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Abstract— Cancer cachexia is a complex, multifactorial
syndrome characterized by severe muscle wasting, weight
loss, and systemic inflammation, significantly affecting
patient prognosis and quality of life. Cachexia is estimated
to occur in up to 80% of people with advanced cancer,
depending on cancer type and response to cancer treat-
ment. Although it is said to be the direct cause of 30% of
cancer deaths, there are currently no effective treatments
for cachexia. The clinical definition of the syndrome is also
loosely defined as losing more than 5% of body weight in
the past six to twelve months. Accurate classification of
cancer cachexia stages is crucial for timely intervention
and personalized treatment strategies. Hidden Markov
Models (HMMs), with their ability to model temporal
sequences and hidden states, offer a robust approach for
classifying the stages of cancer cachexia. This study ex-
plores the application of HMMs in analyzing longitudinal
BMI and blood lab values from the MSK-IMPACT cohort
to identify and classify the different stages of cachexia
in cancer patients. The results demonstrate that HMMs
can effectively distinguish between early, intermediate, and
late stages of cachexia, thereby offering valuable insights
for clinicians to optimize treatment regimens and improve
patient outcomes. This approach improves the precision
of cachexia staging and contributes to the broader field of
predictive modeling in computational oncology.

Keywords— Cachexia Stage Classification, Hidden Markov
Models.

I. INTRODUCTION

Cancer is a leading cause of death globally, with the
World Health Organization (WHO) reporting 9.6 million
deaths and 18.1 million new cases in 2018 [1]. In
cancer patients, cachexia is responsible for significant
morbidity, contributing to weight loss, decreased per-
formance status, and resistance to cancer therapies.
Cancer cachexia has been identified in a wide range
of cancers, including pancreatic, colorectal, gastric, and
lung cancers, among others. It presents a critical concern
for oncologists due to its negative impact on both the
patient’s physical health and their ability to tolerate
cancer treatments.

The syndrome is multifactorial, involving complex in-
teractions between cancer cells, the host’s immune
system, and metabolic pathways. Although the symp-
toms of cachexia are well recognized, the mechanisms
driving the condition remain incompletely understood,
complicating efforts to prevent or treat it effectively.

Early identification of cachexia is crucial to improving
patient outcomes, as timely intervention can help miti-
gate some of the devastating effects of muscle wasting
and metabolic dysfunction. However, current diagnostic
criteria often fail to catch cachexia in its early stages,
leading to missed opportunities for intervention.

In this paper, we aim to address the gap in early-
stage diagnosis and classification of cancer-associated
cachexia by applying advanced computational tech-
niques to better understand its progression. Specifically,
we utilize hidden Markov models (HMMs) to model
the dynamic changes in cachexia progression over time,
based on clinical data collected from cancer patients
of Memorial Sloan Kettering Cancer Center (MSK or
MSKCC). Our approach focuses on classifying patients
into different stages of cachexia using longitudinal data,
including key biomarkers such as Body Mass Index
(BMI), Albumin, Hemoglobin, and inflammatory mark-
ers like White Blood Cells (WBC).

By applying HMMs, we can capture interpretable latent
states underlying the observed clinical data — an advan-
tage not easily achievable with deep learning approaches
— thereby identifying distinct physiological trajectories
of cachexia progression. This method allows us to
predict transitions between states, offering a clearer
understanding of disease progression and providing a
new tool for researchers.

II. DEFINITIONS OF CANCER CACHEXIA

Cachexia is a disorder marked by involuntary weight
loss and a disruption of homeostatic control over energy
and protein balance [2]. It is commonly associated with
malignant diseases but also occurs in various chronic
nonmalignant conditions, including heart failure, kidney
disease, chronic obstructive pulmonary disease, neu-
rological disorders, and AIDS. The syndrome arises
from a complex interaction of reduced food intake
and metabolic alterations, such as increased energy ex-
penditure, anorexia, and systemic inflammation. Unlike
starvation or simple malnutrition—both of which can
be reversed with adequate nutrition—cachexia persists
despite nutritional support.

