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C. Dumitrescu, D. Hackel, 1. Obeid and J. Picone

Neural Engineering Data Consortium, Temple University, Philadelphia, Pennsylvania, USA
{claudia-anca.dumitrescu, dmitry.hackel, iobeid, picone} @temple.edu

Abstract— Crystallization processes in soft tissues have long
been studied in relation to pathology and have been shown
to positively correlate with precursory pathological cell
activity. Early detection of breast cancer remains a
daunting challenge in artificial intelligence, partly due to
the prevalence of overdiagnosis and a lack of transparency
in experimental results. Among histopathological
specimens, tissue calcifications, ranging from dystrophic
hydroxyapatite deposits to idiopathic oxalate crystals and
psammoma bodies, have long held diagnostic promise but
remain underexploited by visual models.

In this paper, we introduce a novel crystallization-focused
approach to multi-classification tasks derived from the Fox
Chase Cancer Center Breast Tissue Corpus (FCBR). We
constructed an annotated subset comprising 439 patches
categorized into Crystalline Non-Neoplastic (cnno: n = 51),
Crystalline Ductal Carcinoma in Situ (cdcs: n =168), and
Crystalline Invasive Ductal Carcinoma (cide: n = 220).

Leveraging this subset, we conducted a baseline experiment
comparing a simple Random Forest classifier trained on
(1) a standard, non-crystallization dataset (1,850 patches)
versus (2) an enriched dataset including the crystallization
annotations (2,243 patches). Models were evaluated on
held-out FCBR samples (18,224 patches) and externally
validated on the Temple University Hospital Digital
Pathology (TUDP) Corpus (46,666 patches). Incorporation
of crystallization annotations more than doubled the overall
accuracy: from 18.4% to 34.6% on FCBR and from 20.7%
to 23.5% on TUBR. These improvements persisted under
domain shift, indicating enhanced generalization and
statistical significance.

Our findings demonstrate that explicit modeling of
microcalcification  patterns  provides  biologically
meaningful features that strengthen deep learning based
breast cancer detection. We propose that further expansion
of crystallization annotations, especially for
underrepresented non-neoplastic cases, and integration into
more complex architectures may drive additional gains in
sensitivity and diagnostic granularity.
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microcalcification, crystallization, biomarkers

1. INTRODUCTION

Crystallization in tissue refers to the formation and
deposition of microscopic crystals within biological
tissue [1]. Healthy tissues, such as bone and teeth,
naturally regulate these processes. Recent studies [2]
highlighted that ectopic calcification is often an active,
cell-driven process, contrary to the expectation of passive
precipitation, and that intracellular Ca*" signaling is
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central to both physiological mineralization and
pathological calcification. This shifts the view of
calcification from being solely a product of aging or
genetics to a potentially preventable process,
monitorable, and treatable. A detailed understanding of
its underlying mechanisms is therefore essential for
clarifying its role in pathophysiology.

In breast cancer, calcifications arise through active
processes promoted by the presence of cancer that mirror
aspects of human physiology [3]. Some examples are
shown in Figure 1. Cancer cells and adjacent stromal
tissue can undergo osteogenic-like reprogramming,
characterized by upregulation of transcription factors
such as Runx2 and Osterix. This promotes the deposition
of calcium phosphate, predominantly hydroxyapatite
(Ca(PO4)s(OH)2) and calcium oxalate (CaC20a4), which
serve as the components of calcification.

(b) samples of calcification associated with NNEO
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(c) samples of calcification associated with INDC

Figure 1. Examples of calcification in a breast tissue image
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Necrosis, apoptotic bodies, and matrix vesicles released
by tumor cells generate localized niches enriched with
calcium and phosphate-binding proteins, while showing
reduced concentrations of calcification inhibitors such as
matrix Gla protein and fetuin-A. This breast cancer—
derived microenvironment fosters hydroxyapatite and
calcium oxalate crystal growth, rendering calcification a
defining non-neoplastic hallmark breast cancer.
Nevertheless, mechanistic understanding remains
incomplete [2], unexplored in computer vision.

