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Imagined speech is defined as the internal simulation of speaking without producing audible sound [1].
Brain—computer interfaces (BCls) that decode imagined speech into text promise a communication channel
for individuals with severe speech impairments. While most efforts have targeted word or phoneme level
classification using electroencephalography (EEG), magnetoencephalography (MEG) and functional near
infrared spectroscopy (fNIRS) as modalities, the capacity to decode continuous, coherent, and contextually
relevant imagined speech remains as an active area of research. This review examines literatures that
focuses on neuro-cognitive basis of imagined speech, non-invasive neural acquisition modalities, surveys
signal processing and decoding methodologies, and scrutinize fluency-specific challenges and metrics,
outlining benchmarks, current limitations. While prior reviews have addressed word-level and phoneme-
level classification [3, 4], in this review we focus on fluency-specific challenges.

This review synthesizes research on non-invasive imagined speech decoding with emphasis on fluency.
The search terms such as "imagined speech," "imagined speech BCL," "EEG/MEG/fNIRS decoding," and
"continuous speech decoding” were used to gather the literature. Papers emphasizing recent advances in
deep learning architectures, transfer learning, and language model integration were commonly used in this
process [3, 4]. Current findings are drawn from 109 papers, organized into five thematic sections. The
number of papers reviewed, and their corresponding focus areas are presented in Figure 1.

Analysis of the neurocognitive foundations literature reveals that imagined speech is a motor-grounded,
hierarchically organized cognitive process. The phenomenon represents a truncated form of overt speech,
sharing similar neural pathways while lacking the final articulatory execution phase. The interdependence
of motor/articulatory and auditory-perceptual components demonstrate that imagined speech is not merely
"silent speech" but a distinct phenomenon whose multidimensional variability, temporal processing
constraints, and individual differences in strategy have critical implications for imagined speech BCI
development. Functional neuroimaging and neurolinguistics research highlight a core network for imagined
speech involving the inferior frontal gyrus (Broca’s area), supplementary motor area, and superior temporal
gyrus, interacting via the phonological loop to support lexical access and syntax generation. Fluent
imagined speech requires rapid lexical retrieval, seamless syntax assembly, and dynamic working memory
updates to manage serial order and

semantic coherence. Break-downs in any
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accuracies for small vocabularies (3—5 words) between 60—95% using feature extraction and deep learning
[3]. However, EEG suffers from low spatial resolution and high susceptibility to noise and artifacts,
impairing continuous decoding of fluent speech. MEG captures brain activity with millisecond temporal
precision comparable to EEG, while providing better spatial resolution for localizing neural sources.
However, MEG systems require magnetically shielded rooms and expensive sensor arrays, limiting
accessibility compared to EEG, and generate large data volumes that complicate real-time processing [4].
Despite these constraints, subject-independent MEG decoding (where models generalize to new users
without retraining) has achieved accuracies approaching those of subject-dependent systems through
domain adaptation and curriculum learning [5], demonstrating MEG's potential for practical, fluent BCIs
for speech decoding. fNIRS offers greater spatial resolution in comparison with EEG but limited by latency
that constrains real-time fluency [6].

Across 31 studies in Signal Acquisition and Processing, it is noted that the focus is clearly on improving
the quality of the data in non-invasive methods. The typical steps followed are signal collection,
preprocessing, and artifact reduction. Independent component analysis and related techniques are
commonly used for artifact removal. This is supported by regression and adaptive filters when reference
signals are available. Building on these preprocessing techniques, recent work emphasizes the design of
effective feature representations for fluent decoding. Traditional approaches segment signals into fixed
windows, extracting spectral features such as power spectral density, band power. Sliding windows
combined with deep learning methods such as Convolutional Neural Networks and Bidirectional Long
Short-Term Memory networks are used in the recent approaches to capture temporal dependencies [7].
Transfer learning strategies, further refine feature extraction by leveraging simpler binary tasks (imagined
speech vs. rest) to improve multi-class decoding performance [8].

Most of the papers that discuss computational architectures are focused on deep learning for EEG-based
BCIs. CNNs and RNNs outperform traditional methods but face challenges in data scale and
interpretability. In imagined-speech decoding, CNN variants and transformer-based models such as
EEGformer [9] achieve strong multiclass performance by modeling temporal and frequency dependencies.
Hybrid architectures like CTNet enhance generalization and efficiency, while transfer learning and cross-
subject adaptation address data scarcity.

Integrating pre-trained NLP models and RNN-based models, enables contextual smoothing in EEG-to-text
decoding. Techniques like beam search and probabilistic decoding can re-rank output hypotheses, while
GPT-style autocorrection adjusts word sequences for coherence. Post processing pipelines leveraging these
models typically include constrained re-ranking, confidence threshold calibration, and strategies to ground
outputs and mitigate hallucinations. Such hybrid approaches can transform word-level predictions into
coherent sentence strings. A summary of these post-processing techniques is shown in Figure 2.
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of fluency, subjective assessments such as user satisfaction, perceived naturalness etc., complement
objective metrics but lack standardization. Developing benchmark tasks and combined fluency indices is
critical for rigorous evaluation. Public EEG datasets such as the Chinese Imagined Speech Corpus (Chisco)
with more than 20,000 sentences of high-density EEG recordings of imagined speech from healthy adults
facilitate large-scale model training [10].

Decoding of imagined speech using non-invasive BCIs remains a challenge. Progress from word-level
classification to continuous text generation requires high quality neural recording, advanced decoding
architectures, and powerful language models, supported by standardized datasets and fluency-focused
evaluation frameworks. Authors are creating a standard dataset while reviewing the state of the art and
updates to this review, will be available at https://github.com/cnerlab/brain-to-text/. We acknowledge the
Vision Group of Science and Technology, Karnataka, India, for supporting this review by providing
facilities under GRD1116.
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Abstract

 Imagined speech is the internal simulation of speaking without
producing audible sound, offering a promising communication channel
for individuals with severe speech impairments through brain-computer
interfaces (BCls).

