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Abstract— Breast cancer is the most prevalent genetic 
malignancy, causing cancer-related fatalities among women 
worldwide. This highlights the importance of early 
detection and accurate response evaluation in improving 
patient prognosis and long-term survival rates. Dynamic 
Contrast-Enhanced Magnetic Resonance Imaging (DCE-
MRI) captures voxel-wise temporal insights that reveal 
perfusion heterogeneity and vascular permeability, thereby 
facilitating the discrimination of pCR (pathological 
complete response) and non-pCR (non-pathological 
complete response) when evaluating treatment response. 
Accordingly, this work proposes a temporally derived 
fractional order derivative (FOD) based radiomics model 
for breast cancer treatment response classification. Herein, 
the model is primarily validated using the QIN Breast DCE-
MRI dataset, consisting of a limited patients (pCR=3, non-
pCR=7) scanned at 32 time points. However, each patient 
encompasses prominent temporal insights, assisting in 
validating the model. Initially, the 𝑰𝒎𝒂𝒙 maps are extracted 
from 4D DCE-MRIs, which are utilized for computing the 
Fractional Order Derivative (FOD) gradient images. A 
comprehensive set of radiomic features was extracted from 
the FOD gradient images corresponding to two 
chemotherapy cycles (Visit 1 and Visit 2).  

Generally, the FOD images provide complementary 
information, enhancing the predictive ability of the 
radiomics model. Further, a robust feature dimensionality 
reduction technique is incorporated for selecting optimal 
features from the combined feature sets (Visit 1, Visit 2, and 
Δ(V2, V1). The selected optimal features are utilized for 
training and testing the classification models, namely, 
Support Vector Machine (SVM) kernels (Linear, RBF, 
polynomial), Logistic Regression, and Random Forest for 
classifying pCR and non-pCR classes. Further, the 
classifying models are evaluated by metrics, obtaining an 
interpretable and balanced model. Hence, the clinical 
application of the proposed model aids personalised 
therapy and improves the survival rate. 

Keywords— breast cancer, FOD, Imax map, non-pCR, pCR, 
radiomics, feature selection, classification. 

I. INTRODUCTION 
By the year 2020 to 2040, the World Health Organization 
(WHO) intends to avert 2.5 million breast cancer 
fatalities, overall reducing 2.5% each year. Early 
detection and treatment planning aid in breast 
conservation surgery and increase the survival rate of 
cancer patients [1]. The breast cancer patients are 
categorized as pCR and non-pCR, referring to the 

absence and existence of residual invasive cancer after 
neo-adjuvant therapy, respectively [2].  

DCE-MRI, a non-invasive technique, scans voxel-wise 
subtle temporal changes from the breast region and acts 
as a versatile biomarker facilitating perfusion-induced 
therapies while evaluating treatment response in breast 
cancer patients. There are several temporal parameters 
(e.g., 𝐼!"#, Time To Peak) that quantify the tumor’s 
necrotic and hypoxic regions and are often correlated 
with proliferation factor and survival outcome [3][4]. 
Particularly, the maximum intensity parameter often 
resembles the peak vascular enhancements in highly 
aggressive tumors [5].  

In addition, the advent of FODs [6] in medical image 
analysis has become an effective tool for capturing 
multiscale structural patterns compared to integer order 
derivatives. It eases the higher-order textural patterns, 
considering global and local variations, thereby 
demonstrating the intricate tumor biology that is deemed 
essential for treatment assessment in breast cancer 
patients [7][8].  

Radiomics quantifies spatial and textural insights from 
medical images, while FOD-based gradients capture 
local intensity transitions. Their combination 
synergistically enhances feature sensitivity to 
microstructural and perfusion-related heterogeneity, 
thereby improving the predictive power of the imaging 
biomarker in assessing treatment response. For instance, 
the most recent research has formulated the GL fractional 
differential gradient operator, generating a pixel-sized 
mask for correlating neighboring pixels [9]. However, 
FODs to enhance the medical images introduce a novel 
application and necessitate further research. 