Early detection of cancer remains a profound challenge
in modern oncology [4]. The meta-analysis [5] reported
mean sensitivity of 96.3% (CI 94.1-97.7) and specificity
of 93.3% (CI 90.5-95.4), respectively, yet found that
99% of included studies had at least one area of high or
unclear risk of bias, underscoring persistent limitations in
the current state of the art. Routine yearly imaging in
asymptomatic people does not reduce mortality
compared to regular check-ups and often reveals
noncancerous lesions. For instance, about 22% of breast
cancer cases are overdiagnosed [4]. One of the most
dependable clues doctors look for in breast tissue is
calcifications, long recognized as an important diagnostic
marker. However, their full potential remains
underexplored in the era of modern artificial intelligence
(Al). In this study, we leverage mineral deposit
signatures as morphological biomarkers to investigate the
role of tissue crystallization in cancer detection.

II. PATHOLOGICAL CRYSTALLIZATION

Pathological crystallization [6] in human tissues
encompasses a variety of processes by which calcium
salts and, in some cases, ionic structures are deposited in
soft tissues under pathological conditions, such as
chronic inflammation [7]. Some examples are shown in
Figure 1. Soft-tissue mineralization segregates into two
primary crystal classes: Type I (calcium oxalate) and
Type II (calcium phosphate/hydroxyapatite).

Recent investigations [8] have increasingly suggested
that specific mineral compounds may be linked to the
development and progression of cancer. In breast lesions
such as ductal carcinoma in situ (dcis) studies report that
hydroxyapatite deposits are more frequent than in benign
tissue. These deposits show reduced carbonate
substitution and elevated magnesium-whitlockite,
features that correlate with lesion grade and biological
aggressiveness. Shin et al. [3] reported findings that
contradicted earlier associations of whitlockite with
malignancy, and other studies [8] have more often
connected this mineral with non-malignant processes.
X-ray diffraction demonstrates potential clinical
application, with measurements of carbonate substitution
achieving a sensitivity of 85% and specificity of 88% in
distinguishing benign and neoplastic cases using the
average carbonate content alone [2].
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In mammography, dystrophic calcification is the most
common form and is independent of systemic calcium.
Loss of membrane integrity allows intracellular calcium
to flood into the extracellular space and precipitate with
phosphate, forming hydroxyapatite crystals in
mitochondria and the surrounding matrix [9]. In contrast,
metastatic calcification results from elevated serum
calcium or phosphate, often due to hyperparathyroidism
or chronic renal failure, leading to diffuse crystal
deposition in otherwise healthy tissues. While metastatic
calcifications typically affect the kidneys, lungs, and
gastric mucosa, rare cases of breast parenchymal
involvement have been reported in long-term
hemodialysis patients and those with secondary
hyperparathyroidism [10].

Secretory calcification, or idiopathic crystal deposition
within glandular lumina, results in calcium oxalate
(weddellite) crystals (type I calcifications) most often in
apocrine cysts of the breast. These birefringent,
concentric crystals form within secretions and are
typically benign. Their presence can occasionally
coincide with proliferative lesions such as lobular
carcinoma in situ [6].

Certain neoplasms generate psammoma bodies,
concentric, lamellated calcium spherules thought to arise
via dystrophic mechanisms within papillary tumor
structures. In invasive micropapillary carcinoma of the
breast, psammoma bodies have been observed in up to
64% of cases, reflecting localized cell death and mineral
nucleation within micropapillary clusters [11].

Tumoral calcinosis and calcinosis cutis represent massive
calcium phosphate accumulation, but the frequency is
relatively low, especially in breast tissue. Another
example of such rare formations is heterotopic
ossification, representing true lamellar bone formation,
with organized cortical and trabecular architecture,
within soft tissues following trauma, surgery, or
neurologic injury. This process, in which mesenchymal
cells differentiate into osteoblasts outside the skeleton,
occur in muscle and periarticular tissues and is distinct
from amorphous calcific deposits [12].

In this paper, we focus on, as shown in Table 1, the
distinctive calcification patterns in breast tissue,
exploring how these diverse pathological crystalline
deposits can be quantitatively characterized and
integrated into Al-driven models for improved cancer
detection of 9 classes. For additional details on each
pathological structure or resolution and magnification,
please refer to [12]. We hypothesize that calcifications
may serve as discriminative morphological markers,
offering an opportunity for deep learning models to
enhance the diagnosis and efficiency of cancer detection
by leveraging clinical reasoning.
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Table 1. Labels used for annotation of TUBR and FCBR

Label Description / Features
Normal normal ducts and lobules
(norm)

Ductal Carcinoma
in Situ
(dcis)

ductal carcinoma in situ, and lobular
carcinoma in situ

Invasive Ductal
Carcinoma
(INDC)

invasive ductal carcinoma, invasive
lobular carcinoma, and invasive
mammary carcinoma

