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BACKGROUND

The premature infant is prone to respiratory issues due to poor development of the regulatory system as
well as mechanical issues with the lung itself. These problems often lead to apnea, the cessation of
breathing. Until the respiratory system develops, the infant must be kept in critical care.

The release from the clinic is dependent upon reduction in the apneas presented by the infant. Methods for
the analysis of breathing dynamics provide a quantitative measure of the breathing dynamics and are useful
in evaluating the path of respiratory development. Release to home is dependent upon reductions in the
number of apneas presented by the infant. While in the clinic the infant’s lung volume can be noninvasively
monitored via optical or electrical impedance methods [1].

Techniques used to analyze neonatal breathing patterns offer valuable quantitative insight into how the
infant’s respiratory system develops over time. By examining the structure and variability of the breathing
signal, clinicians can assess whether the infant’s respiratory control is maturing properly.

Most apnea detection methods essentially identify the loss of tidal volume as detected by chest impedance
or actual mouth airflow. This approach reveals the past episodes of apnea. It is preferable to have detection
methods that have some predictability of apnea or at least the prevalence of apnea in a particular infant [2].
Additional monitoring of abdominal motion may increase the accuracy of apnea detection [3].

Alternatively, others have chosen to develop algorithms to process breathing time series and attempt to
detect apneas [4]. But since the respiratory regulation system processes nonlinear elements, it is suggested
that nonlinear data analysis methods may provide better prediction of apnea events than by using simple
lung volume time series. Nonlinear analyses have been applied to ECG data in this respect and likewise to
asthmatic breathing [5].

In this research, sample data is obtained from normal infant breathing and an infant that presents apneas.
The measurements that will be applied are cross-correlation, delay mapping, Fourier analysis, and the
fractal dimensions described by Drzewiecki [7].

The results of each of these approaches will be compared for the ability to detect the normal versus apnea
patient. Common findings among all measures will be discussed. Lastly, we discuss any physiological
significance of these results.

The respiratory patterns of premature infants exhibit considerable variability that ranges from regular
respiration to periodic breathing with cyclic distribution of short apneic events, and to prolonged apneas.
Using a noninvasive impedance pneumogram, tidal volume was noninvasively monitored in a healthy
preterm infant in the intensive care nursery (ICN). The volume time series was then analyzed using different
nonlinear methods. The response of each nonlinear method was studied during the observed respiratory
patterns, and during normal respiration. The resulting analyses are compared for their relative ability to
detect apnea events.
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METHODS
A. Experimental Data

Breathing data was obtained from a male infant in the NICU at Robert Wood Johnson Hospital, New
Brunswick, NJ. In the intensive care unit, a male infant, gestational age of 35 weeks, post-conceptional age
of 37 weeks, and a body weight of 1990 grams

was monitored noninVaSiVely Wlth an electrical S5 Normal Infant Breathing Graph (4 Samples Every 1 Second)
impedance pneumogram [2]. (Hewlett Packard, 15
Model 78801), and recorded on FM video tape e |1

(Vetter, model 4000A) for processing later.
Subject recording sessions were for one hour. The

Tidal Volume

FM recorder data was digitized (Data translation, o 1] |
analog to digital converter) and stored on digital =
drive disc via a personal computer (PC) system. = 0 20 20 a0 50 s

Time (Seconds)

Five-minute episodes were digitized at a sampling
rate of 4 Hz that illustrate either normal or apneic
breathing in the single infant. The above
procedures were reviewed by the local committee
for the protection of Human Subjects in Research
and informed consent was obtained from the
infant’s parent. To correct any electrode drift
during the recording, the final records were high Lol itk
pass filtered at 0.6 Hz. Additionally, electrode o |

Figure 1. Time segment showing normal respiration for the
neonate subject, V(t), obtained by impedance pneumogram

Apnea Infant Breathing Graph (4 Samples Every 1 Second)
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offset level was corrected by calculating the mean o

of the entire data series. Then, the mean was e L

subtracted from the data series. Both datasets, ’ b ® e (seconds)” " °
normal and apnea breathing, were preprocessed  Figure 2. Time segment illustrating periods of apnea breathing.
identically using MATLAB. Apnea may be observed as time segments where tidal volume is

diminished for 10 to 20 seconds each time

B. Data Analysis

The breathing volume time series was analyzed via autocorrelation, delay mapping, Fourier, and fractal
analysis, each during episodes of normal and apnea breathing.