In 2011, an international Delphi consensus definition
and classification of cancer cachexia was published,
provisionally defining cancer cachexia as > 5% weight
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loss in the previous 6 months or 2%-5% weight loss
with either a BMI of less than 20 kg/m? or reduced
muscle mass [3]. It was also proposed that cancer
cachexia is a multi-factorial syndrome defined by an
ongoing loss of skeletal muscle mass (with or without
loss of fat mass) that can be partially but not entirely
reversed by conventional nutritional support. Depletion
of skeletal muscle and adipose tissue (body fat) are
key features of cancer-associated cachexia [4], and its
consequences include reduced antitumor efficacy [5],
increased chemotherapy toxicity [6—8], complications
from cancer surgery [8], and mortality. The physiolog-
ical characteristics of the disease are negative nitrogen
balance and negative energy balance due to reduced
food intake and abnormally high metabolism. The di-
agnostic criteria defined by Evans [9] are applicable
to all types of chronic disease-related cachexia, when
taking metabolism and nutrition into account. The diag-
nostic criteria presented by Fearon [3] specifically target
cancer-related cachexia, emphasizing weight loss factors
and reduced muscle loss. Overall, weight loss, loss of
appetite, growth disorders, and decreased muscle mass
are the main symptoms of cachexia.

Globally, half of all cancer-related deaths (~8.2 mil-
lion annually) [1] occur in cancers most frequently
associated with cachexia, including pancreatic (0.33
million deaths), esophageal (0.40 million), gastric (0.72
million), pulmonary (1.59 million), hepatic (0.75 mil-
lion), and colorectal (0.69 million) cancers [10]. Despite
its high prevalence, cancer-associated cachexia is not
included in national cancer statistics and is rarely cited
as a direct cause of death. However, it is strongly linked
to incurable disease and is highly prevalent in end-
of-life stages [11]. While cachexia is most commonly
associated with advanced cancers, it can also occur in
curable cases and may be reversed if the underlying
cancer is successfully treated [12]. Therefore, active
prevention, diagnosis, and treatment of cachexia and its
precursor states are necessary to reverse or minimize
the negative impact on patient outcomes.

Fearon’s conceptual framework for diagnosing cancer
cachexia has since gained wide acceptance and will
be the main framework used in this thesis. In this
framework, progressive stages of cachexia were also
defined: pre-cachexia, cachexia, and refractory cachexia,
though patients may not experience all three stages [3].

e Pre-cachexia: In this stage, the patient experiences
weight loss despite maintaining a normal diet.
Weight loss over the past six to twelve months is
less than 5% of total body weight. For patients
with obesity, weight loss may not be as apparent,
but metabolic changes detected by tests indicate
loss of muscle and fat.

e Cachexia: The patient has lost more than 5% of
body weight within the past six to twelve months
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or more than 2% of body weight with a body mass
index (BMI) below 20 kg/m?. Diagnostic tests may
reveal signs of muscle loss and inflammation.

o Refractory cachexia: The patient has lost more
than 20% of usual body weight, with a BMI lower
than 27 kg/m?. This significant weight loss leads to
a noticeable change in appearance and may result
in insufficient strength to undergo cancer treatment.
In some cases, cancer treatments become ineffec-
tive.

The incidence and severity of cachexia are highly di-
verse and depend on the type, location, and stage of
the tumor. Currently, there are no specific biomarkers
for early-stage cachexia identification. Staging is de-
termined according to the clinical manifestations and
characteristics of the patient. The refractory cachexia
phase is determined by the underlying disease of the
patient and the overall condition; diagnosis of this
stage requires a low WHO performance status score
and a survival period of less than 3 months [3]. The
focus of treatment for refractory cachexia goes from the
objective of cure and control to the maintenance of the
patient’s quality of life. This type of grading system can
provide patients with more suitable treatment options at
all stages of disease development and allows for targeted
research and treatment for each stage.

III. PRIOR RESEARCH

Numerous machine learning techniques have been ap-
plied to the study of cancer cachexia, particularly those
that utilize supervised classifiers to predict the presence
of cachexia in patients [13—15]. These models typically
rely on predefined labels, classifying patients as either
cachectic or non-cachectic. However, this approach has
inherent limitations, primarily because the definition
of cachexia is commonly based on a threshold value
of BMI, which is a simplistic measure that may not
fully capture the complex nature of the syndrome.
Cachexia, as defined by BMI, is particularly susceptible
to external factors such as dietary changes or recent
surgeries, which can cause rapid shifts in a patient’s
weight, potentially leading to misclassification. As a
result, BMI-based classification does not account for
other critical clinical markers such as muscle wasting,
inflammation, or metabolic dysfunction, which are es-
sential components of cachexia progression.

