Assessing Visual Reasoning of Multimodal Language Models
in Biomedical Applications
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Motivation

4 N

Current Challenges: Multimodal Large Language
Deep Learning (CNNs, ViTs) Models (MLLMs)

\
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x Needs massive data
x Lacks flexibility
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In-Context Learning (ICL)

Parameter Efficient Fine-tuning
(PEFT)
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New Task
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Low Resource

% Limited explainability Generate Reasoning

/ \x No retraining is needecy

» Systematic benchmarking of
MLLMs vs. domain-specific
models

« Statistically Rigorous
komparisons (Z-test) /

Impacts: MLLMs show promise as baselines; PEFT significantly enhances performance & clinical utility. }
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In-Context Learning (ICL)

* Models perform new tasks by interpreting instructions and
examples in the prompt, without updating model weights.

* For vision, MLLMs can:
a Accept both images + text as input
Q Produce class labels and natural language reasoning as output.

Applications of medical multimodal
large language models

* As a result, organizations can deploy powerful models without the
cost and time of domain-specific fine-tuning.

* In biomedical imaging, this allows:
O Zero-shot classification with only guidelines and a few examples

o
@

O Rapid adaptation to new image types and label sets.

* Prior work shows GPT-4V can match or surpass specialized networks
on some histopathology tasks and radiology question answering under
carefully designed prompts.

* This makes large models more clinically useful, especially in settings
with limited annotations or rapidly changing imaging protocols.
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The Natus Continuous EEG Corpus

—— F7—T3 —— F8—T4

- Data source: Natus Ambulatory EEG Corpus (NAEG v1.0.0). o

— T3—T5 —— T4—T6

* 104 EEG images sampled to maximize patient diversity
and seizure/background variability.

- T5—01 T6—02
— Al—T3 =—— T4—A2

— T3—C3 —— C4—T4

« Annotation follows TUH EEG Seizure Corpus guidelines:

e C3—CZ w——— CZ—CA

—— FP1—F3 —— FP2—F4

O 25 event types including multiple seizure subtypes
and non-epileptic artifacts.

— F3—C3 —— F4—C4

—— C3—P3 —— C4—P4

0 Events annotated with start/stop times and channel localization. : o o

» Key seizure criteria:
O Morphology (e.g., spike-and-slow-wave)
O Rhythmicity and synchrony
O Evolution over time

O Duration (2 3 s for absence; 2 10 s for other seizures).

Decade of experience in EEG annotation and more than 11K subscribers of the TUH EEG dataset.

* For this study, non-seizure events are collapsed into background (bckg); seizure classes include
generalized seizure (gnsz), focal non-specific seizure (fnsz), absence seizure (absz).
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The EEG Annotation Process

« EEG signals are annotated with our open-
sourced NEDC EEG annotation tool (Python-
based, integrated with cohort retrieval).

* We take screenshots of the EEG signals and use
these image frames in our experiments.

* Do not use raw time-series EEG because:

» Before querying the MLLMs, we carefully
designed the prompts so that no ground-truth
label names or hints were exposed, ensuring no
label leakage into the model inputs.

v
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O To test the visual reasoning capability of
MLLMs using EEG images

Q Mirroring how neurologists visually inspect
EEGs to decide whether a seizure is present or

X
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not.
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The Digital Pathology Annotation Process

Data source: TUH Digital Pathology (TUDP) Corpus of breast tissue slides.

Label taxonomy:

O Non-cancerous: normal (norm), background (bckg), null, artifacts (artf)

O Cancerous: ductal carcinoma in situ (dcis), invasive ductal carcinoma (indc)

O Neoplastic-associated/benign: non-neoplastic (nneo), inflammation (infl), suspicious (susp)

* Imaging characteristics:
0 Image patches extracted from whole slides
O Window size: 1024x1024, frame size: 512x512

0 Curated to capture diverse architectures and clear label-defining features.

Study subset: 10-12 images per label, total 101 images across 9 classes.

dcis indc

;\i;
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Experimental Design

* Two-stage workflow:

Step-01: Prompt Engineering Step-02: Finetuning
———— O Prompt engineering + zero-shot evaluation with ChatGPT
i kel o03-mini-high.
e = O Parameter-efficient fine-tuning (PEFT) of Qwen2-VL using
expert-validated reasoning.
Cmﬁgmd‘“ EE « Stage 1 (prompt engineering):
& S O Load EEG/DPATH images and guidelines.
B 0 Initialize chat with system instructions.
== 0 Present one image per query with the structured JSON prompt.
< O Collect model label + reasoning; have experts review and curate
N [ | correct reasoning samples.
L K « Stage 2 (fine-tuning):
o~ O Convert curated samples into instruction-tuning format
e (system / user / assistant messages).
- O Initialize Qwen2-VL-7B Instruct backbone.

