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Abstract— Breast cancer is the most prevalent genetic
malignancy, causing cancer-related fatalities among women
worldwide. This highlights the importance of early
detection and accurate response evaluation in improving
patient prognosis and long-term survival rates. Dynamic
Contrast-Enhanced Magnetic Resonance Imaging (DCE-
MRI) captures voxel-wise temporal insights that reveal
perfusion heterogeneity and vascular permeability, thereby
facilitating the discrimination of pCR (pathological
complete response) and non-pCR (non-pathological
complete response) when evaluating treatment response.
Accordingly, this work proposes a temporally derived
fractional order derivative (FOD) based radiomics model
for breast cancer treatment response classification. Herein,
the model is primarily validated using the QIN Breast DCE-
MRI dataset, consisting of a limited patients (pCR=3, non-
pCR=7) scanned at 32 time points. However, each patient
encompasses prominent temporal insights, assisting in
validating the model. Initially, the I,,,, maps are extracted
from 4D DCE-MRIs, which are utilized for computing the
Fractional Order Derivative (FOD) gradient images. A
comprehensive set of radiomic features was extracted from
the FOD gradient images corresponding to two
chemotherapy cycles (Visit 1 and Visit 2).

Generally, the FOD images provide complementary
information, enhancing the predictive ability of the
radiomics model. Further, a robust feature dimensionality
reduction technique is incorporated for selecting optimal
features from the combined feature sets (Visit 1, Visit 2, and
A(V2, V1). The selected optimal features are utilized for
training and testing the classification models, namely,
Support Vector Machine (SVM) kernels (Linear, RBF,
polynomial), Logistic Regression, and Random Forest for
classifying pCR and non-pCR classes. Further, the
classifying models are evaluated by metrics, obtaining an
interpretable and balanced model. Hence, the clinical
application of the proposed model aids personalised
therapy and improves the survival rate.

Keywords— breast cancer, FOD, Imax map, non-pCR, pCR,
radiomics, feature selection, classification.

1. INTRODUCTION

By the year 2020 to 2040, the World Health Organization
(WHO) intends to avert 2.5 million breast cancer
fatalities, overall reducing 2.5% each year. Early
detection and treatment planning aid in breast
conservation surgery and increase the survival rate of
cancer patients [1]. The breast cancer patients are
categorized as pCR and non-pCR, referring to the
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absence and existence of residual invasive cancer after
neo-adjuvant therapy, respectively [2].

DCE-MRI, a non-invasive technique, scans voxel-wise
subtle temporal changes from the breast region and acts
as a versatile biomarker facilitating perfusion-induced
therapies while evaluating treatment response in breast
cancer patients. There are several temporal parameters
(e.g., Imax, Time To Peak) that quantify the tumor’s
necrotic and hypoxic regions and are often correlated
with proliferation factor and survival outcome [3][4].
Particularly, the maximum intensity parameter often
resembles the peak vascular enhancements in highly
aggressive tumors [5].

In addition, the advent of FODs [6] in medical image
analysis has become an effective tool for capturing
multiscale structural patterns compared to integer order
derivatives. It eases the higher-order textural patterns,
considering global and local variations, thereby
demonstrating the intricate tumor biology that is deemed
essential for treatment assessment in breast cancer
patients [7][8].

Radiomics quantifies spatial and textural insights from
medical images, while FOD-based gradients capture
local intensity transitions. Their = combination
synergistically enhances feature sensitivity to
microstructural and perfusion-related heterogeneity,
thereby improving the predictive power of the imaging
biomarker in assessing treatment response. For instance,
the most recent research has formulated the GL fractional
differential gradient operator, generating a pixel-sized
mask for correlating neighboring pixels [9]. However,
FODs to enhance the medical images introduce a novel
application and necessitate further research.