1. Autocorrelation

To initially screen the data for repeated patterns, the autocorrelation function of MATLAB was applied to
the data series. This was performed on normal and apnea breathing.

2. Delay mapping

To further examine repeated time patterns for dynamic structure, delay mapping was performed to provide
the Poincare plots. Delayed time series was computed in MATLAB by applying the time shift function in

Eq. (1).
V(r)delay =V(Et+r) (D

Then, the impedance pneumograph volumes V(t) are plotted against the shifted volumes V(t+r) where r is
the amount of time shift. The value of r was chosen initially using the times of maximum correlation. After
viewing the delay plot for this starting value, r was further adjusted to examine the time series for dynamic
relationship and structure. Shift times that resulted in a random scatter of points were assumed to possess
no dynamic relationship and not examined further. For most plots an ellipse structure is visually evident.
For the ellipse structure, an ellipse was statistically fit to the delay plot. This was accomplished by using
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the MATLAB co-variance function. The eigen vectors were then determined to find the major and minor
axis of the ellipse along with its angle of orientation. The calculated ellipse was plotted on each delay plot.

3. Fourier Analysis

Each time series was further analyzed using the MATLAB Fast Fourier Transform, FFT. Results were
provided as magnitude — frequency plots.

4. Fractal Dimension

Autocorrelation for Normal

In consideration that the breathing patterns might -
be self-similar, the fractal dimension of the time
series was calculated. The D-value was obtained 04,

by finding the log magnitude — log frequency 5 "Z -
spectrum slope [7]. LIl
RESULTS |
1. Subject breathing time series. e b N e * *
Figure 1 provides the subject breathing prior to Figure 3. Autocorrelation analysis for normal breathing
any analysis. This recording illustrates a segment
of normal respiration.
Next, a segment of data is shown in figure 2 that .
illustrates a period of apnea breathing for the 0s
same subject. 5%,
T‘; 021
. . g o 3 = g
2. Correlation analysis 2 0z
The autocorrelation of the normal and apnea o
breathing time series was computed via 08, = = = 5 = =
MATLAB. Figure 3 and figure 4 provide the e feecens®)
autocorrelation for the normal and apnea Figure 4. Autocorrelation analysis for apnea breathing
respectively.
3. Delay mapplng - Ellipse Normal Breathing Plot (v,One, v‘fzﬂne)
Delay maps were created by applying Eq. (1). 100 ——
The delay time was chosen such that the structure 50 e :
could be observed in the plot. If the plot yielded g . ' _ —
random points, it was concluded that there is no : N I
relationship present. o| & 1P WE '
An initial delay of r = 16 seconds was chosen. For i
normal breathing this resulted in map of figure 5. b i i wt)

Figure 5. Delay map for normal breathing. Ellipse was placed to

In the regular breathing map, we find that normal
g g map indicate points of normal breathing as outside of the ellipse

breathing cycles are points that remain outside of
the ellipse structure. These points are mostly
those of large volumes and large delayed volumes. In comparison, the apnea breathing map is shown in
figure 6.

In this case, it can be seen that any volume yields a future volume as much reduced. The ellipse helps to
indicate the current breathing volume that yields a much-reduced volume, that is the tendency towards
smaller breathing cycles. An additional time delay of r = 4 seconds was chosen. This is shown in figure 7.
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Referring to figure 7, it can be seen that the Eilipse Apnea Breathing Plotiy,, vk)
breathing points are scattered throughout the plane . = i Eipee
of the mapping. In this case, it is more difficult to

place an ellipse of normal breathing due to the
random pattern of points.

100

v(t+k)

50 L

4. Fourier Analysis - . = . N

The FFT of the normal and apnea data series was 1905 o g o zu w0 e
. vt}
computed and displayed as a power versus

frequency. The result for normal breathing is Figure 6. Delay map of an apnea breathing event. The ellipse
shown in ﬁgure 8 denotes points of the apnea as inside the ellipse

The FFT was further applied to the apnea data

series that resulted in the power spectrum of figure 200 S N
9. It is apparent that the secondary peak in power 150 ol Bl
of normal breathing disappears in the apnea data. 100 .