O Apply LoRA-based PEFT and train on expert-validated reasoning

- ) examples.
- 0 Evaluate fine-tuned Qwen and compare to ChatGPT zero-shot,

ResNet, and ViT baselines.
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Case Study: EEG | (Tasks & Quantitative Results)

* Goal: Assess visual reasoning of ChatGPT o03-mini-high model for EEG images

* Three experiments using images from NAEG:

Exp. 1 — Single-frame,
4-way classification

Exp. 2 — Single-frame,
binary classification

Exp. 3 — Temporal-
context, 4-way
classification

» Classes: gnsz, fnsz,
absz, bckg

* 104 images
(26 per class)

* ChatGPT 03-mini-high
accuracy: 25%.

» Labels collapsed to
“seizure” vs “no
seizure”

« Same 104 images

« Accuracy improves to
49%.

* Input: 3 consecutive
frames (pre-ictal, ictal,
post-ictal) per case

* 100 cases (75 seizure,
25 background; 300
images)

» Accuracy: 35%.

« Temporal context helps but does not solve main challenges; absence seizures remain especially difficult.
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Case Study: EEG Il (Qualitative Reasoning & Failure Modes)

( ) ( )

. STRENGTHS IN REASONING ° KEY FAILURE MODES

N v N v

* Rich temporal descriptions: Onset, buildup,
widespread, abrupt termination.

* Clinically relevant concepts: Spike-and-
wave morphology, synchronization,
evolution.

e Clinically Interpretable: Reasoning often

* Absence seizures (absz): Misclassified as
GNSZ or artifacts; underestimates 3 Hz
spike-slow & abruptness.

* Background (bckg) with Artifacts: Eye
blinks misclassified as Focal Seizures
(fnsz).

* Rigid Expectations: Difficulty with low-

valid even if final label is wrong.
amplitude rhythmic patterns & lack of

\ \robustness. @2

[ANNOTATOR PERSPECTIVE: Partial understanding of EEG features, lacks robustness & temporal nuance. }

Reasoning is often clinically interpretable even when the final label is wrong.

i

S
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Case Study: DPATH | (Tasks & Quantitative Results)

* Goal: Assess visual reasoning of ChatGPT 03-mini-
high model for DPATH images

 DPATH evaluation setup:

(%
-

O 101 high-resolution pathology patches.
O For each image, model outputs:
« Cancer vs non-cancer decision

- | The image di a dense i This image shows a duct completely filled with a r morphi
d 0 n e Of n I n e I a be I S predominantly of lymphocytes within the flbrous stroma, .. ;. and solid a?gh?:zgﬁ?el with clearc;"resservatlon of the b
any clear evidence of ductal structures or atypical membrane — classic features of DCIS. The nuclei are enlarged,
proliferation. There is no architectural distortion, mitotic activity, irregular, and with 9
or of This pattern is| 9! I

atypia A o
] P at h o I o g y _i n fo rm e d re as o n i n g . consistent with a benign inflammatory process, not cancer. non-i |nvas|1-/2ebrztI:n“cci:lassfed a:::asr:z::‘zln situ). so this Is

* ChatGPT 03-mini-high performance:
O Cancer vs non-cancer accuracy: 54%.
O Nine-way label accuracy: 48%.

0 In ~40% of cases, reasoning is judged
histologically accurate and well-aligned with the
image.

- Even with moderate accuracy, the model \&

¥ | This image depicts small ductal and lobular units embedded in The image reveals invasive epithelial structures with irregular,
- stroma. The ducts and lobules show bland nuclear, angulated glands infiltrating a fibrotic stroma. There is anfs

dem o nstrates cl i n ical Iy m ea n i n gfu I reaso n i n g morphology with clear luminal spaces, no ofa ot ial layer, nuclear‘atypla and

distortion, and preservation of the dual cell layers (epithelial and loss of normal ductal
myoeplthelual) The stromal background is unremarkable. There ductal carcinoma (indc). These features indicate malignant cells|
of

ability_suggesting strong potential for decision ?:Lis:;(:entwnhnorr:;{%raea‘s,trnssuehlstology This s tissue. 9 the an 9
Hsupport systems in pathology.
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Case Study: DPATH Il (Reasoning Quality and Error Patterns)

-

‘ STRENGTHS IN REASONING

N

~

-

° KEY FAILURE MODES

N

» Correctly distinguishes DCIS vs INDC:
Recognizes preservation vs. loss of basement
membrane, confinement vs. stromal invasion.