With the emergence of Machine Learning approaches,
leveraging the primary spatiotemporal features as rich
biomarkers, assessing the pathological complete
response has become feasible [10]. The author from [11]
had extracted 348 radiomics features from the tumor and
peritumor regions that quantify the temporal textural
patterns and heterogeneity. Lately, the logistics
regression was trained and tested for treatment
assessment and molecular subtype classification. An
integrated kinetic and quantum-Raina’s polynomial
(QRP) feature [12] is implemented in DCE-MRI breast
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cancer classification, achieving an accuracy of 97.4 %
over 300 patients. Nevertheless, the above research
involves the feature extraction from the original images,
whereas this work proposes extracting from a
transformed image. Similarly, the deep networks play a
key role in assessing pCR and non-pCR categories by
combining clinical and pathological data [13]. For
instance, ResNetl18 [14] combined transfer learning to
assess the NAC response, with the performance of 87 %
using an SVM classifier. A multi-modal fusion for pre-
treatment and early treatment, achieving 92 % AUC. The
author performed a comparison of multimodal with
unimodal DL [13].

The proposed framework incorporates an analytical
segmentation model and a learning-based feature
extraction, selection, and classification model for
classifying patients with pCR and those with non-pCR.
The rationale for the energy-based analytical model is
due to its transparency, interpretability, and flexibility in
delineating tumor boundaries more precisely, which are
deemed essential for medical image processing.
Contrastingly, the choice of machine learning (ML)
methods for feature extraction, selection, and
classification is owing to the intricate structural
complexity posed by the tumors. Generally, ML models
are excellent at learning complex and non-linear patterns
extracted from radiomics features, which are multi-
dimensional and impact the feature space extracted from
the segmented region to assess the treatment response in
breast cancer patients. This combinatorial arrangement of
analytical and data-driven approaches in the proposed
discriminative model leverages the effectiveness of both
paradigms, which are crucial for real-time applications in
decision-making.

II. MATERIALS AND METHODS

The proposed workflow for PCR and non-PCR
classification is chronologically described in this section.

A. Dataset and Imaging Protocols
The dataset utilized for this analysis is adopted from The

Table 1. Dataset and image acquisition parameters

Parameter Name Parameter Values

Image Strength (Patients) 10
Scanner Siemens 3T
Sequence TWIST
TR (ms) 2.9
TE (ms) 6.2
Flip Angle (degree) 10
FOV (mm) 300-340
Slice Thickness (mm) 1.4
Image Dimensions 320 x 320
Slice Number 112-120
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Cancer Image Archive (TCIA) repository [15], which is
publicly available for researchers. The QIN Breast DCE-
MRI dataset consists of 10 patients, each scanned at 32
time points for two Visits (V1 and V2), forming a 4D
DCE-MRI. The major utilization of this dataset is to
evaluate breast cancer therapy after neo-adjuvant
chemotherapy. Accordingly, Table 1 presents the
imaging protocol associated with the QIN Breast DCE-
MRI dataset.

B. Lyax map Calculation

Generally, I, maps are computed as the maximum
signal intensity observed across all temporal frames of
the DCE-MRI sequence, providing a robust kinetic
descriptor of peak enhancement behavior. Such [y qy
maps are calculated by I,,,,(x,y,2) = max 1(x,y,2,t)

statistical formula where t =1,2,3,4..., N, representing a
maximum intensity at each voxel.

C. Fractional order derivative (FOD) gradient image

The calculated I,,,,, maps were processed using First-
Order Derivative (FOD) gradient transformations in the
X, Y, and Z. Accordingly, this work utilizes the
Griinwald—Letnikov (GL) fractional derivative that is
appropriate for a 3D image with each mask of size 3x3x3.
The FOD of order a in all three directions is calculated
by using the formula as shown in Eqn. (1 to 3).

DEf(x,y,2) = Z( D) fe—kyn @
D§f(x,,2) = Z( V(P fey-kn @
DEf(x,,2) = Z( V(P ferz-  ®
Herein, (%) = %, where I'(.), is a Gamma
function that generalizes the factorial binomial

coefficient. This coefficient extends the concept of
integer-order  differentiation to  fractional-order
differentiation, allowing smooth transitions between
derivative orders. The resulting weights wy, =

( 1)k ( )deﬁne the fractional derivative mask, where
a’ controls the differentiation order and ‘k’ indexes the

discrete neighborhood contribution.