5. Fractal Dimension ® 5

The FFT power spectrum (Figures 8 and 9) were
plotted on a log-log scale for which the slope may
be used to find the fractal dimension of data [7]. "o w0 s 0 s w0 0w
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The dimension values were (between 1 and 2) for Figure 7. Delay map of normal breathing for 4 second delay
normal infant breathing, however, apnea segments
still returned values slightly above 2 (ranging from
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The correlation study revealed large correlations at
short time shifts of less than 4 seconds and at larger
16 second shifts.

Pawer/Frequency (dBHz)
2 o 8

a

The short periods correspond breath to breath

(-]

normal breathing cycles. While the longer =5 o5 : Vs 2
intervals correspond with longer processes Freaueney
associated with the regulation of breathing means Figure 8. Power spectrum for normal breathing

of metabolic mechanisms.

In the case of an apnea interval, it was found that large correlations disappear. Physiologically this means
that the regulatory reflex systems have become inoperative or weak. Of particular concern is that the breath-
to-breath correlations have been reduced to less than half of normal breathing. Longer time shift correlations
of 10 to 20 seconds are typically low and remain low during an apnea event. Referring to the delay map
plots; the results are consistent with the correlation analysis. It is shown that the data points are randomly
scattered over the plane for long shifts due to the fact that correlations are very low. In the case of normal
breathing, the volumes are mostly large and circulate clockwise around the drawn ellipse. The motion of
the points is not shown here and only a fixed time is presented.

Turning to the apnea delay plot, it is evident that most volumes tend towards reduced volume. This is also
evident from the flattening of the ellipse. That is all current breath (points move toward diminished tidal
volumes). In this case, it can be noted that the breathing points line up within a flattened ellipse as opposed
to a random distribution of points. We also see that the normal breathing larger outside elliptical motion of
points has mostly disappeared. Generally, it was observed that apnea breathing resulted in more points that
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lie within the drawn ellipse. Moreover, following e
the points outside of the ellipse, they begin to i ‘ Txoraras :
move inward provided an early indication of a ‘
possible apnea event. This suggests that a method
of following the trajectory of points may be
developed that indicates a possible apnea.
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=

The third analysis applied to the breathing data
was Fourier analysis. The power spectrum for
normal breathing showed two distinct peaks in
magnitude, one at 0.7 Hz and a second at 1.5 Hz.
During apnea breathing, the 1.5 Hz peak clearly
becomes diminished. Instead, there becomes a
broad increase in high frequencies. This is consistent with the work of [8] who finds that the high frequency
breathing is evident prior to an apnea. It is also consistent with a nonlinear system where frequency doubling
is a characteristic. Unfortunately, in the breathing system the period doubling appears to be a path that leads
to a stable state that is breathing cessation.

—

& o

(-}

0.5 1 1.5 2
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Figure 9. Power spectrum of apnea breathing

The fractal analysis of the breathing data was accomplished by deriving from the Fourier spectrum as a log-
log function. Fractal values increased for the apnea data. This indicates an increase in the self-similarity of
the data has occurred. Other studies have also revealed that higher values of fractal dimension coincide with
diseased states [6].

Overall, it is encouraging that the nonlinear analysis of the individual patient’s data was consistent from
method to method. It is then encouraging to pursue these kinds of nonlinear studies in additional patients
so to further confirm these results.

CONCLUSION

A single premature infant case breathing time series was studied via different nonlinear analysis methods.
Although each method provided different nonlinear information, the results were examined relative to the
specific information that the various methods provided.

Delay plot studies were encouraging in that they could potentially offer a more reliable way of detecting
and predicting apnea as compared with tidal volume alone. Moreover, the delay mappings provide some
insight into the possible modeling of the early infant breathing regulatory system. For example, the delay
plots revealed two specific breathing states that are easily observed: the regular breathing and loss of tidal
volume. Future use of this method may be used to develop breathing models that represent the early infant
breathing patterns.

Lastly, the Fourier analysis results were found to provide a clear signal for the undeveloped respiratory
system indicated as a loss of energy within a specific frequency band. The Fourier spectrum as well as the
delay maps provide the clearest and most reliable indication of breathing abnormality of this premature
infant study. Further application of these approaches should provide a useful path to explore.
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Abstract Autocorrelation Delay Mapping Discussion

» Premature infants experience apnea due to
underdeveloped respiratory control.

