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Abstract— Crystallization processes in soft tissues have long 
been studied in relation to pathology and have been shown 
to positively correlate with precursory pathological cell 
activity. Early detection of breast cancer remains a 
daunting challenge in artificial intelligence, partly due to 
the prevalence of overdiagnosis and a lack of transparency 
in experimental results. Among histopathological 
specimens, tissue calcifications, ranging from dystrophic 
hydroxyapatite deposits to idiopathic oxalate crystals and 
psammoma bodies, have long held diagnostic promise but 
remain underexploited by visual models. 

In this paper, we introduce a novel crystallization‐focused 
approach to multi-classification tasks derived from the Fox 
Chase Cancer Center Breast Tissue Corpus (FCBR). We 
constructed an annotated subset comprising 439 patches 
categorized into Crystalline Non-Neoplastic (cnno: n = 51), 
Crystalline Ductal Carcinoma in Situ (cdcs: n = 168), and 
Crystalline Invasive Ductal Carcinoma (cidc: n = 220). 

Leveraging this subset, we conducted a baseline experiment 
comparing a simple Random Forest classifier trained on 
(1) a standard, non-crystallization dataset (1,850 patches) 
versus (2) an enriched dataset including the crystallization 
annotations (2,243 patches). Models were evaluated on 
held-out FCBR samples (18,224 patches) and externally 
validated on the Temple University Hospital Digital 
Pathology (TUDP) Corpus (46,666 patches). Incorporation 
of crystallization annotations more than doubled the overall 
accuracy: from 18.4% to 34.6% on FCBR and from 20.7% 
to 23.5% on TUBR. These improvements persisted under 
domain shift, indicating enhanced generalization and 
statistical significance. 

Our findings demonstrate that explicit modeling of 
microcalcification patterns provides biologically 
meaningful features that strengthen deep learning based 
breast cancer detection. We propose that further expansion 
of crystallization annotations, especially for 
underrepresented non-neoplastic cases, and integration into 
more complex architectures may drive additional gains in 
sensitivity and diagnostic granularity. 
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I. INTRODUCTION 

Crystallization in tissue refers to the formation and 
deposition of microscopic crystals within biological 
tissue [1]. Healthy tissues, such as bone and teeth, 
naturally regulate these processes. Recent studies [2] 
highlighted that ectopic calcification is often an active, 
cell-driven process, contrary to the expectation of passive 
precipitation, and that intracellular Ca²⁺ signaling is 

central to both physiological mineralization and 
pathological calcification. This shifts the view of 
calcification from being solely a product of aging or 
genetics to a potentially preventable process, 
monitorable, and treatable. A detailed understanding of 
its underlying mechanisms is therefore essential for 
clarifying its role in pathophysiology. 

In breast cancer, calcifications arise through active 
processes promoted by the presence of cancer that mirror 
aspects of human physiology [3]. Some examples are 
shown in Figure 1. Cancer cells and adjacent stromal 
tissue can undergo osteogenic-like reprogramming, 
characterized by upregulation of transcription factors 
such as Runx2 and Osterix. This promotes the deposition 
of calcium phosphate, predominantly hydroxyapatite 
(Ca₁₀(PO₄)₆(OH)₂) and calcium oxalate (CaC₂O₄), which 
serve as the components of calcification. 

  
(a) samples of calcification associated with DCIS 

 
(b) samples of calcification associated with NNEO 

 
(c) samples of calcification associated with INDC 

Figure 1. Examples of calcification in a breast tissue image 
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Necrosis, apoptotic bodies, and matrix vesicles released 
by tumor cells generate localized niches enriched with 
calcium and phosphate-binding proteins, while showing 
reduced concentrations of calcification inhibitors such as 
matrix Gla protein and fetuin-A. This breast cancer–
derived microenvironment fosters hydroxyapatite and 
calcium oxalate crystal growth, rendering calcification a 
defining non-neoplastic hallmark breast cancer. 
Nevertheless, mechanistic understanding remains 
incomplete [2],  unexplored in computer vision.  

Early detection of cancer remains a profound challenge 
in modern oncology [4]. The meta-analysis [5] reported 
mean sensitivity of 96.3% (CI 94.1–97.7) and specificity 
of 93.3% (CI 90.5–95.4), respectively, yet found that 
99% of included studies had at least one area of high or 
unclear risk of bias, underscoring persistent limitations in 
the current state of the art. Routine yearly imaging in 
asymptomatic people does not reduce mortality 
compared to regular check-ups and often reveals 
noncancerous lesions. For instance, about 22% of breast 
cancer cases are overdiagnosed [4]. One of the most 
dependable clues doctors look for in breast tissue is 
calcifications, long recognized as an important diagnostic 
marker. However, their full potential remains 
underexplored in the era of modern artificial intelligence 
(AI). In this study, we leverage mineral deposit 
signatures as morphological biomarkers to investigate the 
role of tissue crystallization in cancer detection. 