D. Mask Generation

The tumor region from the breast DCE-MRI is extracted
by an analytical segmentation model, named as Bezier-
tuned Energy Functionals optimized via variational
minimax for Volumetric Breast Tumor Segmentation
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Figure 1. BEFVBTS model for tumor segmentation and mask generation.

(BEFVBTYS) [16][17]. The model proposes a convex and
non-linear energy functional engaging data fidelity and
L2 norm regularization terms. Accordingly, the model’s
cost function is shown in Eq. (4). The BEFVBTS model’s
flow diagram is depicted in Fig. 1.

E(H;a) = (1 —a)?E; + 2a(1 — a)E, + a?E;  (4)

where, I(x,y,x)is the input image, H(x,y,x) is the
Hessian of the image, ‘e’ here is the weight parameter,
‘t’ is the step size, and E,, E,,and E; are the energy
functlonals. The proposed cost function shown in Eq. (4)
is minimized iteratively until convergence is reached,
thereby obtaining the optimal ‘e’ and heterogeneous
volume, H. The post-processing steps, such as
binarization and Connected Component Analysis (CCA),
are incorporated in the model for precise extraction of the
tumor from surrounding non-tumor regions.

E. Feature Extraction

Further, the generated binary masks are superimposed on
the FOD-transformed image to extract the FOD-
transformed tumor regions. From the resulting ROI, a
total of 572 radiomics features from 2 different classes
(FOD and Log filtered image) were extracted for 2 cycles
of chemotherapy. Herein, Pyradiomics, an open source
[18], is engaged in extracting first-order, shape, and
texture features from the transformed tumor region.

F. Feature Selection

The extracted radiomics features are huge, hence, the
LASSO (Least Absolute Shrinkage and Selection
Operator) model is utilized to select the most significant
features [19]. LASSO aims to minimize the residual sum
of squares by imposing an L1 penalty term, as shown in
Eq. (5), which promotes sparse feature selection and
reduces model overfitting.

p 2
ZU, +AZI ©)

a is the weight parameter and A is the

n

2|
mo?x 2n

In Eq. (5),
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regularization parameter. A total of 1716 radiomics
features combining Visit 1, Visit 2 cycles, and A (Visit 2
- Visit 1) (572x3 = 1716) were extracted and utilized for
training the classification model.

G. Classification Models

The robust classification models, SVM and its variants,
Logistic Regression, and Random Forest, are trained and
tested by the selected optimal features. Due to the limited
patient strength, Leave-One-Out Cross-Validation
(LOOCYV) is employed to ensure robust and unbiased
performance estimation [20].

H. Performance Metrics

The metrics, such as Accuracy, F1-score, Precision, and
Recall, were computed to comprehensively assess the
classification performance of the models, as shown in
Egs. (6 -9):

TP+ TN

Accuracy = ap TN ¥ FP+ FN ®
2TP
F1 — score = m (7)
o TP
Precision = TP T FP (8)
TP

Recall = TP-}-—F]V (9)

where, TP is “True Positive,” TN is “True Negative,” FP
is “False Positive,” and FN is “False Negative.”

III. RESULTS AND DISCUSSION

A. Tumor Characterization using I, ,,, and FOD

The I,,,, maps are calculated from a 4D DCE-MRI
image, indicating tumor perfusion and vascularization in
contrast dynamics. Additionally, to enhance edge
information, the fractional order derivative of order
0=0.5 is applied to I,,,,,, maps, capturing microstructural
patterns. Fig. 2 depicts the visuals from I,,,, and FOD-
derived gradient images. The tumor in the I,,,, map
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Figure 2. Visualization of 3D I,,,,, and FOD-derived gradient maps from DCE-MRI.

shows a strong enhancement corresponding to high
vascular activity, while the FOD map emphasizes
intensity gradients that delineate tumor margins and
internal heterogeneity.

