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• Early AI-based detection is hindered by overdiagnosis and a lack of transparency 

• Tissue crystallization (micro-calcifications) correlates with pathological cell activity and has diagnostic 
promise in cancer (X-ray diffraction)

• Approach: We introduced a crystallization-focused multi-class classification method using the Fox Chase 
Cancer Center Breast Tissue Corpus (FCBR)

• Data: We enriched the FCBR dataset with 439 new annotated patches, labeled as Crystalline Non-
Neoplastic (CNNO, n=51), Crystalline Ductal Carcinoma in Situ (CDCS, n=168), and Crystalline Invasive 
Ductal Carcinoma (CIDC, n=220) => FCBR Crystallization Subset 

• Experiment: Trained a balanced random forest classifier on (1) a standard dataset (1,850 patches) vs (2) an 
enriched dataset including the 440 crystallization annotations (2,243 patches total)

• Evaluation: 

q Tested on held-out FCBR samples (18,224 patches) and TUBR (46,666 patches)

q Incorporation of crystallization annotations improved the overall accuracy over all the classes: from 
18.4% to 34.6% on FCBR and from 20.7% to 23.5% on TUBR

• Proof of Concept: Our findings demonstrate that explicit modeling of microcalcification patterns provides 
biologically meaningful features that strengthen deep learning based breast cancer detection. 

Abstract
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What is Digital Pathology?

• Digital pathology (DP) is the process of digitizing glass pathology slides into whole-slide images (WSIs) for 
viewing and analysis.

• Images are scanned at ultra-high resolution, then manually interpreted by clinically-trained pathologists 
using software to manage, share and visualize the images.

• Our goal is to use AI (Machine Learning) to accelerate disease diagnosis.

• Challenges: Localization of information supporting a diagnosis is very challenging. Manual interpretation 
of these images is quite challenging compared to other medical disciplines.
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What is Crystallization? 

• Crystallization refers to the formation and deposition of 
microscopic crystals (usually calcium-based) in tissues.
q Healthy tissues, such as bone and teeth, naturally regulate 

these processes.
q Intracellular Ca²⁺ signaling is central to both physiological 

mineralization and pathological calcification.
q Calcification is a potentially treatable process.

• Normal vs. Pathological: Normally regulated in hard tissues 
(bone, teeth), but ectopic calcification can occur under abnormal 
conditions.

• Mechanisms: cell-driven mineralization, necrosis/apoptosis 
niches, osteogenic reprogramming in tumor microenvironment.

• Types of Mineralization in Soft Tissues:  
q Type I (calcium oxalate) 
q Type II (calcium phosphate/hydroxyapatite)

• Clinical relevance: composition and pattern correlate with lesion 
grade and aggressiveness in some studies.

(Source: https://www.nature.com/articles/s41581-020-00392-1)
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Pathological Crystallization

• Diagnostic Role: Calcifications are a key diagnostic clue in 
breast pathology, but until now have been underutilized in 
AI-based models.

• Pathological crystallization refers to abnormal deposition of 
calcium salts and ionic crystals in soft tissues due to 
disease (e.g. necrosis, inflammation, apoptosis). 

• Cause: Cancer cells and stroma can undergo osteogenic-
like changes, expressing bone-related proteins that 
promote hydroxyapatite and calcium oxalate deposition. 
Tumor necrosis and apoptosis release calcium-binding 
vesicles, creating niches for crystal growth.

q X-ray diffraction demonstrates potential clinical 
application, with measurements of carbonate substitution 
achieving a sensitivity of 85% and a specificity of 88% in 
distinguishing benign and neoplastic cases using the 
average carbonate content alone.
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Data Overview

• We used two open-source digital pathology 
breast datasets from NEDC:
q Fox Chase Breast Tissue Subset (FCBR) – 

annotated patches focusing on breast cancer.

q Temple University Breast Subset (TUBR) – 
large histology corpus for validation.

• Why FCBR?
q Specialized in breast cancer. 

q Rich in varied breast pathologies.

q Rich metadata is available.