II. PATHOLOGICAL CRYSTALLIZATION 

Pathological crystallization [6] in human tissues 
encompasses a variety of processes by which calcium 
salts and, in some cases, ionic structures are deposited in 
soft tissues under pathological conditions, such as 
chronic inflammation [7]. Some examples are shown in 
Figure 1. Soft-tissue mineralization segregates into two 
primary crystal classes: Type I (calcium oxalate) and 
Type II (calcium phosphate/hydroxyapatite). 

Recent investigations [8] have increasingly suggested 
that specific mineral compounds may be linked to the 
development and progression of cancer. In breast lesions 
such as ductal carcinoma in situ (dcis) studies report that 
hydroxyapatite deposits are more frequent than in benign 
tissue. These deposits show reduced carbonate 
substitution and elevated magnesium-whitlockite, 
features that correlate with lesion grade and biological 
aggressiveness. Shin et al. [3] reported findings that 
contradicted earlier associations of whitlockite with 
malignancy, and other studies [8] have more often 
connected this mineral with non-malignant processes. 
X-ray diffraction demonstrates potential clinical 
application, with measurements of carbonate substitution 
achieving a sensitivity of 85% and specificity of 88% in 
distinguishing benign and neoplastic cases using the 
average carbonate content alone [2]. 

In mammography, dystrophic calcification is the most 
common form and is independent of systemic calcium. 
Loss of membrane integrity allows intracellular calcium 
to flood into the extracellular space and precipitate with 
phosphate, forming hydroxyapatite crystals in 
mitochondria and the surrounding matrix [9]. In contrast, 
metastatic calcification results from elevated serum 
calcium or phosphate, often due to hyperparathyroidism 
or chronic renal failure, leading to diffuse crystal 
deposition in otherwise healthy tissues. While metastatic 
calcifications typically affect the kidneys, lungs, and 
gastric mucosa, rare cases of breast parenchymal 
involvement have been reported in long-term 
hemodialysis patients and those with secondary 
hyperparathyroidism [10]. 

Secretory calcification, or idiopathic crystal deposition 
within glandular lumina, results in calcium oxalate 
(weddellite) crystals (type I calcifications) most often in 
apocrine cysts of the breast. These birefringent, 
concentric crystals form within secretions and are 
typically benign. Their presence can occasionally 
coincide with proliferative lesions such as lobular 
carcinoma in situ [6]. 

Certain neoplasms generate psammoma bodies, 
concentric, lamellated calcium spherules thought to arise 
via dystrophic mechanisms within papillary tumor 
structures. In invasive micropapillary carcinoma of the 
breast, psammoma bodies have been observed in up to 
64% of cases, reflecting localized cell death and mineral 
nucleation within micropapillary clusters [11].  

Tumoral calcinosis and calcinosis cutis represent massive 
calcium phosphate accumulation, but the frequency is 
relatively low, especially in breast tissue. Another 
example of such rare formations is heterotopic 
ossification, representing true lamellar bone formation, 
with organized cortical and trabecular architecture, 
within soft tissues following trauma, surgery, or 
neurologic injury. This process, in which mesenchymal 
cells differentiate into osteoblasts outside the skeleton, 
occur in muscle and periarticular tissues and is distinct 
from amorphous calcific deposits [12]. 

In this paper, we focus on, as shown in Table 1, the 
distinctive calcification patterns in breast tissue, 
exploring how these diverse pathological crystalline 
deposits can be quantitatively characterized and 
integrated into AI-driven models for improved cancer 
detection of 9 classes. For additional details on each 
pathological structure or resolution and magnification, 
please refer to [12]. We hypothesize that calcifications 
may serve as discriminative morphological markers, 
offering an opportunity for deep learning models to 
enhance the diagnosis and efficiency of cancer detection 
by leveraging clinical reasoning. 
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III. FCCC BREAST CRYSTALLIZATION SUBSET 

The Neural Engineering Data Consortium (NEDC) has 
released two significant open-source annotated digital 
pathology datasets related to breast tissue [13]: the 
Temple University Hospital Digital Pathology Corpus 
Breast Tissue Subset (TUBR) and the Fox Chase Cancer 
Center (FCCC) Digital Pathology Corpus Breast Tissue 
Subset (FCBR). A summary of the labels used in these 
corpora is given in Table 1. The process of annotating 
these corpora is described in detail in [13] and serves as 
a basis for this work. 

