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What is Cachexia?

Cachexia
Wasting syndrome
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Cancer-Associated Cachexia

e Estimated to occur in up to 80% of people
with advanced cancer

e Cause of death for ~20% of all cancer
patients
e Decreased quality of life
e Poor response to chemotherapy Fj

Credit: National Cancer Institute



St H C 't H Either of the following conditions:
ag I n g rl e rl a - Weight loss>5% over past 6 months (in absence of simple starvation);
- BMI<20 and any degree of weight loss>2%;

- Appendicular skeletal muscle index consistent with sarcopenia
(male<7.26kg/m2; female<5.45kg/m?2) and any degree of weight loss>2%

Fearon et al (2011)
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[ Cachexia ]

Systemic infammation
Weight loss >5%
(>2% if sacopenia or body mass index <20)

Pre-cachexia ] [ Advanced cachexia

7N

Advanced cancer refractory to
anticancer treatment — Death
Expected survival <3 months

N Systemic inflammation
Hormal Weight loss <5%

End-of-life phase

L

Loss of cell mass (body weight, muscle mass)

Metabolic changes, usually associated with symptoms, e.g. anorexia




Problem + Motivation

Mechanisms of cachexia are still unclear.

Symptoms are similar to those caused by cancer treatments or other issues like
malnutrition.

No direct treatments to stop/reverse CC.

Early detection of CC can enable interventions to slow muscle wasting, improve
metabolic function, and enhance the patient’s quality of life.

Multimodal deep learning-based model on skeletal muscle area in CT scans.
Various machine learning models based on static data, not longitudinal.
Supervised classifiers.



Can Hidden Markov Models classify
stages of cancer-associated cachexia
from longitudinal biomarkers?



Why use Hidden Markov Models?

- Used in speech recognition, gene finding, gesture tracking, etc.

Latent state of CC
at time t

Observed features
of patient at time t



Data



MSK-IMPACT Cohort

e MSK-IMPACT (Integrated Mutation Profiling of Actionable Cancer Targets)
Is a targeted tumor-sequencing test available to MSK patients.

e 63,008 patients in the cohort with recorded body mass index (BMI) and
blood lab values. Top 10 Cancer Types by patent Cout
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Blood Lab Values

Metabolic & Organ Function Immune & Inflammatory Markers
e Albumin, Total Protein e WBC, Neutrophils, Lymphocytes,
O Nutritional status Monocytes, Eosinophils, Basophils
e ALT, AST, ALK, Bilirubin O Major immune cell types
O Liver function e Absolute counts & Immature
e Creatinine, BUN, CO; Granulocytes:
O Kidney & acid-base balance O Infection & immune activity

e Glucose, Anion Gap, Electrolytes (Na, K, Red Blood Cell Indices (Anemia)
Cl, Ca): Metabolism & fluid balance
e HGB, HCT, RBC
O Oxygen transport
e Platelet count e MCV, MCH, MCHC, RDW

O Clotting and inflammation o Red cell size & content

Platelets
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Data Preprocessing

1. Filter to include only patients diagnosed with Lung Adenocarcinoma
2. Filter to include only deceased patients
3. Filter to patients with >20 visits

796 patients x 37 features (blood lab values), 20-234 visits

12



But how do we decide the number of
states to choose for our HMM?



Clustering Algorithm

Original 3D Data 2D UMAP Projection

Uniform Manifold Approximation and Projection (UMAP)

0 5 10 15 20 25

Hierarchical DBSCAN (HDBSCAN)
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Clustering Results
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UMAP+HDBSCAN reveals that four clusters is optimal as the number of
hidden states for our HMM.
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HMM Model Initialization

- Emission means g for each state initialized by sampling from a
uniform distribution over [0,1).
- Full covariance matrix X initialized for each state.

0.90 0.04 0.05 0.03

0.03 0.90 0.04 0.03
A= m = [0.33, 0.33, 0.33, 0.01]

0.03 0.03 0.90 0.04

0.01 0.01 0.01 0.97



Methodology

Raw Clinical Data

|

Data Preprocessing

UMAP + HDBSCAN
Clustering

Clinical
Interpretation and
Future Predictions

Inferred Latent
States

x
H

Train Gaussian
HMM

17



Results
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Learned Parameters
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State 0 — Pre-Cachexia
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State 2 — Early Cachexia
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State 1 — Intermediate Cachexia
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State 3 — Refractory Cachexia
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Example Patient 1

BMI

Inferred States from Trained HMM
(example patient 1)
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Example Patient 2

Inferred States from Trained HMM
(example patient 2)
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Unexpected Behaviors

BMI

Inferred States from Trained HMM
(example patient 133)
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Areas of improvement

- States seem to change too frequently in transitional cachexia states.

- Learned states dependent on initialized A, m, and covariance type.

- States are only classified during date of visit.

- Difficulty quantifying the uncertainty and precision of predicted stages.

28



Future Work

- Incorporate medical imaging data like MRI or CT scans.
- Improve clinical interpretation of learned parameters.
- Evaluate the model against some ground truth?

29



Conclusion

- Deployed various clustering algorithms to optimize the number of
hidden states of initialized HMM.

- Trained Gaussian HMM to model the progression of cachexia using
longitudinal biomarkers available.

- HMMs can be a useful tool to identifying stages of cachexia.
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Thank you!
Q&A
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