 With the emergence of Machine Learning approaches, 
leveraging the primary spatiotemporal features as rich 
biomarkers, assessing the pathological complete 
response has become feasible [10]. The author from [11]  
had extracted 348 radiomics features from the tumor and 
peritumor regions that quantify the temporal textural 
patterns and heterogeneity. Lately, the logistics 
regression was trained and tested for treatment 
assessment and molecular subtype classification. An 
integrated kinetic and quantum-Raina’s polynomial 
(QRP) feature [12] is implemented in DCE-MRI breast 
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cancer classification, achieving an accuracy of 97.4 %  
over 300 patients. Nevertheless, the above research 
involves the feature extraction from the original images, 
whereas this work proposes extracting from a 
transformed image. Similarly, the deep networks play a 
key role in assessing pCR and non-pCR categories by 
combining clinical and pathological data [13]. For 
instance, ResNet18 [14] combined transfer learning to 
assess the NAC response, with the performance of 87 % 
using an SVM classifier. A multi-modal fusion for pre-
treatment and early treatment, achieving 92 % AUC. The 
author performed a comparison of multimodal with 
unimodal DL [13]. 

The proposed framework incorporates an analytical 
segmentation model and a learning-based feature 
extraction, selection, and classification model for 
classifying patients with pCR and those with non-pCR. 
The rationale for the energy-based analytical model is 
due to its transparency, interpretability, and flexibility in 
delineating tumor boundaries more precisely, which are 
deemed essential for medical image processing. 
Contrastingly, the choice of machine learning (ML) 
methods for feature extraction, selection, and 
classification is owing to the intricate structural 
complexity posed by the tumors. Generally, ML models 
are excellent at learning complex and non-linear patterns 
extracted from radiomics features, which are multi-
dimensional and impact the feature space extracted from 
the segmented region to assess the treatment response in 
breast cancer patients. This combinatorial arrangement of 
analytical and data-driven approaches in the proposed 
discriminative model leverages the effectiveness of both 
paradigms, which are crucial for real-time applications in 
decision-making. 

II. MATERIALS AND METHODS 
The proposed workflow for PCR and non-PCR 
classification is chronologically described in this section. 

A. Dataset and Imaging Protocols 

The dataset utilized for this analysis is adopted from The 

Cancer Image Archive (TCIA) repository [15], which is 
publicly available for researchers. The QIN Breast DCE-
MRI dataset consists of 10 patients, each scanned at 32 
time points for two Visits (V1 and V2), forming a 4D 
DCE-MRI. The major utilization of this dataset is to 
evaluate breast cancer therapy after neo-adjuvant 
chemotherapy. Accordingly, Table 1 presents the 
imaging protocol associated with the QIN Breast DCE-
MRI dataset.  

B. 𝐼$%&  map Calculation 
Generally, 𝐼$%&  maps are computed as the maximum 
signal intensity observed across all temporal frames of 
the DCE-MRI sequence, providing a robust kinetic 
descriptor of peak enhancement behavior. Such 𝐼$%&  
maps are calculated by  𝐼!"#(𝑥, 𝑦, 𝑧) = max

$
𝐼(𝑥, 𝑦, 𝑧, 𝑡) 

statistical formula where t =1,2,3,4..., N, representing a 
maximum intensity at each voxel. 

C. Fractional order derivative (FOD) gradient image 

The calculated 𝐼!"# maps were processed using First-
Order Derivative (FOD) gradient transformations in the 
X, Y, and Z. Accordingly, this work utilizes the 
Grünwald–Letnikov (GL) fractional derivative that is 
appropriate for a 3D image with each mask of size 3x3x3. 
The FOD of order α in all three directions is calculated 
by using the formula as shown in Eqn. (1 to 3).  

𝐷#%𝑓(𝑥, 𝑦, 𝑧) =/(−1)& 2
𝛼
𝑘5𝑓

(𝑥 − 𝑘, 𝑦, 𝑧)													(1)
'

&()

 

𝐷*%𝑓(𝑥, 𝑦, 𝑧) =/(−1)& 2
𝛼
𝑘5𝑓
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𝐷+%𝑓(𝑥, 𝑦, 𝑧) =/(−1)& 2
𝛼
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Herein, 2%
&
5 = ,(%./)

,(&./),(%1&./)
, where 𝛤(. ), is a Gamma 

function that generalizes the factorial binomial 
coefficient. This coefficient extends the concept of 
integer-order differentiation to fractional-order 
differentiation, allowing smooth transitions between 
derivative orders. The resulting weights 𝑤& =
(−1)& 2%

&
5	define the fractional derivative mask, where 

‘α’ controls the differentiation order and ‘k’ indexes the 
discrete neighborhood contribution. 

