qwen and compare to ChatGPT zero-shot, 

ResNet, and ViT baselines.

Experimental Design
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• Goal: Assess visual reasoning of ChatGPT o3-mini-high model for EEG images 

• Three experiments using images from NAEG:

• Temporal context helps but does not solve main challenges; absence seizures remain especially difficult.

Exp. 1 – Single-frame, 
4-way classification

• Classes: gnsz, fnsz, 
absz, bckg

• 104 images
(26 per class)

• ChatGPT o3-mini-high 
accuracy: 25%.

Exp. 2 – Single-frame, 
binary classification

• Labels collapsed to 
“seizure” vs “no 
seizure”

• Same 104 images
• Accuracy improves to 

49%.

Exp. 3 – Temporal-
context, 4-way 
classification

• Input: 3 consecutive 
frames (pre-ictal, ictal, 
post-ictal) per case

• 100 cases (75 seizure, 
25 background; 300 
images)

• Accuracy: 35%.

Case Study: EEG I (Tasks & Quantitative Results)
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Case Study: EEG II (Qualitative Reasoning & Failure Modes)

✔ STRENGTHS IN REASONING

• Rich temporal descriptions: Onset, buildup, 
widespread, abrupt termination.

• Clinically relevant concepts: Spike-and-
wave morphology, synchronization, 
evolution.

• Clinically Interpretable: Reasoning often 
valid even if final label is wrong.

ANNOTATOR PERSPECTIVE: Partial understanding of EEG features, lacks robustness & temporal nuance. 
Reasoning is often clinically interpretable even when the final label is wrong.

X KEY FAILURE MODES

• Absence seizures (absz): Misclassified as 
GNSZ or artifacts; underestimates 3 Hz 
spike-slow & abruptness.

• Background (bckg) with Artifacts: Eye 
blinks misclassified as Focal Seizures 
(fnsz).

• Rigid Expectations: Difficulty with low-
amplitude rhythmic patterns & lack of 
robustness.
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• Goal: Assess visual reasoning of ChatGPT o3-mini-
high model for DPATH images 

• DPATH evaluation setup:
q 101 high-resolution pathology patches.
q For each image, model outputs:
• Cancer vs non-cancer decision
• One of nine labels
• Pathology-informed reasoning.

• ChatGPT o3-mini-high performance:
q Cancer vs non-cancer accuracy: 54%.
q Nine-way label accuracy: 48%.
q In ~40% of cases, reasoning is judged 

histologically accurate and well-aligned with the 
image.

• Even with moderate accuracy, the model 
demonstrates clinically meaningful reasoning 
ability—suggesting strong potential for decision 
support systems in pathology.

The image displays a dense inflammatory infiltrate composed 
predominantly of lymphocytes within the fibrous stroma, without 
any clear evidence of ductal structures or atypical epithelial 
proliferation. There is no architectural distortion, mitotic activity, 
or cytologic atypia suggestive of malignancy. This pattern is 
consistent with a benign inflammatory process, not cancer.

This image shows a duct completely filled with a monomorphic 
population of atypical epithelial cells, demonstrating cribriform 
and solid architecture with clear preservation of the basement 
membrane — classic features of DCIS. The nuclei are enlarged, 
irregular, and hyperchromatic, consistent with neoplastic 
changes. There is no evidence of stromal invasion, so this is 
non-invasive but still classified as cancer (in situ).

This image depicts small ductal and lobular units embedded in 
fibrous stroma. The ducts and lobules show bland nuclear 
morphology with clear luminal spaces, no architectural 
distortion, and preservation of the dual cell layers (epithelial and 
myoepithelial). The stromal background is unremarkable. There 
are no cytologic atypia or features of neoplasia. This is 
consistent with normal breast tissue histology.

The image reveals invasive epithelial structures with irregular, 
angulated glands infiltrating a fibrotic stroma. There is an 
absence of a continuous myoepithelial layer, nuclear atypia, and 
loss of normal ductal architecture, consistent with invasive 
ductal carcinoma (indc). These features indicate malignant cells 
breaching the basement membrane and invading surrounding 
tissue.

✅ ✅

✅ ⛔

Case Study: DPATH I (Tasks & Quantitative Results)
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Case Study: DPATH II (Reasoning Quality and Error Patterns)

Annotator Perspective: Model may succeed on one instance and fall on a similar one, indicating limited 
robustness across subtle variations.

✔ STRENGTHS IN REASONING

• Correctly distinguishes DCIS vs INDC: 
Recognizes preservation vs. loss of basement 
membrane, confinement vs. stromal invasion.

• Normal tissue recognitions: Notes dual cell 
layers, bland nuclei, preserved architecture, 
and unremarkable stroma.

• Strong differential reasoning: Correctly rules 
out malignancy by noting the absence of key 
cancer features.

X KEY FAILURE MODES

• Misses secondary context (e.g,. background 
artifacts)

• Benign structures misclassified as Malignant 
(overcalling ‘cancer’/’suspicious’)

• Mislabeling due to stain differences or subtle 
morphology changes.

