
Temporal 𝑰𝒎𝒂𝒙-Derived FOD Radiomics for 

Classification of Breast Cancer Treatment 

Response: 

A 4D DCE-MRI Study 

The 2025 IEEE Signal Processing in Medicine and Biology 

Symposium

Priyadharshini. B*, Mythili A*, Anandh K R**

*School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

**Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, United 

States

12/2/2025 1



Introduction

Breast Cancer Facts - By the year 2020 to 2040, the 

World Health Organization (WHO)  intends to avert 2.5 

million breast cancer fatalities.

Causes of Breast cancer- Genetic, Environment, Early 

menstruation, and Late menopause.

Breast Anatomy- Parts-Ducts, Lobes, Lobules, Lymph 

node.

DCE MRI for breast imaging produces high-resolution 

images for women at high risk of breast cancer and is 

also effective for evaluating dense female breasts

•  Detect microscopic lesions in a (potentially) large 

volume of tissue. High temporal resolution while 

preserving high spatial resolution. 
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Introduction
• Pathological Complete Response (pCR)

pCR means no residual invasive cancer is found in the breast or lymph nodes after 

neoadjuvant chemotherapy. 

• Non-Pathological Complete Response (non-pCR)

Non-pCR means residual invasive cancer is still present after treatment.
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Introduction

Why classify patients into pCR and non-pCR?

• Helps oncologists evaluate treatment effectiveness early.

• Assists in personalizing therapy for breast cancer patients.

pCR classification supports

• Early de-escalation of therapy (reduce toxicity)

• Decision-making for breast conservation surgery

Non-pCR classification supports

• Therapy modification

• Predicting high-risk outcomes

• More aggressive monitoring
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Motivation

• Breast cancer treatment response prediction remains challenging.

• Conventional DCE-MRI features often fail to capture microstructural variations.

• Fractional-order derivatives (FODs) provide enhanced textural and edge 

information

• Radiomics combined with temporal Imax maps can convert complex tumor 

behavior into quantifiable biomarkers

• Accurate classification of pCR vs non-pCR supports personalized therapy
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Objectives 
• To compute temporal Imax maps from 4D DCE-MRI and characterize perfusion-

driven tumor heterogeneity.

• To generate fractional-order derivative (FOD) gradient images that enhance 

microstructural and kinetic variations within the tumor.

• To extract comprehensive radiomic features from FOD-transformed tumor regions 

for both treatment cycles (Visit 1, Visit 2, and Δ).

• To perform robust feature selection using LASSO to identify the most 

discriminative biomarkers for classifying pCR and non-pCR.

• To evaluate multiple machine-learning classifiers (SVM, Logistic Regression, 

Random Forest) using LOOCV and validate their ability to accurately predict 

treatment response.
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Background
• DCE-MRI captures voxel-wise temporal enhancement

• Tumors have fractal, heterogeneous microstructures → FODs model them better 

than integer derivatives.

• Captures subtle perfusion changes, edge irregularities, and micro-textures hidden in 

Imax maps.

• Enhances tumor heterogeneity representation essential for pCR vs non-pCR 

discrimination.

• Provides multi-scale sensitivity (both fine and coarse tumor features).

• Improves radiomic feature contrast, leading to better classification performance.
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Dataset & Imaging Protocol

Parameter Name Parameter Values

Image Strength (Patients) 10

Scanner Siemens 3T

Sequence TWIST

TR (ms) 2.9

TE (ms) 6.2

Flip Angle (degree) 10

FOV (mm) 300–340

Slice Thickness (mm) 1.4

Image Dimensions 320 × 320

Slice Number 112–120

• The dataset utilized for this analysis is adopted from the Cancer Image 

Archive (TCIA) repository. 

• The QIN Breast DCE-MRI consists of 10 patients, each scanned at 32 time 

points for two Visits (V1 and V2), forming a 4D DCE-MRI.

Table 1. Dataset and image acquisition parameters 
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Methodology
Imax map Calculation:

𝐼𝑚𝑎𝑥 𝑥, 𝑦, 𝑧 = max
𝑡

𝐼(𝑥, 𝑦, 𝑧, 𝑡)            (1)

Fractional order derivative (FOD) gradient image:

• Dx
αf x, y, z = σk=0

n −1 k α

k
f x − k, y, z  (2)

• Dy
αf x, y, z = σk=0

n −1 k α

k
f x, y − k, z  (3)

• Dz
αf x, y, z = σk=0

n −1 k α

k
f x, y, z − k  (4)

Where,
𝛼

𝑘
=

𝛤(𝛼+1)

𝛤(𝑘+1)𝛤(𝛼−𝑘+1)

‘α’ controls the differentiation order and ‘k’ indexes the discrete neighborhood 

contribution. Grünwald–Letnikov fractional derivative applied in X,Y,Z with 3×3×3 

masks. (α=0.5 used).
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Methodology
Mask Generation

• The tumor region from the breast DCE-MRI is extracted by an analytical 

segmentation model, named as Bezier-tuned Energy Functionals optimized via 

variational minimax for Volumetric Breast Tumor Segmentation (BEFVBTS) .

Figure 1. BEFVBTS model for tumor Segmentation and mask generation
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Methodology

Feature Extraction:  

• From the resulting ROI, a total of 572 radiomics features from 2 different classes 

(FOD and Log filtered image) were extracted for 2 cycles of chemotherapy. 