Non-Neoplastic | fibrosis, hyperplasia, intraductal

(NNEO) papilloma, adenosis, ectasia, etc.
Inflammation . .
(INFL) areas of inflammation
Artifact grease pen marks, stitches, foreign
(ARTF) bodies, etc.
Indistinguishable | indistinguishable tissue, normally due
(NULL) to issues with the cut/stain
Suspected regions that are at risk of developing
(SUSP) into cancerous regions
Background
(BCKG) stroma, no ducts or lobules

III. FCCC BREAST CRYSTALLIZATION SUBSET

The Neural Engineering Data Consortium (NEDC) has
released two significant open-source annotated digital
pathology datasets related to breast tissue [13]: the
Temple University Hospital Digital Pathology Corpus
Breast Tissue Subset (TUBR) and the Fox Chase Cancer
Center (FCCC) Digital Pathology Corpus Breast Tissue
Subset (FCBR). A summary of the labels used in these
corpora is given in Table 1. The process of annotating
these corpora is described in detail in [13] and serves as
a basis for this work.

Since FCCC specializes in cancer treatment, the FCBR
data represent a large sample of the most common and
most dangerous types of breast cancer — invasive ductal
carcinoma. The FCBR contains 12,164 non-cancerous,
1,967 carcinogenic, and 5,954 cancerous identified
structures. This corpus, heavily weighted towards
malignant pathology, was selected as the basis for
constructing a new subset focused specifically on tissue
crystallization phenomena. To our knowledge, no other
open-source subset exists that isolates and annotates
crystallization patterns in breast histopathology.

Crystallization profiles differ depending on the
pathological structure with which they are associated. For
example, crystalline non-neoplastic (CNNO) structures
tend to present with discrete, loosely clustered calcific
fragments typically isolated within fibroglandular
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stroma. Crystalline ductal carcinoma in situ (CDCS)
structures display larger, denser, and more irregular
mineral formations situated within atypical ductal
epithelial arrangements. In crystalline invasive ductal
carcinoma (CIDC) cases, the calcifications are often
embedded within chaotic, infiltrative patterns consistent
with stromal invasion. These findings highlight
microstructural markers that may help distinguish
borderline or ambiguous lesions.

Annotations were produced by manually outlining the
complete region of interest with contours drawn as tightly
as possible around its boundaries. The annotations were
then cross-validated by an annotation team that had been
responsible for annotation of TUBR and FCBR. To
facilitate structured analysis, we organized the
crystallization annotations into three distinct classes,
based on visual and spatial characteristics of the calcific
deposits: CNNO (n =51), CDCS (n=168), CIDC
(n = 220). This categorization was informed by observed
variations in morphology, localization and spatial
distribution of the calcific material. Each category has
distinct diagnostic implications.

Through our manual annotation process, we identified
117 images files from 116 unique subjects in the
augmented the original FCCC dataset. These images
contain a total of 439 annotated patches. We will refer to
these 439 images as the Fox Chase Crystallization
Corpus (FCCR). Due to the limited number of instances
of crystallization in FCBR, we added all these images to
the training data for FCBR, creating some overlap in the
subject population with the evaluation set.

To partition this new hybrid corpus (FCBR+FCCR) into
/train, /dev and /eval, we followed the protocol described
in[15] for TUBR, in which a wide variety of
demographic and morphological features (e.g.,
malignancy grade) were balanced across the three
subsets. Out of 687 subjects in the original FCBR
evaluation data, there are 52 subjects that are common to
the training and evaluation data in this new hybrid
corpus. However, no images are duplicated between
these three segments of the corpus. Further, there is no
overlap between TUBR and FCCR since the FCCR
annotated data was selected only from FCBR.

IV. EXPERIMENTAL RESULTS

To evaluate the discriminative power of calcification
patterns in histopathological classification, we conducted
a baseline experiment to determine whether the inclusion
of crystalline annotations improved predictive accuracy.
The results of these experiments are summarized in
Table 2 through Table 5.