• Why TUBR for Validation?
q Serves as an external dataset to test 

generalization.

q Includes a wide range of breast tissue types, 
collected from a different hospital using 
different slide preparation techniques.

Label Description / Features
Background (BCKG) stroma, no ducts or lobules

Normal (NORM) normal ducts and lobules
Artifact (ARTF) grease pen marks, foreign bodies, etc.

Indistinguishable
 (NULL)

indistinguishable tissue, normally due to 
issues with the cut/stain

Suspected
(SUSP)

regions that are at risk of developing into 
cancerous regions

Inflammation (INFL) areas of inflammation
Ductal Carcinoma in 

Situ (DCIS)
ductal carcinoma in situ, and 
lobular carcinoma in situ 

Non-Neoplastic
(NNEO)

fibrosis, hyperplasia, intraductal papilloma, 
adenosis, ectasia, etc.

Invasive Ductal 
Carcinoma (INDC)

invasive ductal carcinoma, invasive lobular 
carcinoma, and invasive mammary carcinoma

Crystalline DCIS 
(CDCS)

small, loose calcific clusters in stroma

Crystalline NNEO 
(CNNO)

large, dense deposits of calcium in or close to 
invasive structures

Crystalline INDC 
(CIDC)

large, dense deposits of calcification in ducts
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Data Annotation

DB Non-
Cancer

Carcin
ogenic

Cancer
ous

Anns/
Slide

FCBR 12,164 1,967 5,954 13.7
TUBR 8,035 6,222 2,714 6.3

DB NNEO DCIS INDC
FCBR 728 1,209 10,955

DB CNNO CDCS CIDC
FCBR 51 168 220

• Original Database

• Augmented Database

• Legend:
NNEO: Non-Neoplastic
DCIS: Ductal Carcinoma in Situ
INDC: Invasive Ductal Carcinoma 
CNNO: Crystalline Non-Neoplastic
CDCS: Crystalline Ductal Carcinoma in Situ 
CIDC: Crystalline Invasive Ductal Carcinoma 

• FCBR Crystallization Subset (FCBR): Augmented 
FCBR with 439 detailed annotations of crystal 
deposits in tissue.

• Annotation Criteria:
q Classes are based on visual patterns of 

calcifications in different contexts.
q The whole slide, as well as the proximity, is taken 

into consideration.

.

.

         Background
              Tissue



C. Dumitrescu et al.: Crystallization Signatures as Predictive Biomarkers in Histopathology December 6, 2025 7

Data Preprocessing
• Mapping: Each new annotated patch (calcification) 

was converted to its characteristic label that already 
belonged in the class of interest (dcis, nneo, indc). 

• Greyscale: The RGB dimensionality was dropped to 
a greyscale matrix, consisting the whole annotation 
image.

• Resizing: Greyscale images were resized to 256×256 
pixels to standardize input size.

• Flattening: The 256×256 mask was flattened into a 
feature vector for model input.

• Data Balancing: Datasets were balanced (bootstrap) 
during training to prevent class imbalance, given the 
small NNEO class, characteristic of the FCBR set.

• This simple preprocessing ensured consistent, 
compact representations of calcification patterns for 
the classifier.

• The vector representation is limited, as hierarchical 
features are lost (edges, textures, shapes).
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Machine Learning Model – Balanced Random Forest

• We used a balanced Random 
Forest (RF) as a simple baseline.

• Why RF?: Chosen for simplicity, 
speed, and stability. Past 
evaluations showed RF yields 
comparable trends to deep 
networks on this data.

• Balanced RF uses the same tree-
growing logic as RF, no changes: 
Ø feature subsampling (every split, a 

random subset of features is drawn 
from the full feature set, and the best 
split is selected),

Ø Impurity (Gini impurity - an artificially 
balanced class distribution drives split 
selection at each node), 

Ø split APIs (unchanged greedy CART 
split search, optimized Cython tree 
engine: same threshold evaluation, 
impurity-decrease scoring, and node 
expansion logic as standard RF).