Furthermore, many existing machine learning models
use static data, such as a snapshot of a patient’s clinical
status at a particular time point [16]. While this may
provide useful information, these models are unable to
capture the dynamic, longitudinal nature of cachexia
progression. Cachexia typically evolves over time, with
subtle changes in various biomarkers, and the ability
to track these changes across multiple visits can offer
deeper insights into disease progression and response to
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treatment. Machine learning models that fail to incor-
porate this temporal aspect are therefore limited in their
ability to infer the stage of cachexia at any given time,
making them less reliable for monitoring patients over
the course of their illness.

Additionally, many state-of-the-art machine learning
models in this field integrate medical imaging data, such
as CT or MRI scans, to evaluate a patient’s skeletal mus-
cle area [17-19]. While these imaging techniques are
considered the gold standard for diagnosing cachexia
by directly visualizing muscle loss, they come with
significant drawbacks, making them less feasible for
regular monitoring, especially for patients undergoing
long-term treatment.

These limitations highlight the need for more accessi-
ble and cost-effective methods to classify and monitor
cachexia progression. Approaches that leverage longi-
tudinal data—such as hidden Markov models used in
this study—can offer a more nuanced understanding
of cachexia by considering temporal dynamics without
relying on expensive imaging techniques. By focus-
ing on easily accessible clinical data, such as BMI,
albumin, and inflammatory markers, we can develop
models that are both effective and practical for real-
world applications, allowing continuous monitoring of
cachexia progression over time.

IV. DATASET

The datasets used for the research in this paper were
collected from patients in the MSK-IMPACT cohort.
MSK-IMPACT (Integrated Mutation Profiling of Ac-
tionable Cancer Targets) is a targeted tumor-sequencing
test available to MSK patients [20]. It is used to detect
mutations and other critical changes in the genes of both
rare and common cancers. There are a total of 63,008
patients in the cohort with recorded body mass index
(BMI) and surgery data.

Body Mass Index (BMI) is a standardized metric used
to assess body fat composition based on an individual’s
weight and height [21]. It is a clinically relevant indica-
tor of nutritional status and physical health, often used
as a screening tool for malnutrition and disease severity
in cancer patients. In the context of cachexia, BMI
serves as a critical biomarker for disease progression
and prognosis [22]. For this study, BMI values were
extracted from the longitudinal patient records, with
each entry corresponding to a patient’s clinical visit to
MSK.

In addition to BMI, 36 longitudinal laboratory features
were used to form the multivariate time series input
for the HMM. The features chosen were recommended
by clinicians at MSKCC as likely to be clinically
relevant to cachexia. These features span a variety of
physiological systems and were selected for their clini-
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cal relevance to cancer-associated cachexia, including
markers of inflammation, nutrition, liver and kidney
function, and red blood cell dynamics. Future research
could further investigate feature importance. Table 1
categorizes the features by physiological system.

V. PREPROCESSING METHODS

Prior to training the HMM, the MSK health record data
was filtered, aligned, and normalized to construct con-
sistent multivariate time-series sequences for each pa-
tient. This section describes the preprocessing pipeline
used to extract valid longitudinal clinical trajectories
from the dataset.

V-A. Patient Filtering Criteria

The following filtering criteria were applied to the
dataset to ensure meaningful cachexia state predictions:

e Patients were restricted to those diagnosed with a
specified cancer type (e.g., Lung Adenocarcinoma)
and confirmed deceased.

e Records with missing or malformed timestamps
were removed.

e For each patient, a new column
days_since_first was computed,
representing the number of days since the

patient’s first recorded visit.

e Patients with fewer than 20 visits were excluded
from the dataset to ensure sufficient temporal res-
olution for modeling disease progression.

V-B. Sequence Construction and Normalization

Missing values within each patient trajectory were
imputed using forward-fill and backward-fill methods
to preserve temporal consistency without introducing
external information.

Each remaining patient sequence was then standardized
using z-score normalization. Each patient trajectory was
represented as a time series matrix X ¢ RT*P where
T; is the number of visits and D = 37 is the number
of standardized clinical features. All patient sequences
were concatenated into a single array X € RV*P for
training, where N =Y ; T;.