D. Mask Generation 

The tumor region from the breast DCE-MRI is extracted 
by an analytical segmentation model, named as Bezier-
tuned Energy Functionals optimized via variational 
minimax for Volumetric Breast Tumor Segmentation 

Table 1. Dataset and image acquisition parameters 

Parameter Name Parameter Values 
Image Strength (Patients) 10 

Scanner Siemens 3T 
Sequence TWIST 
TR (ms) 2.9 
TE (ms) 6.2 

Flip Angle (degree) 10 
FOV (mm) 300–340 

Slice Thickness (mm) 1.4 
Image Dimensions 320 × 320 
Slice Number 112–120 
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(BEFVBTS) [16][17]. The model proposes a convex and 
non-linear energy functional engaging data fidelity and 
L2 norm regularization terms. Accordingly, the model’s 
cost function is shown in Eq. (4). The BEFVBTS model’s 
flow diagram is depicted in Fig. 1. 

𝐸(𝐻; 𝛼) = (1 − 𝛼)2𝐸/ + 2𝛼(1 − 𝛼)𝐸2 + 𝛼2𝐸3								(4) 

where, 𝐼(𝑥, 𝑦, 𝑥)	is the input image, 𝐻(𝑥, 𝑦, 𝑥) is the 
Hessian of the image, ‘α’ here is the weight parameter, 
‘τ’ is the step size, and 𝐸/, 𝐸2, 𝑎𝑛𝑑	𝐸3		are the energy 
functionals. The proposed cost function shown in Eq. (4) 
is minimized iteratively until convergence is reached, 
thereby obtaining the optimal ‘α’ and heterogeneous 
volume, H. The post-processing steps, such as 
binarization and Connected Component Analysis (CCA), 
are incorporated in the model for precise extraction of the 
tumor from surrounding non-tumor regions. 

E. Feature Extraction 

Further, the generated binary masks are superimposed on 
the FOD-transformed image to extract the FOD-
transformed tumor regions. From the resulting ROI, a 
total of 572 radiomics features from 2 different classes 
(FOD and Log filtered image) were extracted for 2 cycles 
of chemotherapy. Herein, Pyradiomics, an open source 
[18], is engaged in extracting first-order, shape, and 
texture features from the transformed tumor region. 

F. Feature Selection 

The extracted radiomics features are huge, hence, the 
LASSO (Least Absolute Shrinkage and Selection 
Operator) model is utilized to select the most significant 
features [19]. LASSO aims to minimize the residual sum 
of squares by imposing an L1 penalty term, as shown in 
Eq. (5), which promotes sparse feature selection and 
reduces model overfitting. 

max
'
&
1
2𝑛*+𝑦( − 𝛼) −*𝑥(*𝛼*

+

*,-

0

.

+ 𝜆*3𝑎*3
+

*,-

/

(,-

5				(5) 

In Eq. (5),  𝛼 is the weight parameter and 𝜆 is the 

regularization parameter. A total of 1716 radiomics 
features combining Visit 1, Visit 2 cycles, and Δ (Visit 2 
- Visit 1) (572x3 = 1716) were extracted and utilized for 
training the classification model. 

G. Classification Models 

The robust classification models, SVM and its variants, 
Logistic Regression, and Random Forest, are trained and 
tested by the selected optimal features. Due to the limited 
patient strength, Leave-One-Out Cross-Validation 
(LOOCV) is employed to ensure robust and unbiased 
performance estimation [20]. 

H. Performance Metrics 

The metrics, such as Accuracy, F1-score, Precision, and 
Recall, were computed to comprehensively assess the 
classification performance of the models, as shown in 
Eqs. (6 - 9): 

				𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																	(6) 

									𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁																				(7) 

																		𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃																												(8) 

																			𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																																		(9) 

where, TP is “True Positive,” TN is “True Negative,” FP 
is “False Positive,” and FN is “False Negative.” 

III. RESULTS AND DISCUSSION 
A. Tumor Characterization using 𝐼!"# and FOD  

The  𝐼!"#		maps are calculated from a 4D DCE-MRI 
image, indicating tumor perfusion and vascularization in 
contrast dynamics. Additionally, to enhance edge 
information, the fractional order derivative of order 
α=0.5 is applied to  𝐼!"#	maps, capturing microstructural 
patterns. Fig. 2 depicts the visuals from  𝐼!"#		and FOD-
derived gradient images. The tumor in the		𝐼!"# map 

Figure 1. BEFVBTS model for tumor segmentation and mask generation. 
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shows a strong enhancement corresponding to high 
vascular activity, while the FOD map emphasizes 
intensity gradients that delineate tumor margins and 
internal heterogeneity. 