Original Dataset 
(Imbalanced)

Minority 
class Majority 

class

For each tree:
draw a 

bootstrap
from the minority 
class + sample

(with replacement)
same number from 
the majority class 

Tree 1 Tree 3

Tree 2

Voting / 
Aggregation

Final 
Prediction

Balanced 
Bootstrap

sample

Balanced 
Bootstrap

sample

Grows to 
full size 

(no pruning)

What makes it different? 

Balanced Bootstrap 
Sampling: each tree is 
trained on a balanced 
sample via undersampling 
the majority class and 
bootstrapping the minority 
class 
Reduction of Class Bias: 
because each tree sees 
equal representation, the 
minority class is not ignored
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Experimental Design

• Data Split: The individual patients are split up into three sets: train, dev, and eval. 

q Overall Split Ratio: 50% (train) - 25% (dev) - 25% (eval)

q TUBR: 74 cancerous patients (20 were allotted for both the dev and eval), 222 non-cancerous patients 
were split up so that each patient would be distributed to a different set.

q FCBR: Same split, but we induced some patient bias in this case, due to training with all the possible 
calcification samples (that did not always belong to the train set).

• We designed the experiment for all the labels, but we focused on the following classes of interest: NNEO, 
DCIS, and INDC. We balanced RF used a fixed random seed (42), default parameters (imbalanced-learn).

• Two training configurations: baseline (non-crystallization) versus crystallization-enriched training set.

• Training Configurations: 

q Baseline model (FCBR): Trained on 1,850 patches without additional crystal annotations.

q Crystallization model (FCBR): Trained on 2,243 patches (1,850 + 439 new), including the calcified 
patches.

•  Evaluation configuration: The eval and dev sets from FCBR and TUBR.
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Results I: A Comparison of Overall Accuracy

Fox Chase Cancer Center Breast Tissue
Subset (FCBR)

Metric Crystal Non-Crystal
Correct 6,308 3,345

Incorrect 11,916 14,879
Accuracy 34.6% 18.4%

Temple University Digital Pathology Breast Tissue 
Subset (TUBR)

Metric Crystal Non-Crystal
Correct 10,968 9,681

Incorrect 35,698 36,985
Accuracy 23.5% 20.7%

• Overall Accuracy: We see an across-the-board improvement in our ability to detect all the classes. Each 
class (9 classes) experienced an increase in the absolute detection performance. 

• Large gains for FCBR - from 18.4% to 34.6% (Δ+16.2%, 95% CI [15.37,17.15]). 
• While the domain-shift results (TUBR) show a modest overall accuracy gain (from 20.7% to 23.5%, Δ = 2.8%, 

95% CI = [2.23%, 3.29%]), this improvement, though statistically significant, may not yet be clinically 
transformative. Likely motivated by:
q Domain shift
q Different cancerous vs non-cancerous distribution 
q Larger number of samples
q Wider range of morphologies 
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Temple University Digital Pathology Breast Tissue 
Subset (TUBR)

Class Acc (Crystal) Acc (Non-Crystal)
indc 17.95% 4.97%
dcis 20.68% 6.10%
nneo 4.40% 2.72%

• The crystallization-enriched model roughly doubled accuracy, compared to the non-crystallization 
baseline. 

• Substantial per-class gains for DCIS (+14.58%) and INDC (+12.97%) suggest that calcification annotations 
enhance the detection of lesions with high diagnostic relevance. The modest gain in the NNEO class is 
likely associated with the low representation of this class in the FCBR dataset.  

• These results likely reflect greater morphological variability and staining differences in TUDP, 
emphasizing the need for domain adaptation and fine-tuning before deployment. 

• The non-crystallization model shows heavy confusion between malignant and background classes, likely 
due to missing structural cues associated with mineralization.

•  The observed improvements point toward the potential of crystallization modeling to strengthen 
diagnostics in malignant categories. 