* Normal tissue recognitions: Notes dual cell
layers, bland nuclei, preserved architecture,
and unremarkable stroma.

» Strong differential reasoning: Correctly rules
out malignancy by noting the absence of key
cancer features.

o

8

* Misses secondary context (e.g,. background
artifacts)

* Benign structures misclassified as Malignant
(overcalling ‘cancer’/’suspicious’)

* Mislabeling due to stain differences or subtle
morphology changes.

* Reasoning describes DCIS/INDC patterns even

for normal/benign images.
L

-

robustness across subtle variations.

[Annotator Perspective: Model may succeed on one instance and fall on a similar one, indicating limited

1
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Fine-Tuning Approach (PEFT with Qwen2-VL)

Goal: leverage expert-validated reasoning to improve an open-
source MLLM. Used Qwen2-VL-7B Instruct as the base model.

Step-01: Prompt Engineering Step-02: Finetuning

Biomedical image dataset Results from step-01
(size = N, cnt = 0)

* Training data:
Initalie a chat session o i s o EEG: 25 correct reasoning texts (bckg: 13, seiz: 12 after label collapsing).
, o DPATH: 48 correct reasoning texts (label-imbalanced: indc, bckg, norm, infl, dcis,

Configure system Curate representa-
prompt with annota- tive reasoning subset n neo)-

tion schema guidelines

h i ¢ Instruction-tuning format:
Present one image quer
Ilgqy o System: describes role (e.g., “medical professional specializing in cancer detection”).

cnt > 10 >——

Initialize pretrained mul
No timodal LLM backbone

_ o Assistant: provides ground-truth label and expert-validated reasoning.

* PEFT - Low rank adaptation (LoRA)

b 0 Instead of updating all weights, LoRA adds small low-rank adapter matrices to
selected layers and only trains those.
o ~2.5M trainable params out of ~8.3B total (~0.03% updated).

o Preserves the general knowledge of the base model while specializing it for EEG and
DPATH reasoning.

Increment annotation counter

Transform annotations into . N . -
instruction-tuning format o User: includes the image and structured query prompt with required JSON output.

cnt > N

Perform super-
vised fine-tuning
if exceed

AX_EPOCH

No

Yes

End
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Results | (Analysis — EEG)

* Models compared on EEG (binary seizure vs background):

O ChatGPT o3-mini-high (ZS), Qwen ZS, Qwen FT (LoRA),

ResNet PT (ImageNet) and ResNet FT (EEG domain-

Table 1. Performance comparison of  zero-shot(ZS) H
prompting, a pretrained model (PT) and a domain-specific SpeCIfIC)

fine-tuned (FT) model . . . .
D + Key quantitative findings (EEG):
Acc | Prec | Rec | AUC
Data| System| Alg | (%) | (%) | (%) | (%) 0O Qwen ZS:
3 | zs [49.04 | 54.84| 55.96| 55.96 . .
° > 20 02 > Accuracy = 74% (predicts most samples as “seiz”).
£ | Qwen | zs | 74.04 | 37.02] 50.00] 50.00
E | Qwen | FT [5385| 61.76| 64.02| 64.02 > High accuracy but low precision (~37%), reflecting
G |ResNet| PT |74.04 | 37.02| 50.00| 50.00 strong class bias.
ResNet| FT [100.00{100.00{100.00]100.00
03 | zs [4851] 4553] 42.03] 7422 0O Qwen FT:
p | Qwen| ZS | 594 | 1.15| 1429 48.64 > Accuracy = 54%, but precision improves to ~62%
r 2 75 2 2
P | Qwen | FT | 28.71 | 48.25| 38.20| 62.43 and recall ~64%.
A |ResNet| PT |16.83 | 337| 11.81| 47.08 _ _ .
T |ResNet| FT | 6832 | 77.13| 59.31| 76.23 > Indicates a better calibrated classifier than Qwen ZS.
Vit | PT |14.85 | 11.41] 12.85| 47.82 . -
L | FT | 7525 | 79.16| 7027] 82.45 - Statistical analysis:

0O Pairwise Z-tests show significant improvements of
Qwen FT over its zero-shot and some baseline
counterparts at 99% confidence.