Since FCCC specializes in cancer treatment, the FCBR 
data represent a large sample of the most common and 
most dangerous types of breast cancer – invasive ductal 
carcinoma. The FCBR contains 12,164 non-cancerous, 
1,967 carcinogenic, and 5,954 cancerous identified 
structures. This corpus, heavily weighted towards 
malignant pathology, was selected as the basis for 
constructing a new subset focused specifically on tissue 
crystallization phenomena. To our knowledge, no other 
open-source subset exists that isolates and annotates 
crystallization patterns in breast histopathology. 

Crystallization profiles differ depending on the 
pathological structure with which they are associated. For 
example, crystalline non-neoplastic (CNNO) structures 
tend to present with discrete, loosely clustered calcific 
fragments typically isolated within fibroglandular 

stroma. Crystalline ductal carcinoma in situ (CDCS) 
structures display larger, denser, and more irregular 
mineral formations situated within atypical ductal 
epithelial arrangements. In crystalline invasive ductal 
carcinoma (CIDC) cases, the calcifications are often 
embedded within chaotic, infiltrative patterns consistent 
with stromal invasion. These findings highlight 
microstructural markers that may help distinguish 
borderline or ambiguous lesions. 

Annotations were produced by manually outlining the 
complete region of interest with contours drawn as tightly 
as possible around its boundaries. The annotations were 
then cross-validated by an annotation team that had been 
responsible for annotation of TUBR and FCBR. To 
facilitate structured analysis, we organized the 
crystallization annotations into three distinct classes, 
based on visual and spatial characteristics of the calcific 
deposits: CNNO (n = 51), CDCS (n = 168), CIDC 
(n = 220). This categorization was informed by observed 
variations in morphology, localization and spatial 
distribution of the calcific material. Each category has 
distinct diagnostic implications. 

Through our manual annotation process, we identified 
117 images files from 116 unique subjects in the 
augmented the original FCCC dataset. These images 
contain a total of 439 annotated patches. We will refer to 
these 439 images as the Fox Chase Crystallization 
Corpus (FCCR). Due to the limited number of instances 
of crystallization in FCBR, we added all these images to 
the training data for FCBR, creating some overlap in the 
subject population with the evaluation set. 

To partition this new hybrid corpus (FCBR+FCCR) into 
/train, /dev and /eval, we followed the protocol described 
in [15] for TUBR, in which a wide variety of 
demographic and morphological features (e.g., 
malignancy grade) were balanced across the three 
subsets. Out of 687 subjects in the original FCBR 
evaluation data, there are 52 subjects that are common to 
the training and evaluation data in this new hybrid 
corpus. However, no images are duplicated between 
these three segments of the corpus. Further, there is no 
overlap between TUBR and FCCR since the FCCR 
annotated data was selected only from FCBR. 

IV. EXPERIMENTAL RESULTS 

To evaluate the discriminative power of calcification 
patterns in histopathological classification, we conducted 
a baseline experiment to determine whether the inclusion 
of crystalline annotations improved predictive accuracy. 
The results of these experiments are summarized in 
Table 2 through Table 5. 

An overview of the experimental workflow is shown in 
Figure 2. All experiments were run with a fixed random 
seed (42) to ensure reproducibility. For this proof-of-

Table 1. Labels used for annotation of TUBR and FCBR 

Label Description / Features 

Normal 
(norm) normal ducts and lobules 

Ductal Carcinoma  
in Situ 
(dcis) 

ductal carcinoma in situ, and lobular 
carcinoma in situ 

Invasive Ductal 
Carcinoma 
(INDC) 

invasive ductal carcinoma, invasive 
lobular carcinoma, and invasive 
mammary carcinoma 

Non-Neoplastic 
(NNEO) 

fibrosis, hyperplasia, intraductal 
papilloma, adenosis, ectasia, etc. 

Inflammation  
(INFL) areas of inflammation 

Artifact 
(ARTF) 

grease pen marks, stitches, foreign 
bodies, etc. 

Indistinguishable  
(NULL) 

indistinguishable tissue, normally due 
to issues with the cut/stain 

Suspected 
(SUSP) 

regions that are at risk of developing 
into cancerous regions 

Background 
(BCKG) stroma, no ducts or lobules 
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concept baseline, annotated images were converted to 
binary (black-and-white) masks, resized to 256x256 
pixels, flattened into 65,536-dimensional vectors, and 
used as input to a Random Forest (RNF) model available 
in the MIT-licensed library imbalanced-learn 
(v0.14.0) [14]. This simple preprocessing and model 
choice was intentional, yielding a transparent, 
computationally inexpensive robust baseline.  

