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What is Cachexia?

2

ca·chex·i·a

/kəˈkeksēə/



Cancer-Associated Cachexia

● Estimated to occur in up to 80% of people 

with advanced cancer

● Cause of death for ~20% of all cancer 

patients

● Decreased quality of life

● Poor response to chemotherapy
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Staging Criteria

4

Either of the following conditions:

- Weight loss>5% over past 6 months (in absence of simple starvation);

- BMI<20 and any degree of weight loss>2%;

- Appendicular skeletal muscle index consistent with sarcopenia 

(male<7.26kg/m2; female<5.45kg/m2) and any degree of weight loss>2%

Fearon et al (2011)



Problem + Motivation

● Mechanisms of cachexia are still unclear.

● Symptoms are similar to those caused by cancer treatments or other issues like 

malnutrition.

● No direct treatments to stop/reverse CC.

● Early detection of CC can enable interventions to slow muscle wasting, improve 

metabolic function, and enhance the patient’s quality of life.

● Multimodal deep learning-based model on skeletal muscle area in CT scans.

● Various machine learning models based on static data, not longitudinal.

● Supervised classifiers.
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Can Hidden Markov Models classify 

stages of cancer-associated cachexia 

from longitudinal biomarkers?
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Why use Hidden Markov Models?

- Used in speech recognition, gene finding, gesture tracking, etc.
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Latent state of CC 

at time t

Observed features 

of patient at time t



Data
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MSK-IMPACT Cohort

● MSK-IMPACT (Integrated Mutation Profiling of Actionable Cancer Targets) 

is a targeted tumor-sequencing test available to MSK patients.

● 63,008 patients in the cohort with recorded body mass index (BMI) and 

blood lab values.
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Blood Lab Values
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Metabolic & Organ Function

● Albumin, Total Protein

○ Nutritional status

● ALT, AST, ALK, Bilirubin

○ Liver function

● Creatinine, BUN, CO₂

○ Kidney & acid-base balance

● Glucose, Anion Gap, Electrolytes (Na, K, 

Cl, Ca): Metabolism & fluid balance

Platelets

● Platelet count

○ Clotting and inflammation

Immune & Inflammatory Markers

● WBC, Neutrophils, Lymphocytes, 

Monocytes, Eosinophils, Basophils

○ Major immune cell types

● Absolute counts & Immature 

Granulocytes: 

○ Infection & immune activity

Red Blood Cell Indices (Anemia)

● HGB, HCT, RBC

○ Oxygen transport

● MCV, MCH, MCHC, RDW

○ Red cell size & content



Data Preprocessing

1. Filter to include only patients diagnosed with Lung Adenocarcinoma

2. Filter to include only deceased patients

3. Filter to patients with >20 visits

796 patients x 37 features (blood lab values), 20-234 visits
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But how do we decide the number of 

states to choose for our HMM?
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Clustering Algorithm
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Uniform Manifold Approximation and Projection (UMAP)
Hierarchical DBSCAN (HDBSCAN)



Clustering Results

- UMAP+HDBSCAN reveals that four clusters is optimal as the number of 

hidden states for our HMM.
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UMAP Embedding HDBSCAN Clusters

Raw Patient Values



- Emission means     for each state initialized by sampling from a 

uniform distribution over [0,1).

- Full covariance matrix      initialized for each state.

HMM Model Initialization
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Methodology
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Raw Clinical Data Data Preprocessing
UMAP + HDBSCAN 

Clustering

Train Gaussian 

HMM

Inferred Latent 

States

Clinical 

Interpretation and 

Future Predictions



Results
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Learned Parameters
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State 0 → Pre-Cachexia
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State 2 → Early Cachexia
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State 1 → Intermediate Cachexia
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State 3 → Refractory Cachexia
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Example Patient 1
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Example Patient 2
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Unexpected Behaviors



Areas of improvement

- States seem to change too frequently in transitional cachexia states.

- Learned states dependent on initialized A, π, and covariance type.

- States are only classified during date of visit.

- Difficulty quantifying the uncertainty and precision of predicted stages.
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Future Work

- Incorporate medical imaging data like MRI or CT scans.

- Improve clinical interpretation of learned parameters.

- Evaluate the model against some ground truth?
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Conclusion

- Deployed various clustering algorithms to optimize the number of 

hidden states of initialized HMM.

- Trained Gaussian HMM to model the progression of cachexia using 

longitudinal biomarkers available.

- HMMs can be a useful tool to identifying stages of cachexia.
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Thank you!

Q&A
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