« Current approaches predominantly target word or phoneme level
classification using EEG, MEG, and fNIRS modalities, achieving 60-95%
accuracy for small vocabularies (3-5 words) .

 Research gap: Continuous, coherent, and contextually relevant imagined
speech decoding remains challenging, particularly achieving fluency.

* Review scope: This paper synthesizes 109 research articles across
neurocognitive foundations, non-invasive neural modalities, signal
processing methodologies, computational architectures, and fluency-
specific evaluation metrics.

 Key focus: This work emphasizes fluency-specific challenges including
lexical continuity, syntactic coherence, and real-time decoding
constraints.

Background and Methods

 Imagined speech is a motor-grounded, hierarchically organized
cognitive process.

« Core brain regions involved in silent speech decoding include the
inferior frontal gyrus (Broca's area), supplementary motor area, and
superior temporal gyrus which interact via the phonological loop to
support imagined speech production.

* Fluency requirements include rapid lexical retrieval, seamless syntax
assembly, and dynamic working memory updates are essential for
continuous, coherent imagined speech generation.

 Papers emphasizing recent advances in deep learning architectures,
transfer learning, and language model integration were commonly used
in this process.

« Current findings are drawn from 109 papers, organized into five thematic
sections. The number of papers reviewed, and their corresponding focus
areas are presented in the figure below.
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+ 13 studies reviewed on non-invasive neural decoding using EEG, MEG,
and fNIRS modalities.

« EEG predominates due to superior temporal resolution, portability, and
cost-effectiveness compared to MEG (expensive, requires shielded
rooms) and fNIRS (latency constraints).

Signal Processing (31 studies reviewed):

* Pre-processing pipeline: Signal collection > Artifact reduction using ICA
> Regression and adaptive filters.

 Feature extraction: Traditional approaches use fixed windows with
spectral features (power spectral density, band power).

« Modern approaches: Sliding windows with deep learning to capture
temporal dependencies.

Classification and Decoding:

« Traditional methods: 60-95% accuracy for small vocabularies (3-5 words)
using spectral features.

 Deep Ilearning architectures: CNNs, Bidirectional LSTMs, and

transformers (EEGformer) for multiclass performance.

 Hybrid approaches: CTNet combines CNN-transformer strengths.
Transfer learning leverages binary tasks to improve multi-class
decoding.

Post-Processing:

* NLP model integration: Pre-trained language models and RNNs enable
contextual smoothing.

 Techniques: Beam search, probabilistic decoding, GPT-style
autocorrection for coherent sentence generation.
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Performance and Evaluation

Current Classification Metrics:

« Small vocabulary tasks (3-5 words): 60-95% accuracy using feature
extraction and deep learning methods.

« Subject-independent MEG decoding approaches subject-dependent
accuracy levels through domain adaptation and curriculum learning.

Fluency Metrics:

 Words per Minute (WPM) - measures decoding speed.

« Sentence Coherence Score - evaluates syntactic and semantic
continuity.

« Latency - real-time response delay.

* Perplexity - language model confidence in predictions.

Evaluation Challenges:

 Subjective assessments (user satisfaction, perceived naturalness)
complement objective metrics but lack standardization across studies.

* Developing benchmark tasks and combined fluency indices is critical for
rigorous evaluation.

Benchmark Datasets:

 Chinese Imagined Speech Corpus (Chisco): 20,000+ sentences of high-
density EEG recordings from healthy adults.

* Facilitates large-scale model training and standardized evaluation.

Current Limitations:

* Most systems confined to word-level or phoneme-level classification.

 Continuous, coherent, and contextually relevant speech decoding
remains challenging.

« Gap between isolated word accuracy and fluent sentence generation.
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Traditional SVM, LDA, Random Used for simpler, low-vocabulary
Machine Forests, KNN etc classification tasks.

Learning

Deep Learning EEGNet, CNNs, BiDiR Strong multiclass performance by
(Standard and LSTM,, Transformer modeling temporal and frequency
Advanced) Architecture, GAN dependencies.

Language Models
/ Post-Processing

Large Language Models,
Connection Temporal,
Word2Vec Integration,
GPT-style autocorrection.

Address fluency challenges,
Helping transform word-level
predictions into coherent sentence
strings.

Hybrid/Multi
Approaches

EEG-fNIRS Fusion, Multi
View Learning

Enhance generalization and
efficiency

Summary

 Current achievement: Non-invasive BCls using EEG achieve 60-95%
accuracy for small vocabulary (3-5 words) imagined speech
classification through deep learning and hybrid architectures.

« Critical gap: Transitioning from isolated word-level classification to
continuous, fluent, and contextually coherent imagined speech
decoding remains the primary challenge.

 Requirements for fluency: Progress demands integration of high-quality
neural recording, advanced decoding architectures (CNNs,
transformers), powerful language models for post-processing, and
standardized evaluation frameworks.

« Evaluation needs: Standardized benchmark datasets (like Chisco with
20,000+ sentences) and combined fluency metrics (WPM, coherence,
latency, perplexity) are critical for rigorous assessment.

* Future direction: Decoding imagined speech using non-invasive BCls
requires continued advancement in signal processing, cross-subject
generalization, real-time processing optimization, and NLP integration to
enable practical communication systems.

« Dataset and future updates will be available at:
github.com/cnerlab/brain-to-text
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