• Reasoning describes DCIS/INDC patterns even 
for normal/benign images.
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• Goal: leverage expert-validated reasoning to improve an open-
source MLLM. Used Qwen2-VL-7B Instruct as the base model.

• Training data:
q EEG: 25 correct reasoning texts (bckg: 13, seiz: 12 after label collapsing).
q DPATH: 48 correct reasoning texts (label-imbalanced: indc, bckg, norm, infl, dcis, 

nneo).

• Instruction-tuning format:
q System: describes role (e.g., “medical professional specializing in cancer detection”).
q User: includes the image and structured query prompt with required JSON output.
q Assistant: provides ground-truth label and expert-validated reasoning.

• PEFT – Low rank adaptation (LoRA)
q Instead of updating all weights, LoRA adds small low-rank adapter matrices to 

selected layers and only trains those.
q ~2.5M trainable params out of ~8.3B total (~0.03% updated).
q Preserves the general knowledge of the base model while specializing it for EEG and 

DPATH reasoning.

Fine-Tuning Approach (PEFT with Qwen2-VL)
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• Models compared on EEG (binary seizure vs background):
q ChatGPT o3-mini-high (ZS), Qwen ZS, Qwen FT (LoRA), 

ResNet PT (ImageNet) and ResNet FT (EEG domain-
specific)

• Key quantitative findings (EEG):
q Qwen ZS:

Ø Accuracy ≈ 74% (predicts most samples as “seiz”).
Ø High accuracy but low precision (~37%), reflecting 

strong class bias.

q Qwen FT:
Ø Accuracy ≈ 54%, but precision improves to ~62% 

and recall ~64%.
Ø Indicates a better calibrated classifier than Qwen ZS.

• Statistical analysis:
q Pairwise Z-tests show significant improvements of 

Qwen FT over its zero-shot and some baseline 
counterparts at 99% confidence.

Results I (Analysis – EEG)
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Results II (Analysis – DPATH)

• Models and settings (DPATH, 6-way classification):
q Multimodal: o3-mini-high (ZS), Qwen ZS, Qwen FT (LoRA)
q Vision baselines: ResNet PT/FT, ViT PT/FT

• Zero-shot vs fine-tuned MLLMs (Qwen):
q Qwen ZS: very low accuracy (5.94%) and AUC (48.64%), indicating 

difficulty on pathology images without adaptation.
q Qwen FT (LoRA): accuracy improves to 28.71% and AUC to 62.43%, a 

large gain from fine-tuning on just 48 expert-validated reasoning 
samples.

• o3-mini-high ZS vs pretrained CNN/ViT baselines:
q o3 ZS: accuracy 48.51%, AUC 74.22%.
q Pretrained ResNet PT: AUC 47.08%; ViT PT: AUC 47.82%—both 

substantially below o3 ZS.
q Pairwise Z-tests confirm o3’s AUC advantage over these pretrained 

baselines is statistically significant at 99% confidence, making o3 ZS a 
strong reference baseline for future DPATH studies.

• For both domains, MLLMs are better baseline models than 
deep learning-based models.
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• Introduced a two-step framework:

q Zero-shot prompt engineering with ChatGPT o3-mini-high.

q PEFT fine-tuning of Qwen2-VL using expert-curated reasoning.

• Developed a structured prompting strategy that uses annotation guidelines to provide rich in-context 
information to MLLMs.

• Benchmarked MLLMs against ResNet and ViT on two biomedical image tasks (EEG & DPATH).

• Performed expert review of model reasoning to evaluate clinical interpretability.

• Applied pairwise Z-tests to quantify the statistical significance of performance differences between models.

• Findings:

q MLLMs can deliver moderate zero-shot performance with clinically meaningful reasoning.

q PEFT can yield statistically significant improvements.

q Domain-specific supervised models still lead in accuracy, but MLLMs offer flexibility and explainability.

Summary
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Future Directions

• Scale up datasets for both EEG and DPATH to move beyond proof-of-concept:

q Larger, more diverse images

q More balanced label distributions.

• Implement k-fold cross-validation and more robust evaluation protocols.

• Develop a systematic prompt-engineering framework to reduce human bias and improve reproducibility.

• Explore architectural enhancements and training methods enabling better:

q Temporal reasoning for EEG

q Handling of complex, multi-structure pathology images.

• Integrate model-generated reasoning directly into clinical workflows as structured, verifiable explanations.

• Investigate hybrid systems combining domain-specific vision backbones with MLLM-style reasoning for 
best-of-both-worlds performance.
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• This material is based on work supported by several organizations over the years including the National 
Science Foundation (grants nos. 2211841 and 1726188 and 1925494), the Temple University Catalytic 
Collaborative Funding Initiative and most recently by the Pennsylvania Breast Cancer Coalition Breast and 
Cervical Cancer Research Initiative. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not necessarily reflect the views of these 
organizations.

• The title slide’s image was generated by the Gemini Nano Banana tool using the following prompt: 
‘Generate an image showing a physician who is an expert in EEG signal interpretation and digital 
pathology, working with ChatGPT on her computer.’
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