VI. DETERMINING THE OPTIMAL NUMBER OF
HIDDEN STATES

To determine the optimal number of hidden states for
the HMM implementation, we employed various clus-
tering algorithms such as K-means, Spectral Clustering,
UMAP and Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise (HBDSCAN) to detect
naturally occurring clusters in the dataset. HDBSCAN
and UMAP were chosen because this combination
meant we did not have to specify the number of clusters
The time of the clinical visit was excluded as an input

December 6, 2025



L. Ocfmeia, et al.: Stage Classification ...

Page 4 of 8

Table 1. Categories of Laboratory Features Used in trained HMM

Category

Blood Lab Value Features

Nutritional Markers

Albumin, Total Protein, Calcium

Inflammatory Markers

WBC, Neutrophils, Monocytes, Immature Granulocytes

Liver Function Tests

ALT, AST, ALK, Bilirubin

Kidney Function Tests

Creatinine, BUN

Electrolytes

Sodium, Potassium, Chloride, CO,

Red Blood Cell Dynamics

RBC, HGB, HCT, MCV, MCH, MCHC, RDW

White Blood Cell Differentiation

Lymphocytes, Basophils, Eosinophils, Platelets
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Figure 1. HDBSCAN Clusters of UMAP Embedding.

to the clustering models. This allowed us to focus solely
on the attributes that are representative of the patients’
conditions and allow the HMM to learn the transitions
between these states.

VI-0a. HDBSCAN

The method that gave the best clustering was to use
UMAP for dimensionality reduction on our dataset
followed by clustering through HDBSCAN. UMAP was
used to reduce the dimensionality of the data to two
components while preserving the global structure.

We refined the UMAP embedding by adjusting the
hyperparameters to enhance the clustering capability.
We increased the number of neighbors to 30 and set the
minimum distance to 0.0, which resulted in an embed-
ding that produced good clusters. This transformation
highlighted regions of the data that are more suitable
for clustering, allowing for clear differentiation between
data points.

To identify clusters, we then applied HDBSCAN, with
a minimum samples for a cluster of 10 and a minimum
cluster size of 500 to ensure that only sufficiently dense
regions were considered valid clusters. The HDBSCAN
algorithm assigned cluster labels to each data point. In
Figure 1, the points that were identified as belonging
to clusters are colored based on their assigned labels,
while noise points are shown in gray. This approach
allowed us to identify a natural formation of clusters in
the data, with the most coherent results achieved with
four clusters.
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VII. HMM INITIALIZATION AND TRAINING

A multivariate Gaussian HMM was used to model
latent clinical states underlying longitudinal changes in
patient BMI and blood laboratory values. The model
was implemented using the GaussianHMM class from
hmmlearn Python library.

VII-A. Transition Matrix and Initial Probabilities

The transition matrix A and initial state probability
vector © were explicitly initialized to encourage biolog-
ically plausible dynamics. Specifically, the matrix was
structured to favor self-transitions while allowing low-
probability transitions to adjacent states:

0.90 0.04 0.03 0.03

0.03 090 0.04 0.03 1
0.03 0.03 090 0.04|°

0.01 0.01 0.01 0.97

A=

7 =10.33, 0.33, 0.33, 0.01]. )

Each row of A corresponds to the current state, and each
column represents the probability of transitioning to the
next state. The elements of 7 indicate the probability
of starting in each state.These choices reflect a model
where patients tend to remain in the same state over
time, with State 3 representing a terminal or stable
absorbing condition (e.g., advanced cachexia), given its
high self-transition probability.

VII-Al. Emission Parameter Initialization

Each hidden state in the Gaussian HMM emits obser-
vations drawn from a multivariate normal distribution
parameterized by a state-specific mean vector p, and
covariance matrix XY;. Proper initialization of these
parameters is crucial for efficient convergence of the
Expectation-Maximization (EM) algorithm.

The emission means y, € R? for each state k were ini-
tialized using random draws from a uniform distribution
over [0,1], independently for each feature dimension.
We ensured valid full-rank covariance matrices for each
state.

VII-B. Model Training

Model fitting was performed using the Expectation-
Maximization (EM) algorithm via the fit method,
with the complete training dataset and corresponding
sequence lengths provided. The model iteratively up-
dated the emission and transition probabilities to max-
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imize the likelihood of the observed data under the
current parameters. The final trained model produced
a set of learned transition probabilities, emission means
and covariances, and state sequences for each patient
trajectory, which are analyzed in subsequent sections.

We present an analysis on deceased patients who suf-
fered from lung adenocarcinoma, a dataset consisting of
2,345 patients. This section shows our findings for each
of this cohort.