This choice requires minimal hyperparameter tuning and 
facilitates direct comparison with future, complex 
architectures. Imbalanced-learn was used to address class 
imbalance during training. We acknowledge that 
flattening removes spatial information from the images. 
More advanced methods that preserve spatial structure 
(patch-based CNNs or engineered texture features) are 
recommended for follow-up work. 

This balanced RNF model was trained on two separate 
configurations: (1) a non-crystallization dataset 
consisting of 1,850 patches, and (2) a crystallization-
enriched dataset containing 2,243 patches 
(FCBR+FCCR). The models were evaluated on the 
remaining portion of FCBR (comprising 18,224 patches) 
and further validated on TUBR (comprising 46,666 
patches). The latter constitutes true open set testing since 
no TUBR data was annotated. 

The balanced RNF algorithm handles imbalance at the 
sampling stage: for each tree, it draws a sample from the 
minority class (bootstrap) and samples an equal-sized set 
from the majority class (sampling with replacement) so 
every tree is trained on a balanced subset. For this 
baseline, we used the default hyperparameters: number 
of trees = 100, Gini split metric, sqrt features tried per 
split, unlimited depth, minimum split and leaf controls of 
2 and 1, respectively. The sampling strategy was chosen 
to equalize all classes. 

We used an RNF model because of its simplicity, speed, 
and stability. We have calibrated the performance of 
several deep learning models on this data in [13]. 
Performance is generally consistent – improvements with 
one classifier tend to hold up across other classifiers. 

The inclusion of crystallization annotations improved the 
overall classification accuracy by more than doubling the 

Table 2. Confusion matrix and accuracy for FCBR 

Fox Chase Cancer Center 
Breast Tissue Subset (FCBR) 

Metric Crystal Non-Crystal 

Correct 6,308 3,345 
Incorrect 11,916 14,879 
Accuracy 34.6% 18.4% 

Table 3. Comparison of the suspicious classes for FCBR 

Fox Chase Cancer Center 
Breast Tissue Subset (FCBR) 

Class Accuracy 
(Crystal) 

Accuracy 
(Non-Crystal) 

INDC 19.1% 5.0% 
DCIS 17.2% 8.5% 
NNEO 7.5% 2.7% 

Table 4. Confusion matrix and accuracy for TUBR 

Temple University Digital Pathology 
Breast Tissue Subset (TUBR) 

Metric Crystal Non-Crystal 

Correct 10,968 9,681 
Incorrect 35,698 36,985 
Accuracy 23.5% 20.7% 

Table 5. Comparison of the suspicious classes for the TUBR 

Temple University Digital Pathology 
Breast Tissue Subset (TUBR) 

Class Accuracy 
(Crystal) 

Accuracy 
(Non-Crystal) 

INDC 17.95% 4.97% 
DCIS 20.68% 6.10%  
NNEO 4.40% 2.72% 

 
 

 
Figure 2. The crystallization baseline experiment workflow 
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no-crystallization performance. In Table 2, we 
demonstrate significant gains in categories directly 
associated with calcification. These three classes are 
challenging to classify using standard approaches and 
significantly contribute to the overall error rate. The most 
notable improvement was observed in the INDC and 
DCIS classes, indicating that the additional annotations 
enabled the model to better distinguish between early-
stage and invasive carcinoma phenotypes.  

On the FCBR dataset, the crystallization model produced 
substantially improved per-class retrieval for the labels of 
interest: NNEO (Precision = 0.12, Recall = 0.076, F1 = 
0.09), DCIS (Precision = 0.08, Recall = 0.18, F1 = 0.11), 
and INDC (Precision = 0.78, Recall = 0.23, F1 = 0.35). 
By contrast, the non-crystallization model on the same 
set yielded materially lower performance: NNEO 
(Precision = 0.05, Recall = 0.03, F1 = 0.03), DCIS 
(Precision = 0.08, Recall = 0.09, F1 = 0.08), and INDC 
(Precision = 0.78, Recall = 0.05, F1 = 0.09). These results 
show that annotation of crystallization primarily 
increased recall for DCIS and INDC while also 
improving F1 for all three target classes. Moreover, it 
doubled the overall accuracy (Δ = 16.26%). The 95% 
confidence interval for this accuracy difference is 
[15.37%, 17.15%], and the improvement was statistically 
significant (p < 0.01, McNemar’s test). The largest gains 
occurred in INDC (Δ = 14.1%) and DCIS (Δ = 8.7%), 
which may possibly have been caused by the 
underrepresentation of the CNNO patches.  