A
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Results Il (Analysis — DPATH)

Table 1. Performance

fine-tuned (FT) model

comparison

of

zero-shot (ZS)
prompting, a pretrained model (PT) and a domain-specific

Acc | Prec | Rec | AUC

Data | System| Alg | (%) (%) (%) (%)
03 ZS | 49.04 | 54.84| 55.96| 55.96

E | Qwen | ZS | 74.04 | 37.02| 50.00| 50.00
E [ Qwen | FT | 5385 | 61.76| 64.02| 64.02
G ResNet| PT | 74.04 | 37.02| 50.00| 50.00
ResNet| FT |100.00|100.00(100.00|100.00

03 ZS | 48.51 | 45.53| 42.03| 74.22

D Qwen | ZS 5.54 1.15] 1429| 48.64
p | Qwen | FT | 28.71 | 48.25| 38.20| 62.43
A |ResNet| PT | 16.83 337| 11.81| 47.08
ITI ResNet| FT | 68.32 | 77.13| 59.31| 76.23
Wit PT | 1485 | 1141 12.85| 47.82
Vil FT | 7525 | 79.16( 70.27| 82.45

* Models and settings (DPATH, 6-way classification):
0 Multimodal: 03-mini-high (ZS), Qwen ZS, Qwen FT (LoRA)
a Vision baselines: ResNet PT/FT, ViT PT/FT

« Zero-shot vs fine-tuned MLLMs (Qwen):

0 Qwen ZS: very low accuracy (5.94%) and AUC (48.64%), indicating
difficulty on pathology images without adaptation.

o Qwen FT (LoRA): accuracy improves to 28.71% and AUC to 62.43%, a
large gain from fine-tuning on just 48 expert-validated reasoning
samples.

* 03-mini-high ZS vs pretrained CNN/VIiT baselines:
0 03 ZS: accuracy 48.51%, AUC 74.22%.

0 Pretrained ResNet PT: AUC 47.08%; ViT PT: AUC 47.82%—both
substantially below 03 ZS.

o Pairwise Z-tests confirm 03’s AUC advantage over these pretrained
baselines is statistically significant at 99% confidence, making 03 ZS a
strong reference baseline for future DPATH studies.

* For both domains, MLLMs are better baseline models than
deep learning-based models.
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Summary

* Introduced a two-step framework:
O Zero-shot prompt engineering with ChatGPT o03-mini-high.
O PEFT fine-tuning of Qwen2-VL using expert-curated reasoning.

* Developed a structured prompting strategy that uses annotation guidelines to provide rich in-context
information to MLLMs.

« Benchmarked MLLMs against ResNet and ViT on two biomedical image tasks (EEG & DPATH).
« Performed expert review of model reasoning to evaluate clinical interpretability.
« Applied pairwise Z-tests to quantify the statistical significance of performance differences between models.
* Findings:
O MLLMs can deliver moderate zero-shot performance with clinically meaningful reasoning.
O PEFT can yield statistically significant improvements.

0 Domain-specific supervised models still lead in accuracy, but MLLMs offer flexibility and explainability.
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Future Directions

Scale up datasets for both EEG and DPATH to move beyond proof-of-concept:
O Larger, more diverse images

O More balanced label distributions.

Implement k-fold cross-validation and more robust evaluation protocols.

Develop a systematic prompt-engineering framework to reduce human bias and improve reproducibility.

Explore architectural enhancements and training methods enabling better:
O Temporal reasoning for EEG

0 Handling of complex, multi-structure pathology images.

Integrate model-generated reasoning directly into clinical workflows as structured, verifiable explanations.

Investigate hybrid systems combining domain-specific vision backbones with MLLM-style reasoning for
best-of-both-worlds performance.
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* The title slide’s image was generated by the Gemini Nano Banana tool using the following prompt:
‘Generate an image showing a physician who is an expert in EEG signal interpretation and digital
pathology, working with ChatGPT on her computer.’
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