This study utilizes nonlinear time-series analysis to
differentiate between normal and apnea breathing.

+ Impedance pneumogram signals were analyzed
using autocorrelation, delay mapping with Poincare
plots, Fourier analysis, and fractal dimension
methods.

« Each non-linear analysis technique revealed
patterns correlating to breathing irregularities.

+ Goal: assess whether nonlinear analysis can predict
or better characterize apnea events.

Overview of the Analysis Methods

< Noninvasive impedance pneumogram data collected
from infant in NICU

* Recorded data digitized using MATLAB

+ Preprocessing for normal and apnea breathing
« High Pass Filter to remove drift (0.6 Hz)
* Mean Subtraction to remove offset

Normal Infant Breathing Graph (4 Samples Every 1 Second)

(] 10 20 30 10 50 w0
Time (Seconds)

Apnoa Infant Broathing Graph (4 Samples Every 1 Second)

w0 %0 e

Breathing Signal Data Analysis

« Autocorrelation: To identify repeating breathing
patterns

« Delay Mapping (Poincare Plot): Visualize time delay

Fourier Transform: Evaluate frequency domain
changes

Fractal Dimension: Quantify similarity between
breathing patterns

« Autocorrelation collected on the raw data using
MATLAB’s autocorr function

+ Normal breathing shows strong correlations at short
lag times and secondary peaks around 16 seconds.

Autocorrelation for Normal

Autocorrelation

o o 3 3 w0 50 o
Lag (seconds)
+ Apnea breathing experiences a flatter
autocorrelation which indicates diminished
breathing cycle.

Autocorrelation for Apnea

Autocorrelation

(4 10 20

30 40
Lag (seconds)

Fourier Transform

« Power spectra of raw data calculated with FFT to
show two main peaks for normal breathing (0.7 Hz
and 1.5Hz)

Weich PSD - Normal Breathing
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+ Apnea breathing plot where secondary peak at 1.5
Hz disappears and energy shifts to higher
frequencies.

_Welch PSD - Apnea Breathing _
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« Delay plots visualize V(t) versus V(t + r), where ris a
time shift.

+ Normal breathing forms distinct elliptical trajectories
to represent stable rhythmic motion.

+ Apnea produces ellipses that indicate reduced
variability.

« These transitions can be used to potentially spot an
approaching apnea

Delay map for normal breathing. Ellipse was placed
to indicate points of normal breathing as outside of
the ellipse.

Ellipse Normal Breathing Plot (v,One, v,kOne)
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« Delay map of normal breathing for 4 second delay.

Ellipse Normal Breathing Plot (v,One, v,kOne)

+ Data Points
—Fitted Ellpse
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+ Delay map of an apnea breathing event. The ellipse
denotes points of the apnea as inside the ellipse.

Ellipse Apnea Breathing Plot(v,, v,K)

+ Data Points
—Fitted Ellipse

v(tk)
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Fractal Dimension

+ Derived from log-log slope of the power spectrum.
* Normal breathing: D=1 -2

+ Apnea breathing: D~2-2.5

Increased fractal dimension correlates to unstable
breathing patterns

* Normal breathing shows strong short-term
correlations and distinct elliptical delay plots

« During apnea, correlations drop, and ellipses flatten.

« FFTreveals disappearance of 1.5 Hz peak in apnea
breathing compared to normal breathing.

« Fractal dimension rises for apnea breathing which
indicates greater instability and complexity

+ Consistent patterns suggest these nonlinear
methods can characterize early signs of apnea.

Conclusions

* Nonlinear analysis separates normal breathing from
apnea breathing

Delay mapping has the potential to enable early apnea
prediction

Fourier and Fractal metrics highlight reduced energy
and increased complexity.

Limitation: Analysis was limited to one infant dataset
(normal and apnea).

Future work: Apply these methods to a larger infant
sample group to validate predictive apnea indicators.

Summary

« Nonlinear testing analysis can effectively
characterize neonatal breathing dynamics.

+ Delay mapping and FFT show the clearest separation
between normal and apnea states.

« These methods can potentially support noninvasive
monitoring and help predict apnea events

* Further testing can be done by including more
breathing data from normal and apnea breathing
infants.
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