On the larger TUBR set the crystallization model’s per-
class metrics were lower in absolute terms but retained 
the same directional improvements: NNEO (Precision = 
0.45, Recall = 0.04, F1 = 0.08), DCIS (Precision = 0.06, 
Recall = 0.21, F1 = 0.10), and INDC (Precision = 0.06, 
Recall = 0.18, F1 = 0.09). Under the non-crystallization 
condition, the corresponding values were: NNEO 
(Precision = 0.38, Recall = 0.03, F1 = 0.05), DCIS 
(Precision = 0.03, Recall = 0.06, F1 = 0.04), and INDC 
(Precision = 0.07, Recall = 0.05, F1 = 0.06). The 
crystallization model again outperformed the baseline 
(Δ = 2.76%, 95% CI = [2.23%, 3.29%], p < 0.05). Class-
specific improvements were most pronounced for DCIS 
(Δ = 14.58%) and INDC (Δ = 13.00%), confirming that 
calcification annotations generalize beyond the original 
FCCC domain despite greater morphological variability. 

In Table 3, we show the improvement in accuracy for 
each class. We see an across-the-board improvement in 
our ability to detect each of the three classes of interest. 
Each class experienced roughly a three-fold or greater 
improvement in absolute detection performance.  

The gain in accuracy is less pronounced for TUBR. This 
is not surprising since TUBR contains a much wider 
range of morphologies. The overall accuracy in Table 4 
increased by 20% and the per-class accuracies, as shown 

in Table 5, increased significantly. While the domain-
shift results show a modest overall accuracy gain (from 
20.7% to 23.5%, Δ = 2.8%, 95% CI = [2.23%, 3.29%], 
p < 0.001), this improvement, though statistically 
significant, may not yet be clinically transformative.  

However, substantial per-class gains for DCIS 
(+14.58%) and INDC (+12.97%) suggest that 
calcification annotations enhance the detection of lesions 
with high diagnostic relevance. These results likely 
reflect greater morphological variability and staining 
differences in TUDP, emphasizing the need for domain 
adaptation and fine-tuning before deployment. 
Nonetheless, the observed improvements point toward 
the potential of crystallization modeling to strengthen 
diagnostic sensitivity in malignant categories, provided 
further validation and calibration are undertaken.  

Results for both experiments demonstrate that the 
crystallization model exhibits better calibrated behavior, 
with fewer high-magnitude misclassifications across 
dominant classes like INDC and DCIS. In contrast, the 
non-crystallization model shows heavy confusion 
between malignant and background classes, likely due to 
missing structural cues associated with mineralization. 

V. SUMMARY 
Our results suggest that the inclusion of annotated 
crystalline structures enhances a model's ability to detect 
biologically significant pathology, particularly across 
classes that exhibit microcalcification as a morphological 
hallmark. In malignant conditions (DCIS and INDC), the 
localization, density, and pattern of calcification can 
serve as distinct morphological signatures that 
complement cellular and stromal features. Our findings 
support the hypothesis that explicitly modeling these 
patterns enables a more nuanced understanding of breast 
cancer pathology and strengthens the diagnostic of deep 
learning models. By capturing subtle calcific patterns 
linked to tumor biology, crystallization provides a 
biologically meaningful feature set that enhances both 
sensitivity and generalizability across datasets.  

The improvement in INDC performance may be 
explained by the heterogeneous and often infiltrative 
distribution of calcifications in invasive cancers, which, 
when annotated, offer additional spatial cues to the 
model. Similarly, in pre-invasive lesions like DCIS or 
NNEO, smaller or more localized calcifications serve as 
early morphological warning markers. These types of 
features are often underrepresented in models trained on 
general-purpose datasets with coarse labels. Expanding 
the CNNO annotation set may further improve 
performance on the NNEO class, which remains 
comparatively underrepresented, due to its higher 
prevalence in the TUBR dataset. 
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These findings suggest that integration of clinical 
reasoning into the model design, by incorporating 
calcification morphology and clinical context, moves 
towards a model that “thinks” like a pathologist . 
Clinically informed models allow for  improved 
understanding of model predictions, providing a greater 
level of. Models that can distinguish between 
biologically meaningful calcifications and benign 
findings can aid in the reduction of overdiagnosis. 
Improved model performance can improve pathology 
workflows and prioritize high-risk slides for review. The 
results of our framework represent a step towards a 
clinically actionable, transparent, and generalizable 
breast cancer diagnostics model that aligns with the goals 
of precision medicine.  

The curated crystal subset, FCCR, provides a resource for 
future computational pathology studies, exploring 
mineralization patterns as predictive or descriptive 
features of malignancy. The data is publicly available 
from our consortium website (www.necdata.org). 
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