Results II: Per Class Analysis of Performance

Fox Chase Cancer Center Breast Tissue
Subset (FCBR)

Class Acc (Crystal) Acc (Non-Crystal)
indc 19.11% 4.96%
dcis 17.21% 8.53%
nneo 7.52% 2.66%
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• Crystal modeling consistently improves recall, especially for DCIS and INDC across both datasets.

• F1 scores increase sharply for the most challenging classes (e.g., FCBR - INDC 0.35 vs 0.09).

• Precision changes are class-dependent: some classes show strong gains (e.g., TUBR-DCIS).

• Crystal achieves better balance between precision and recall, yielding more reliable per-class performance.

Results III: Per Class Precision, Recall, F1 score 

Class Metric Crystal Baseline

NNEO
Precision 0.12 0.05
Recall 0.076 0.03
F1 0.09 0.03

DCIS
Precision 0.08 0.08
Recall 0.18 0.09
F1 0.11 0.08

INDC
Precision 0.78 0.78
Recall 0.23 0.05
F1 0.35 0.09

Class Metric Crystal Baseline

NNEO
Precision 0.45 0.38
Recall 0.04 0.03
F1 0.08 0.05

DCIS
Precision 0.06 0.03
Recall 0.21 0.06
F1 0.10 0.04

INDC
Precision 0.06 0.07
Recall 0.18 0.05
F1 0.09 0.06

• FCBR: • TUBR:
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Discussion

• Key Finding: Explicitly modeling calcification as a feature enhances diagnostic accuracy for breast tissue 
classification.

• Baseline: Model that does not consider textures or data dimensionality.

• Morphological Insight: Calcification patterns act as discriminative biomarkers complementing cell/tissue 
features. 
q In INDC, diffused calcifications (heterogeneous and often infiltrative distribution of calcifications) 

provide spatial cues; 
q In DCIS/NNEO, small local crystals serve as early warning markers.

• AI Implications: The crystallization-aware model showed better calibration and fewer false positives 
between malignant and benign classes. This supports our hypothesis that mineral deposits carry clinically 
meaningful information.

• Localization and structure of the calcification demonstrated that it can be further used for classification or 
simply as reinforced feedback.

• Broader Impact: These results suggest that enriching histopathology datasets with microcalcification 
labels can make AI tools more sensitive and interpretable in cancer detection.
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Summary

• Contribution: We created a new Fox Chase Crystallization Corpus (FCCR) by annotating 439 calcification 
deposits in FCBR data.

• Models: Used a simple balanced Random Forest classifier to compare standard vs crystallization-
augmented training sets.

• Results: Incorporating crystal annotations doubled FCBR overall accuracy (from 18.4% to 34.6%) and 
improved TUBR accuracy (20.7% to 23.5%) over all the classes in the database (9).

• Interpretation: Microcalcification signatures are biologically meaningful features that markedly improve AI 
classification of breast tissue.

• Localization and the structure of microcalcification hold diagnosis information that is underused in 
Computer Vision.

• Takeaway: Modeling calcification patterns yields a more nuanced and sensitive breast cancer diagnosis 
using AI approaches.

• Clinically informed models allow for improved understanding of model predictions. 

• Distinguishing between biologically meaningful calcifications can aid in the reduction of overdiagnosis 
(especially in benign cases). 
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Future Work

• Expand Annotations: Adding more crystallization labels, especially for underrepresented non-neoplastic 
(CNNO) cases to balance the dataset.

• New Data Release: Annotations on the TUBR dataset are currently planned for a future release.

• Deep Learning Models: Integrate these annotations into convolutional neural networks and segmentation 
pipelines to fully leverage spatial patterns.

• Dataset Release: The resulting subset is publicly available, encouraging further studies on mineralization 
as a biomarker. 

• Transparency: Correlate histology calcifications with mammography findings or biochemical assays (e.g. 
X-ray diffraction features) to strengthen predictive power, and ultimately explainability. Need for clinical 
confirmation.

• Goal: Enhance diagnostic granularity and sensitivity in AI-driven pathology by systematically 
incorporating crystallization insights.
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