VIII. LEARNED MODEL PARAMETERS

After training the HMM on the preprocessed longitu-
dinal clinical data, the model converged to a set of
four latent states that capture underlying patterns in the
progression of cancer-associated cachexia. The learned
transition probability matrix A is shown below:

0.95 0.017 0.029 0.0048
A— 0.0053 0.71 0.14 0.14 3)
~10.00024 0.077 0.85 0.07 |-

0.00051 0.13 0.11 0.76

In particular, we see that State O exhibits a high self-
transition probability of 95%. This suggests a stable
condition where patients tend to remain for extended
periods. State 1, 2, and 3 also have relatively high self-
transition probabilities, but allow movement to adjacent
states.

The emission distributions of each state are defined by
Gaussian distributions with learned means and covari-
ances across the 37 clinical features. Figure 2 summa-
rizes the normalized (z-scored) mean values for key
features across the four states.

IX. STATE CHARACTERIZATION

The four hidden states discovered by the HMM repre-
sent distinct physiological phenotypes that align with
progressive stages of cancer-associated cachexia. These
latent states were interpretable through distinct differ-
ences in key clinical biomarkers, most notably BMI,
Albumin, and Hemoglobin (HGB) -— core indicators of
nutritional status, anemia, and systemic inflammation.
The transition probabilities and mean feature values
offer a biologically coherent interpretation of these
states, which we label as: pre-cachexia (State 0), early
cachexia (State 2), intermediate cachexia (State 1), and
terminal cachexia (State 3).

IX-Oa. State 0 — Pre-Cachexia.

State 0 is distinguished by a high self-transition prob-
ability (94.9%) and very low transition probabilities to
all other states, indicating that patients in this state tend
to remain physiologically stable over time. Clinically,
this state is characterized by the highest mean values
for BMI (4-0.280), Albumin (+0.442), HGB (+4-0.228),
Hematocrit (HCT) (4+0.177), and Red Blood Cell Count
(RBC), indicating robust nutritional and hematologic
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status. Inflammatory markers such as White Blood Cell
(WBC) count (—0.029), Neutrophils (—0.162), and Im-
mature Granulocytes are also at their lowest in this state,
consistent with the absence of systemic inflammation
[23-25]. Tt is also interesting to note that the Red
Cell Distribution Width (RDW) is the lowest in this
state (—0.310). These features are aligned with the in-
ternational consensus definition of pre-cachexia, which
describes early metabolic changes without significant
weight or muscle loss [3].

IX-0b. States 1 and 2 — Transitional Cachexia.

States 1 and 2 represent transitional stages along the
cachexia trajectory. The learned transition matrix sug-
gests that patients in State O are more likely to transition
to State 2 (2.9%) than to State 1 (1.7%), indicating
that State 2 precedes State 1 in disease progression.
State 2, interpreted as early cachexia, maintains rela-
tively preserved BMI (4-0.128), Albumin (40.250), and
HGB (+0.222) compared to more deteriorated states,
suggesting only initial signs of weight loss and anemia.
Inflammatory markers such as WBC and Neutrophils
remain moderately elevated, but not extreme. These fea-
tures are consistent with early cachexia, which involves
metabolic derangements and mild inflammation.

State 1, in contrast, displays more advanced deteriora-
tion. It has significantly lower levels of BMI (—0.212),
Albumin (—0.401), HGB (—0.313), and HCT (—0.306)
than State 2. Inflammatory markers and liver enzymes
(e.g., ALT, ALK) are also mildly elevated, suggesting a
worsening inflammatory and catabolic profile. Further-
more, State 1 receives frequent transitions from both
State 2 (14.2%) and State 3 (12.9%), indicating its
role as an intermediate and potentially unstable phase
within the disease trajectory. Patients appear to pass
through this state on the way to either improvement or
further deterioration, reflecting what may be considered
intermediate cachexia.

IX-Oc. State 3 — Terminal Cachexia.

State 3 is most consistent with terminal or refractory
cachexia. While patients in this state exhibit the not as
low values for BMI, Albumin, HGB, and HCT in com-
parison to that of State 1, (—0.208, —0.352, —0.249,
and —0.238 respectively), there are more markers that
correlate with late cancer infection. The mean values of
lymphocytes (—0.744), basophils (—0.606), eosinophils
(—0.662), and absolute eosinophils (—0.559) are all
significantly decreased, representing signs of immune
system exhaustion. These immune perturbations, when
combined with elevated inflammatory markers such as
neutrophils (+0.785), WBC (40.508), and immature
granulocytes (0.360), strongly suggest that State 3 cor-
responds to a terminal phase of disease where immune
exhaustion, inflammation, and metabolic decline con-
verge.
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Figure 2. HMM Feature Averages per Hidden State

With a self-transition probability of 76.2%, the patterns
shown in State 3 align with definitions of refractory
cachexia, characterized by systemic inflammation, sig-
nificant functional decline, and unresponsiveness to
nutritional support or anticancer therapy [3, 26]. Thus,
State 3 likely represents the terminal phase of disease
progression.