An overview of the experimental workflow is shown in
Figure 2. All experiments were run with a fixed random
seed (42) to ensure reproducibility. For this proof-of-
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Table 2. Confusion matrix and accuracy for FCBR

Fox Chase Cancer Center
Breast Tissue Subset (FCBR)

Metric Crystal Non-Crystal
Correct 6,308 3,345
Incorrect 11,916 14,879
Accuracy 34.6% 18.4%

Table 3. Comparison of the suspicious classes for FCBR

Fox Chase Cancer Center
Breast Tissue Subset (FCBR)

Class Accuracy Accuracy
(Crystal) (Non-Crystal)
INDC 19.1% 5.0%
DCIS 17.2% 8.5%
NNEO 7.5% 2.7%

Table 4. Confusion matrix and accuracy for TUBR

Temple University Digital Pathology
Breast Tissue Subset (TUBR)

Metric Crystal Non-Crystal
Correct 10,968 9,681
Incorrect 35,698 36,985
Accuracy 23.5% 20.7%

Table 5. Comparison of the suspicious classes for the TUBR

Temple University Digital Pathology
Breast Tissue Subset (TUBR)

Class Accuracy Accuracy
(Crystal) (Non-Crystal)
INDC 17.95% 4.97%
DCIS 20.68% 6.10%
NNEO 4.40% 2.72%

concept baseline, annotated images were converted to
binary (black-and-white) masks, resized to 256x256
pixels, flattened into 65,536-dimensional vectors, and
used as input to a Random Forest (RNF) model available
in the MlIT-licensed library imbalanced-learn
(v0.14.0) [14]. This simple preprocessing and model
choice was intentional, yielding a transparent,
computationally inexpensive robust baseline.

This choice requires minimal hyperparameter tuning and
facilitates direct comparison with future, complex
architectures. Imbalanced-learn was used to address class
imbalance during training. We acknowledge that
flattening removes spatial information from the images.
More advanced methods that preserve spatial structure
(patch-based CNNs or engineered texture features) are
recommended for follow-up work.
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Figure 2. The crystallization baseline experiment workflow

This balanced RNF model was trained on two separate
configurations: (l)a  non-crystallization  dataset
consisting of 1,850 patches, and (2) a crystallization-
enriched  dataset  containing 2,243 patches
(FCBR+FCCR). The models were evaluated on the
remaining portion of FCBR (comprising 18,224 patches)
and further validated on TUBR (comprising 46,666
patches). The latter constitutes true open set testing since
no TUBR data was annotated.

The balanced RNF algorithm handles imbalance at the
sampling stage: for each tree, it draws a sample from the
minority class (bootstrap) and samples an equal-sized set
from the majority class (sampling with replacement) so
every tree is trained on a balanced subset. For this
baseline, we used the default hyperparameters: number
of trees = 100, Gini split metric, sqrt features tried per
split, unlimited depth, minimum split and leaf controls of
2 and 1, respectively. The sampling strategy was chosen
to equalize all classes.

We used an RNF model because of its simplicity, speed,
and stability. We have calibrated the performance of
several deep learning models on this data in [13].
Performance is generally consistent — improvements with
one classifier tend to hold up across other classifiers.

The inclusion of crystallization annotations improved the
overall classification accuracy by more than doubling the
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no-crystallization performance. In Table2, we
demonstrate significant gains in categories directly
associated with calcification. These three classes are
challenging to classify using standard approaches and
significantly contribute to the overall error rate. The most
notable improvement was observed in the INDC and
DCIS classes, indicating that the additional annotations
enabled the model to better distinguish between early-
stage and invasive carcinoma phenotypes.

On the FCBR dataset, the crystallization model produced
substantially improved per-class retrieval for the labels of
interest: NNEO (Precision = 0.12, Recall = 0.076, F1 =
0.09), DCIS (Precision = 0.08, Recall = 0.18, F1 = 0.11),
and INDC (Precision = 0.78, Recall = 0.23, F1 = 0.35).
By contrast, the non-crystallization model on the same
set yielded materially lower performance: NNEO
(Precision = 0.05, Recall = 0.03, F1 = 0.03), DCIS
(Precision = 0.08, Recall = 0.09, F1 = 0.08), and INDC
(Precision =0.78, Recall = 0.05, F1 = 0.09). These results
show that annotation of crystallization primarily
increased recall for DCIS and INDC while also
improving F1 for all three target classes. Moreover, it
doubled the overall accuracy (A = 16.26%). The 95%
confidence interval for this accuracy difference is
[15.37%, 17.15%], and the improvement was statistically
significant (p < 0.01, McNemar’s test). The largest gains
occurred in INDC (A = 14.1%) and DCIS (A = 8.7%),
which may possibly have been caused by the
underrepresentation of the CNNO patches.