B. Feature Extraction Summary 

Radiomics features are extracted from 2 classes, namely, 
the FOD transformed image and the multi-scale LoG 
version of FOD. Table 2 depicts the summary of 
radiomics features extracted across various classes, the 
name of the group, and the total count in each class. The 
scale ranges from 1-5mm and bin width=22, captures the 
enhanced textural patterns highlighting the intricate 
tumor heterogeneity at different spatial frequencies.  

C. Analysis of the LASSO Model.  

The plot in Fig. 3(a) depicts the feature shrinkage process 
as alpha increases, projecting the sparsity of the model. 

 

Figure 2. Visualization of 3D  𝐼$%& and FOD-derived gradient maps from DCE-MRI. 
 

 

Figure 3. Visualization of LASSO regularization showing (a) 
Coefficient variation with α and (b) Cross-validation error for 
finding optimal α value. 
 

Table 2. Summary of extracted radiomic features 

Feature 
Class Feature Split-up Total 

Features 

Original 
image class 

First order: 18 Shape: 14 
GLCM: 24, GLDM: 14 
GLRLM: 16, GLSZM: 16 

NGTDM: 5 

107 

Log filtered 
image (1–5 
mm) 

First order: 18 GLCM: 
24, GLDM: 14 GLRLM: 

16, GLSZM: 16 
NGTDM: 5 (for each mm 

scale) 

93 × 5 = 465 

 

 



B. Priyadharshini et al.: Temporal 𝐼$%&-Derived FOD Radiomics… Page 5 of 7 

979-8-3315-7370-6/25/$31.00 ©2025 IEEE  IEEE SPMB 2025 December 6, 2025 

The features leading to zero indicate the amount of 
contribution in the classification process. The plot in Fig. 
3(b) depicts the relationship between alpha and the mean 
square error during cross-validation. After model tuning, 
the best alpha (0.0282) chosen by the model ensures the 
balance between generalization and model complexity. 
The shaded blue region in Fig. 3(b) represents the 
variation in the error, and the dark blue line indicates the 
mean cross-validation (CV) error. The model selected 9 
optimal features from 1716 combined features that are 
listed in Table 3, in the format, feature name à classà  
feature type. The abbreviations for the terms used in 
Table 3 are GLNN-Gray Level Non-Uniformity 
Normalized, GLV-Gray Level Variance, LDE-Large 
Dependence Emphasis, SAE-Small Area Emphasis, 
RLNN-Run Length Non-Uniformity Normalized, and 
SRLGE- Short Run Low Gray Level Emphasis. The 
selected radiomics feature values are significant in 
classifying pCR and non-pCR breast cancer patients. 

D. Classification Results 

Following a robust and reliable feature selection process, 
various classifiers, SVM, Logistic regression, and 
Random Forest, are trained and tested for classifying 
pCR and non-pCRs. Tables 4 and 5 present the optimized 
hyperparameters and performance metrics details of the 
classification models. The SVM kernels were adjusted 
for the regularization parameter C and kernel-specific 
parameters (γ and degree), while Logistic Regression and 
Random Forest were tuned for convergence stability and 
depth control, respectively. Each kernel performs 
uniquely, linear possesses simple separability, and acts as 
a baseline, while the polynomial exhibits a moderate 
feature relationship. The other variant, RBF, mainly 

captures the intricate and non-linear feature relationship 
among the extracted textural information, thereby 
facilitating an unbiased performance analysis in the 
classification process. The above claim is depicted in 
Table 5, where all classifiers demonstrated strong 
discriminative performance under Leave-One-Out 
Cross-Validation (LOOCV). Furthermore, the 
permutation-based significance analysis (p_perm less 
than 0.05) validates that the observed classification 
performance is statistically meaningful and not due to 
random chance, as shown in Fig. 4 (b). Similarly, Table 
4 summarizes the key configurations and performance 
insights of various classification models used in the 
evaluation, along with class balance handling and 
optimization settings.  

The statistical test shows a p-value of 0.0370, which is 
statistically significant. Similarly, there is a necessity to 
check feature importance in the classification model, 
demonstrating the high significance of difference 
features from visit 1 and visit 2, as shown in Fig. 5. 
However, the high feature importance of the models 
relies on the Short Run Low Gray Level Emphasis 
feature from the log sigma class and GLRLM type. The 
ROC curves shown in Fig. 4 (a) demonstrate near-perfect 
classification performance, with AUC values 
approaching 1.0 across all classification models. While 
such high AUC scores indicate strong separability 
between pCR and non-pCR feature distributions, they 
may also suggest potential model overfitting, particularly 
given the limited dataset size.  