• Pyradiomics, an open source, is engaged in extracting first-order, shape, and texture 

features from the transformed tumor region.

Feature Selection

•  The LASSO (Least Absolute Shrinkage and Selection Operator) model is utilized 

to select the most significant features. 
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Methodology
Classification Models

• SVM and its variants, Logistic Regression, and Random Forest, are trained and 

tested by the selected optimal features. Leave-One-Out Cross-Validation (LOOCV) 

is employed to ensure robust and unbiased performance estimation

Performance Metrics

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5)

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (6)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 7

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8)

• TP- True Positive, TN- True Negative, FP- False Positive, and FN-False Negative.
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Results and Discussion

Figure 2. Visualization of 3D  𝐼𝑚𝑎𝑥 and FOD-Derived Gradient Maps from DCE-MRI.
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Results and Discussion

Feature Class Feature Split-up Total Features

Original image 

class

First order: 18 Shape: 14 GLCM: 24, 

GLDM: 14 GLRLM: 16, GLSZM: 16 

NGTDM: 5

107

Log filtered image 

(1–5 mm)

First order: 18 GLCM: 24, GLDM: 14 

GLRLM: 16, GLSZM: 16 NGTDM: 5 

(for each mm scale)

93 × 5 = 465

Table 2. Summary of extracted radiomic features across image classes

Feature Extraction Summary
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Results and Discussion

Feature Name Class → Type

V1_GLNN.9
log-sigma-4-0-mm-3D → 

GLSZM

V1_GLV.14
log-sigma-4-0-mm-3D → 

GLSZM

V2_SAE.5
log-sigma-5-0-mm-3D → 

GLSZM

Δ_Minimum
FOD loaded image → first-

order

Δ_DependenceVariance.1
log-sigma-1-0-mm-3D → 

GLDM

Δ_LDE.1
log-sigma-1-0-mm-3D → 

GLDM

Δ_RLNN.1
log-sigma-1-0-mm-3D → 

GLRLM

Δ_SRLGE.1
log-sigma-1-0-mm-3D → 

GLRLM

Δ_ZonePercentage.5
log-sigma-5-0-mm-3D → 

GLRLM

Figure 3. Visualization of LASSO regularization showing (a) Coefficient 

variation with α and (b) Cross-validation error for finding optimal α value.

Table 3. Feature class and category distribution of 

LASSO-selected features.
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Results and Discussion

Model Key Hyperparameters Support Vectors Additional Insights

Linear SVM C = 1.0, kernel = linear 5 Support vectors per class: [3, 2]

RBF SVM C = 10, γ = 0.1 9 Support vectors per class: [6, 3]

Polynomial SVM C = 1.0, degree = 3, γ = scale 6 Support vectors per class: [4, 2]

Logistic Regression C = 1.0, penalty = L2 – max_iter = 1000

Random Forest n_estimators = 200, max_depth = 10 – class_weight = balanced

Table 4. Summary of tuned hyperparameters, support vectors, and model characteristics

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) pₚₑᵣₘ

Linear SVM
98.4 ± 1.8

(94.1–100.0)

97.2 ± 2.6

(93.0–100.0)

96.8 ± 2.9

(91.5–100.0)

97.3 ± 2.5

(92.4–100.0)
0.048

Polynomial SVM
97.5 ± 2.4

(91.3–100.0)

96.7 ± 2.8

(91.0–100.0)

97.1 ± 2.5

(92.0–100.0)

96.9 ± 2.7

(91.2–100.0)
0.013

RBF SVM
99.2 ± 1.1

(97.2–100.0)

98.5 ± 1.6

(95.1–100.0)

99.1 ± 0.9

(97.5–100.0)

98.6 ± 1.4

(95.3–100.0)
0.020

Logistic Regression
99.3 ± 1.0

(97.0–100.0)

99.0 ± 1.2

(96.5–100.0)

99.1 ± 0.8

(97.3–100.0)

98.8 ± 1.5

(95.4–100.0)
0.029

Random Forest
99.4 ± 0.9

(97.4–100.0)

99.2 ± 1.0

(97.0–100.0)

99.3 ± 1.1

(97.2–100.0)

99.1 ± 1.0

(97.0–100.0)
0.011

Table 5. Comparative performance summary of classification models with cross-validation and statistical 

significance (LOOCV, n = 10)
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Results and Discussion

Figure 4.  (a)  Comparison of ROC curves for multiple classifiers. (b) Model robustness 

check using a permutation test.
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Results and Discussion

Figure 5. Feature importance of LASSO-selected features.

12/2/2025 18



Limitations & Future Work

Limitations

• Small dataset (n=10), potential overfitting.

• No external validation or clinicopathological covariates.

Future Work

• Validate on larger multi-institutional cohorts.

• Integrate multi-parametric imaging and clinical data for robust prediction.
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Summary

• This study presents an effective framework for classifying pCR and non-pCR 

patients using temporal Imax maps derived from 4D DCE-MRI.

• Fractional-order derivative (FOD) representations enhance subtle microstructural 

and perfusion-related tumor patterns.

• Radiomics extracted from FOD-enhanced images provide highly discriminative 

features for treatment response prediction.

• The combined FOD-radiomics and machine-learning approach shows strong 

potential for improving personalized therapy in breast cancer.
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Thank you
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