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Introduction

Breast Cancer Facts - By the year 2020 to 2040, the
World Health Organization (WHO) intends to avert 2.5

million breast cancer fatalities.

Chest wall

Causes of Breast cancer- Genetic, Environment, Earl
. Rib
menstruation, and Late menopause. ey

Breast Anatomy- Parts-Ducts, Lobes, Lobules, Lymp

Lactiferous duct

node. Nipple

DCE MRI for breast imaging produces high-resolutio Areola

images for women at high risk of breast cancer and

also effective for evaluating dense female breasts

*  Detect microscopic lesions in a (potentially) larg

Adipose tissue

volume of tissue. High temporal resolution while

preserving high spatial resolution.
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Introduction

* Pathological Complete Response (pCR)
pCR means no residual invasive cancer 1s found in the breast or lymph nodes after
neoadjuvant chemotherapy.

* Non-Pathological Complete Response (non-pCR)

Non-pCR means residual invasive cancer is still present after treatment.
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Introduction

Why classify patients into pCR and non-pCR?

* Helps oncologists evaluate treatment effectiveness early.
* Assists in personalizing therapy for breast cancer patients.
PCR classification supports

* Early de-escalation of therapy (reduce toxicity)

* Decision-making for breast conservation surgery
Non-pCR classification supports

* Therapy modification

* Predicting high-risk outcomes

* More aggressive monitoring
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Motivation

* Breast cancer treatment response prediction remains challenging.
* Conventional DCE-MRI features often fail to capture microstructural variations.

* Fractional-order derivatives (FODs) provide enhanced textural and edge

information

* Radiomics combined with temporal Imax maps can convert complex tumor

behavior into quantifiable biomarkers

* Accurate classification of pCR vs non-pCR supports personalized therapy
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Objectives

To compute temporal /max maps from 4D DCE-MRI and characterize perfusion-

driven tumor heterogeneity.

To generate fractional-order derivative (FOD) gradient images that enhance

microstructural and kinetic variations within the tumor.

To extract comprehensive radiomic features from FOD-transformed tumor regions

for both treatment cycles (Visit 1, Visit 2, and A).

To perform robust feature selection using LASSO to identify the most
discriminative biomarkers for classifying pCR and non-pCR.

To evaluate multiple machine-learning classifiers (SVM, Logistic Regression,
Random Forest) using LOOCV and validate their ability to accurately predict

treatment response.



Background

DCE-MRI captures voxel-wise temporal enhancement

Tumors have fractal, heterogeneous microstructures — FODs model them better

than integer derivatives.

Captures subtle perfusion changes, edge irregularities, and micro-textures hidden in

Imax maps.

Enhances tumor heterogeneity representation essential for pCR vs non-pCR

discrimination.
Provides multi-scale sensitivity (both fine and coarse tumor features).

Improves radiomic feature contrast, leading to better classification performance.



Dataset & Imaging Protocol

 The dataset utilized for this analysis is adopted from the Cancer Image
Archive (TCIA) repository.

* The QIN Breast DCE-MRI consists of 10 patients, each scanned at 32 time
points for two Visits (V1 and V2), forming a 4D DCE-MRI.

Table 1. Dataset and image acquisition parameters
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Parameter Name Parameter Values
Image Strength (Patients) 10
Scanner Siemens 3T
Sequence TWIST
TR (ms) 2.9
TE (ms) 6.2
Flip Angle (degree) 10
FOV (mm) 300-340
Slice Thickness (mm) 1.4
Image Dimensions 320 x 320
Slice Number 112—-120




Methodology

Imax map Calculation:
Imax (x,y,2) = maxI(x,y,z,t) (1)

Fractional order derivative (FOD) gradient image:
© DHf(xyD) = T (DX () (i~ ky) ()
¢ D$f(xy,2) =S (-D*(F)fxy-kz)  (3)

¢ DYf(xy,2) = T (-D* (D) fxyz—k) (@)

I'(a+1)
I'tk+D)Ir (a—k+1)

Where, ( k)

‘a0’ controls the differentiation order and ‘k’ indexes the discrete neighborhood
contribution. Griinwald—Letnikov fractional derivative applied in X,Y,Z with 3x3x3

masks. (a=0.5 used).
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Methodology

Mask Generation

e The tumor region from the breast DCE-MRI is extracted by an analytical
segmentation model, named as Bezier-tuned Energy Functionals optimized via
variational minimax for Volumetric Breast Tumor Segmentation (BEFVBTYS) .

3D Input Image

Iterative Energy ﬂ
U, Minimization
o e F Functional Connected Component Analysis (CCA)
‘ompute Energy Functionals —  h ks o h o n ot h % m— o m— ’ )
\1 I Compute optimal Compute Compute Update H until I (Non-tumor removing)

I 1 . Hyperparameter differential H Step siz convergence reached -
E,= EJ’J‘ (H(x,y,2) — I(x,y,2))* dxdydz . ep size : 1

1
E; = 3 J‘f |VH(x,y,2)|* dxdydz

o -
1 _ E -k oH(x,y,2) _ e P ,| N, L forI(xy.z) 2 H'(xy,2)
EZ:EJ] (H(x,y,2) * I(x,y,2))* dxdydz ={a_E1_ZEz+E3 H at ™= 2o HET = HE + 148 5= Thinary T g, otherwise
| 1

J

Figure 1. BEFVBTS model for tumor Segmentation and mask generation
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Methodology

Feature Extraction:

* From the resulting ROI, a total of 572 radiomics features from 2 different classes

(FOD and Log filtered image) were extracted for 2 cycles of chemotherapy.