 In summary, the proposed FOD-based radiomics model 
improves clinical interpretability by establishing a 
stronger association between the extracted radiomic 
features and the physiological parameters of DCE-MRI, 
particularly the 𝐼!"#		parameter, which reflects tumor 
vascular and perfusion dynamics. 

IV. SUMMARY 
This study demonstrates the effective classification of 
patients with pCR and non-pCR using temporal maps and 
their corresponding fractional-order derivative (FOD) 
representations. The incorporation of FODs enhances 
subtle textural and kinetic contrasts within DCE-MRI, 
capturing underlying physiological heterogeneity that 
conventional intensity maps may overlook. Radiomic 
features extracted from these transformed images served 
as informative and biologically relevant biomarkers, 
enabling the development of a robust physiologically 
interpretable classification model. Future work will 
validate the model on larger multi-institutional cohorts, 
apply harmonization to reduce scanner variability, and 
improve generalizability through multi-parametric 
integration to enable clinical translation and personalized 
treatment planning. 

Table 3. Feature class and category distribution of LASSO-
selected features. 

Feature Name Class → Type 

V1_GLNN.9 log-sigma-4-0-mm-3D → 
GLSZM 

V1_GLV.14 log-sigma-4-0-mm-3D → 
GLSZM 

V2_SAE.5 log-sigma-5-0-mm-3D → 
GLSZM 

Δ_Minimum FOD loaded image → first-
order 

Δ_DependenceVariance.1 log-sigma-1-0-mm-3D → 
GLDM 

Δ_LDE.1 log-sigma-1-0-mm-3D → 
GLDM 

Δ_RLNN.1 log-sigma-1-0-mm-3D → 
GLRLM 

Δ_SRLGE.1 log-sigma-1-0-mm-3D → 
GLRLM 

Δ_ZonePercentage.5 log-sigma-5-0-mm-3D → 
GLRLM 
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Table 4. Summary of tuned hyperparameters, support vectors, and model characteristics. 

Model Key Hyperparameters Support Vectors Additional Insights 
Linear SVM C = 1.0, kernel = linear 5 Support vectors per class: [3, 2] 
RBF SVM C = 10, γ = 0.1 9 Support vectors per class: [6, 3] 

Polynomial SVM C = 1.0, degree = 3, γ = scale 6 Support vectors per class: [4, 2] 
Logistic Regression C = 1.0, penalty = L2 – max_iter = 1000 
Random Forest n_estimators = 200, max_depth = 10 – class_weight = balanced 

 

 

 

Table 5. Comparative performance summary of classification models (LOOCV, n=10) 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) pₚₑᵣₘ 

Linear SVM 98.4 ± 1.8 
(94.1–100.0) 

97.2 ± 2.6 
(93.0–100.0) 

96.8 ± 2.9 
(91.5–100.0) 

97.3 ± 2.5 
(92.4–100.0) 0.048 

Polynomial SVM 97.5 ± 2.4 
(91.3–100.0) 

96.7 ± 2.8 
(91.0–100.0) 

97.1 ± 2.5 
(92.0–100.0) 

96.9 ± 2.7 
(91.2–100.0) 0.013 

RBF SVM 99.2 ± 1.1 
(97.2–100.0) 

98.5 ± 1.6 
(95.1–100.0) 

99.1 ± 0.9 
(97.5–100.0) 

98.6 ± 1.4 
(95.3–100.0) 0.020 

Logistic Regression 99.3 ± 1.0 
(97.0–100.0) 

99.0 ± 1.2 
(96.5–100.0) 

99.1 ± 0.8 
(97.3–100.0) 

98.8 ± 1.5 
(95.4–100.0) 0.029 

Random Forest 99.4 ± 0.9 
(97.4–100.0) 

99.2 ± 1.0 
(97.0–100.0) 

99.3 ± 1.1 
(97.2–100.0) 

99.1 ± 1.0 
(97.0–100.0) 0.011 

 

Figure 4.  (a)  Comparison of ROC curves for multiple classifiers. (b) Model robustness check using a permutation test. 

 

Figure 5. Feature importance of LASSO-selected features. 
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