On the larger TUBR set the crystallization model’s per-
class metrics were lower in absolute terms but retained
the same directional improvements: NNEO (Precision =
0.45, Recall = 0.04, F1 = 0.08), DCIS (Precision = 0.06,
Recall = 0.21, F1 = 0.10), and INDC (Precision = 0.06,
Recall = 0.18, F1 = 0.09). Under the non-crystallization
condition, the corresponding values were: NNEO
(Precision = 0.38, Recall = 0.03, F1 = 0.05), DCIS
(Precision = 0.03, Recall = 0.06, F1 = 0.04), and INDC
(Precision = 0.07, Recall = 0.05, F1 = 0.06). The
crystallization model again outperformed the baseline
(A =2.76%, 95% CI =[2.23%, 3.29%], p < 0.05). Class-
specific improvements were most pronounced for DCIS
(A =14.58%) and INDC (A = 13.00%), confirming that
calcification annotations generalize beyond the original
FCCC domain despite greater morphological variability.

In Table 3, we show the improvement in accuracy for
each class. We see an across-the-board improvement in
our ability to detect each of the three classes of interest.
Each class experienced roughly a three-fold or greater
improvement in absolute detection performance.

The gain in accuracy is less pronounced for TUBR. This
is not surprising since TUBR contains a much wider
range of morphologies. The overall accuracy in Table 4
increased by 20% and the per-class accuracies, as shown
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in Table 5, increased significantly. While the domain-
shift results show a modest overall accuracy gain (from
20.7% to 23.5%, A =2.8%, 95% CI = [2.23%, 3.29%],
p <0.001), this improvement, though statistically
significant, may not yet be clinically transformative.

However, substantial per-class gains for DCIS
(+14.58%) and INDC (+12.97%) suggest that
calcification annotations enhance the detection of lesions
with high diagnostic relevance. These results likely
reflect greater morphological variability and staining
differences in TUDP, emphasizing the need for domain
adaptation and fine-tuning before deployment.
Nonetheless, the observed improvements point toward
the potential of crystallization modeling to strengthen
diagnostic sensitivity in malignant categories, provided
further validation and calibration are undertaken.

Results for both experiments demonstrate that the
crystallization model exhibits better calibrated behavior,
with fewer high-magnitude misclassifications across
dominant classes like INDC and DCIS. In contrast, the
non-crystallization model shows heavy confusion
between malignant and background classes, likely due to
missing structural cues associated with mineralization.

V. SUMMARY

Our results suggest that the inclusion of annotated
crystalline structures enhances a model's ability to detect
biologically significant pathology, particularly across
classes that exhibit microcalcification as a morphological
hallmark. In malignant conditions (DCIS and INDC), the
localization, density, and pattern of calcification can
serve as distinct morphological signatures that
complement cellular and stromal features. Our findings
support the hypothesis that explicitly modeling these
patterns enables a more nuanced understanding of breast
cancer pathology and strengthens the diagnostic of deep
learning models. By capturing subtle calcific patterns
linked to tumor biology, crystallization provides a
biologically meaningful feature set that enhances both
sensitivity and generalizability across datasets.

The improvement in INDC performance may be
explained by the heterogeneous and often infiltrative
distribution of calcifications in invasive cancers, which,
when annotated, offer additional spatial cues to the
model. Similarly, in pre-invasive lesions like DCIS or
NNEO, smaller or more localized calcifications serve as
early morphological warning markers. These types of
features are often underrepresented in models trained on
general-purpose datasets with coarse labels. Expanding
the CNNO annotation set may further improve
performance on the NNEO class, which remains
comparatively underrepresented, due to its higher
prevalence in the TUBR dataset.
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These findings suggest that integration of clinical
reasoning into the model design, by incorporating
calcification morphology and clinical context, moves
towards a model that “thinks” like a pathologist
Clinically informed models allow for  improved
understanding of model predictions, providing a greater
level of. Models that can distinguish between
biologically meaningful calcifications and benign
findings can aid in the reduction of overdiagnosis.
Improved model performance can improve pathology
workflows and prioritize high-risk slides for review. The
results of our framework represent a step towards a
clinically actionable, transparent, and generalizable
breast cancer diagnostics model that aligns with the goals
of precision medicine.

The curated crystal subset, FCCR, provides a resource for
future computational pathology studies, exploring
mineralization patterns as predictive or descriptive
features of malignancy. The data is publicly available
from our consortium website (www.necdata.org).
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