X. EXAMPLE PATIENT TRAJECTORY

In this section, we examine one patient trajectoriy where
the inferred transitions between cachexia states align
closely with the hypothesized progression of the disease.
This trajectory follow sthe expected order of events:
starting with a relatively stable state (pre-cachexia),
progressing to cachexia (where significant weight loss
and muscle wasting occur), and eventually reaching
refractory cachexia (marked by severe weight loss and
potential treatment resistance). These examples illus-
trate the validity of our model in capturing the typical
disease progression for certain patients.

Figure 3 shows the trajectory which correctly follows
the hypothesized stages of cachexia. The patient begins
in State 0, with a stable BMI of around 28, and
transitions to State 1 as the BMI starts to decrease
and inflammatory markers show signs of progression.
The transition from State 1 to State 2, indicative of
the cachexia phase, is clear, as BMI continues to
decline while WBC levels rise and Albumin levels
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decrease. The final transition to State 3, representing
refractory cachexia, aligns with a further drop in BMI
and stabilization of the inflammatory markers, signaling
the patient’s progression into a more severe stage of
cachexia.

XI. CONCLUSIONS AND FUTURE WORK

This paper presents a detailed analysis of cancer-
associated cachexia through the application of HMMs,
aiming to provide insights into the stages of cachexia
and the clinical trajectories of affected patients. By
defining distinct states—pre-cachexia, early cachexia,
intermediate cachexia, and terminal cachexia—this re-
search has successfully demonstrated how HMMs can
model the progression of cachexia using biomarkers
such as BMI, Albumin, and White Blood Cell (WBC)
count.

Through the use of various clustering algorithms, in-
cluding K-means, spectral clustering, and HDBSCAN,
we optimized the number of hidden states, leading to
a more accurate and dynamic representation of patient
trajectories. These models not only reveal the temporal
transitions between states but also allow for the charac-
terization of specific patient pathways, highlighting the
variability in disease progression. The results provide
valuable insights for healthcare providers, offering a
more structured framework for understanding cachexia’s
stages and the factors influencing these transitions. Such
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Inferred States from Trained HMM
(example patient 1)
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Figure 3. Inferred Cachexia Trajectory of Example Patient 1

a framework could significantly improve early detection,
intervention strategies, and personalized treatment for
cancer patients suffering from cachexia. The integra-
tion of HMMs with clustering methods opens avenues
for further research into predictive models for cancer
cachexia and similar complex conditions.

Our primary limitation lies in the difficulty of quan-
tifying the uncertainty and precision of our predicted
stages of cancer cachexia. Although the hidden Markov
model provides a powerful framework for classifying
the progression of cachexia, the predictions of the
model are highly dependent on clinical data such as
BMI, albumin levels, and hemoglobin counts. However,
without direct measures of muscle mass decline, such
as using imaging techniques such as CT or MRI,
we cannot definitively verify the presence or stage of
cachexia in individual patients. Future research will
involve quantifying the performance of our model by
systematically investigating the convergence of the EM
algorithm, clustering scores, and the sensitivity of the
model to initialization of parameters. As the number of
parameters is large, a complete study of regularization
should also be conducted. We also note that the model
is not yet intended to be used as a predictive model, but
instead as a tool to assist researchers in understanding
the progression of cachexia in patients.

Incorporating natural language processing (NLP) to an-
alyze unstructured data from doctor’s notes would offer
valuable insights into the patient’s subjective experi-
ence, providing a more comprehensive understanding of
cachexia progression. Expanding the dataset to include
genetic, muscular, and lifestyle factors would also be
beneficial, enabling the model to capture additional risk
factors for cachexia and potentially improving early
detection and personalized treatment strategies. Future
work could also include evaluating muscle mass includ-
ing CT scans specifically; however, an advantage of
our method is that we are able to characterize cachexia
trajectories without the use of expensive imaging.
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