Lasso coefficients as a function of alpha

1.0 4

0.5 1
B. Feature Extraction Summary
0.0 1
Radiomics features are extracted from 2 classes, namely,
the FOD transformed image and the multi-scale LoG
version of FOD. Table 2 depicts the summary of
radiomics features extracted across various classes, the
name of the group, and the total count in each class. The

Standardized Coefficients

-1.0 1

scale ranges from 1-5mm and bin width=22, captures the s -~ Optimal alpha = 0.0282
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tumor heterogeneity at different spatial frequencies. alpha
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Table 2. Summary of extracted radiomic features Alpha vs Cross-Validation Error
2.5 : —— Mean CV Error
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C. Analysis of the LASSO Model. b)

The plot in Fig. 3(a) depicts the feature shrinkage process  Figure 3. Visualization of LASSO regularization showing (a)
as alpha increases, projecting the sparsity of the model.  Coefficient variation with o and (b) Cross-validation error for
finding optimal o value.
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The features leading to zero indicate the amount of
contribution in the classification process. The plot in Fig.
3(b) depicts the relationship between alpha and the mean
square error during cross-validation. After model tuning,
the best alpha (0.0282) chosen by the model ensures the
balance between generalization and model complexity.
The shaded blue region in Fig. 3(b) represents the
variation in the error, and the dark blue line indicates the
mean cross-validation (CV) error. The model selected 9
optimal features from 1716 combined features that are
listed in Table 3, in the format, feature name = class=>
feature type. The abbreviations for the terms used in
Table 3 are GLNN-Gray Level Non-Uniformity
Normalized, GLV-Gray Level Variance, LDE-Large
Dependence Emphasis, SAE-Small Area Emphasis,
RLNN-Run Length Non-Uniformity Normalized, and
SRLGE- Short Run Low Gray Level Emphasis. The
selected radiomics feature values are significant in
classifying pCR and non-pCR breast cancer patients.

D. Classification Results

Following a robust and reliable feature selection process,
various classifiers, SVM, Logistic regression, and
Random Forest, are trained and tested for classifying
pCR and non-pCRs. Tables 4 and 5 present the optimized
hyperparameters and performance metrics details of the
classification models. The SVM kernels were adjusted
for the regularization parameter C and kernel-specific
parameters (y and degree), while Logistic Regression and
Random Forest were tuned for convergence stability and
depth control, respectively. Each kernel performs
uniquely, linear possesses simple separability, and acts as
a baseline, while the polynomial exhibits a moderate
feature relationship. The other variant, RBF, mainly

Table 3. Feature class and category distribution of LASSO-
selected features.

Feature Name Class — Type
V1_GLNN.9 log-SIgmé-ﬁ-soz-ﬁmaD -
V1 GLV.14 log-SIgmé-ﬁ-sOZ-ﬁm-sn =
V2 SAE.5 log-SIgmé-E-sOZ-ﬁmaD -
A Minimum FOD loaded image — first-
— order
A DependenceVariance.1 10g-Sigmac-i }:]g'l\f/lllm-:"D -
A_LDE.1 log-SIgsz }:gﬁlm-m —
A RLNN.1 log-sTgmé-ﬁ I—{()L-ﬁm-m N
A _SRLGE.1 log-SIgmé-Ll I—{(}:ﬁmﬁD -
A ZonePercentage.5 log'Sigmé-EI-g:ﬁmﬁD —
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captures the intricate and non-linear feature relationship
among the extracted textural information, thereby
facilitating an unbiased performance analysis in the
classification process. The above claim is depicted in
Table 5, where all classifiers demonstrated strong
discriminative performance under Leave-One-Out
Cross-Validation  (LOOCV).  Furthermore, the
permutation-based significance analysis (p_perm less
than 0.05) validates that the observed classification
performance is statistically meaningful and not due to
random chance, as shown in Fig. 4 (b). Similarly, Table
4 summarizes the key configurations and performance
insights of various classification models used in the
evaluation, along with class balance handling and
optimization settings.