* Pyradiomics, an open source, 1s engaged in extracting first-order, shape, and texture

features from the transformed tumor region.

Feature Selection

 The LASSO (Least Absolute Shrinkage and Selection Operator) model is utilized

to select the most significant features.
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Methodology

Classification Models

* SVM and its variants, Logistic Regression, and Random Forest, are trained and

tested by the selected optimal features. Leave-One-Out Cross-Validation (LOOCYV)

1s employed to ensure robust and unbiased performance estimation

Performance Metrics

TP + TN
ACCuracy = o TN T FP + FN
2TP
Fl—score = b T FP + FN
N TP
Precision = m
TP
Recall = TP-I-—FN

(5)
(6)
(7)

(8)

e TP- True Positive, TN- True Negative, FP- False Positive, and FN-False Negative.
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Results and Discussion

Figure 2. Visualization of 3D [,,,,, and FOD-Derived Gradient Maps from DCE-MRI.
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Results and Discussion

Feature Extraction Summary

Table 2. Summary of extracted radiomic features across image classes

Feature Class Feature Split-up Total Features
Original image First order: 18 Shape: 14 GLCM: 24,
class GLDM: 14 GLRLM: 16, GLSZM: 16 107
NGTDM: 5
Log filtered image First order: 18 GLCM: 24, GLDM: 14
GLRLM: 16, GLSZM: 16 NGTDM: 5 93 x 5 =465
(1-5 mm)

(for each mm scale)
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Table 3. Feature class and category distribution of

LASSO-selected features.

Feature Name .Class — Type
V1_GLNN.9 10g-STgmé—é—SOZ-1\m4m-3D N
V1 GLV.14 log-STgmé-E-SOZ-lr\n/ImaD N
V2 SAE.5 log'SlgngéOZ-ﬁmsD N
A Minimum FOD loaded image — first-
— order
A Dependence Variance. 1 log'Sing}:g—;r/Inm-3D —
A LDE.1 10g-STgmeg lL—]g-ll\j;msD N
A_RLNN.1 log-STgmg-Ll 1—{01:r1\r/1[m-3D N
A SRLGE.1 108-ngmé-L1 l—{OL-ﬁm-sD N
A ZonePercentage.5 log-SIgmgf[-{Ol:Kl/[m-3D —

Figure 3. Visualization of LASSO regularization showing (a) Coefficient

12

Varla{i%éz\gv%é\ a and (b) Cross-validation error for finding optimal a value.
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Results and Discussion

Table 4. Summary of tuned hyperparameters, support vectors, and model characteristics

Model Key Hyperparameters Support Vectors Additional Insights
Linear SVM C = 1.0, kernel = linear 5 Support vectors per class: [3, 2]
RBF SVM C=10,y=0.1 9 Support vectors per class: [6, 3]
Polynomial SVM C=1.0, degree = 3, y = scale 6 Support vectors per class: [4, 2]

Logistic Regression

C=1.0, penalty =12

max iter = 1000

Random Forest

n estimators = 200, max depth = 10

class weight = balanced

Table 5. Comparative performance summary of classification models with cross-validation and statistical
significance (LOOCV, n = 10)

Model Accuracy (%) | Precision (%) Recall (%) F1-score (%) Pperm
084 +1.8 907.2+2.6 96.8 +2.9 97.3+2.5
Linear SVM 0.048
(94.1-100.0) (93.0-100.0) (91.5-100.0) (92.4-100.0)
97.5+2.4 96.7 +£2.8 97.1+2.5 96.9 +2.7
Polynomial SVM 0.013
(91.3-100.0) (91.0-100.0) (92.0-100.0) (91.2-100.0)
99.2+1.1 98.5+1.6 99.1+£0.9 08.6+1.4
RBF SVM 0.020
(97.2-100.0) (95.1-100.0) (97.5-100.0) (95.3-100.0)
99.3+£1.0 99.0+1.2 99.1+0.8 908.8+1.5
Logistic Regression 0.029
(97.0-100.0) (96.5-100.0) (97.3-100.0) (95.4-100.0)
. 99.4+0.9 99.2+1.0 99.3+1.1 99.1+1.0 00
orest .
Rﬁl?g%% (97.4-100.0) (97.0-100.0) (97.2-100.0) (97.0-100.0) 18
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Figure 4. (a) Comparison of ROC curves for multiple classifiers. (b) Model robustness
check using a permutation test.
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Results and Discussion
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Figure 5. Feature importance of LASSO-selected features.
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Limitations & Future Work

Limitations
e Small dataset (n=10), potential overfitting.

* No external validation or clinicopathological covariates.

Future Work
* Validate on larger multi-institutional cohorts.

* Integrate multi-parametric imaging and clinical data for robust prediction.
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Summary

This study presents an effective framework for classifying pCR and non-pCR

patients using temporal Imax maps derived from 4D DCE-MRI.

Fractional-order derivative (FOD) representations enhance subtle microstructural

and perfusion-related tumor patterns.

Radiomics extracted from FOD-enhanced images provide highly discriminative

features for treatment response prediction.

The combined FOD-radiomics and machine-learning approach shows strong

potential for improving personalized therapy in breast cancer.
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