The statistical test shows a p-value of 0.0370, which is
statistically significant. Similarly, there is a necessity to
check feature importance in the classification model,
demonstrating the high significance of difference
features from visit 1 and visit 2, as shown in Fig. 5.
However, the high feature importance of the models
relies on the Short Run Low Gray Level Emphasis
feature from the log sigma class and GLRLM type. The
ROC curves shown in Fig. 4 (a) demonstrate near-perfect
classification  performance, with AUC values
approaching 1.0 across all classification models. While
such high AUC scores indicate strong separability
between pCR and non-pCR feature distributions, they
may also suggest potential model overfitting, particularly
given the limited dataset size.

In summary, the proposed FOD-based radiomics model

improves clinical interpretability by establishing a
stronger association between the extracted radiomic
features and the physiological parameters of DCE-MRI,
particularly the I,,,, parameter, which reflects tumor
vascular and perfusion dynamics.

IV. SUMMARY

This study demonstrates the effective classification of
patients with pCR and non-pCR using temporal maps and
their corresponding fractional-order derivative (FOD)
representations. The incorporation of FODs enhances
subtle textural and kinetic contrasts within DCE-MRI,
capturing underlying physiological heterogeneity that
conventional intensity maps may overlook. Radiomic
features extracted from these transformed images served
as informative and biologically relevant biomarkers,
enabling the development of a robust physiologically
interpretable classification model. Future work will
validate the model on larger multi-institutional cohorts,
apply harmonization to reduce scanner variability, and
improve generalizability through multi-parametric
integration to enable clinical translation and personalized
treatment planning.
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Table 4. Summary of tuned hyperparameters, support vectors, and model characteristics.

Model
Linear SVM
RBF SVM
Polynomial SVM
Logistic Regression
Random Forest

Key Hyperparameters Support Vectors Additional Insights
C = 1.0, kernel = linear 5 Support vectors per class: [3, 2]
C=10,y=0.1 9 Support vectors per class: [6, 3]
C =1.0, degree = 3, y = scale 6 Support vectors per class: [4, 2]

C=1.0, penalty = L2 —
n_estimators = 200, max_depth = 10 -

max_iter = 1000
class weight = balanced

Table 5. Comparative performance summary of classification models (LOOCV, n=10)

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Prerm
. 984 +1.8 972+2.6 96.8 £2.9 97.3+£25
AT (94.1-100.0) (93.0-100.0) (91.5-100.0) (92.4-100.0) s
. 97.5+24 96.7 +2.8 97.1+2.5 96.9 +2.7
Polynomial SVM (91.3-100.0) (91.0-100.0) (92.0-100.0) (91.2-100.0) 0.013
99.2+1.1 98.5+1.6 99.1+0.9 98.6+1.4
LETE AL (97.2-100.0) (95.1-100.0) (97.5-100.0) (95.3-100.0) DAY
Logistic Reeression 99.3+1.0 99.0+1.2 99.1+£0.8 98.8+ 1.5 0.029
g g (97.0-100.0) (96.5-100.0) (97.3-100.0) (95.4-100.0) :
Random Forest 99.4+0.9 992+ 1.0 993+ 1.1 99.1+1.0 0.011
(97.4-100.0) (97.0-100.0) (97.2-100.0) (97.0-100.0) :
ROC curves (LOOCYV) Permutation Test: AUC Distribution
101 7 3004 — = True AUC = 1.000 !
//,//’ :
05 | // 250 :
& e .. 200 i
2 064 e 2 I
£ g I
z Y '
Z // £ 1501 :
= 0.4 /// :
. 100 !
029 /’/ —— Linear SVM (AUC=1.00) 1
7 —— RBF SVM (AUC=1.00) 50 1
/z’ —— Polynomial SVM (AUC=1.00)
e —— Logistic Regression (AUC=1.00)
0.0 1 —— Random Forest (AUC=1.00) 0 | | ! | |
00 0.2 04 06 08 10 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate AUC
@) ®

Figure 4. (a) Comparison of ROC curves for multiple classifiers. (b) Model robustness check using a permutation test.
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Figure 5. Feature importance of LASSO-selected features.
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