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Imagined speech is defined as the internal simulation of speaking without producing audible sound [1]. 

Brain–computer interfaces (BCIs) that decode imagined speech into text promise a communication channel 

for individuals with severe speech impairments. While most efforts have targeted word or phoneme level 

classification using electroencephalography (EEG), magnetoencephalography (MEG) and functional near 

infrared spectroscopy (fNIRS) as modalities, the capacity to decode continuous, coherent, and contextually 

relevant imagined speech remains as an active area of research. This review examines literatures that 

focuses on neuro-cognitive basis of imagined speech, non-invasive neural acquisition modalities, surveys 

signal processing and decoding methodologies, and scrutinize fluency-specific challenges and metrics, 

outlining benchmarks, current limitations. While prior reviews have addressed word-level and phoneme-

level classification [3, 4], in this review we focus on fluency-specific challenges. 

This review synthesizes research on non-invasive imagined speech decoding with emphasis on fluency. 

The search terms such as "imagined speech," "imagined speech BCI," "EEG/MEG/fNIRS decoding," and 

"continuous speech decoding” were used to gather the literature. Papers emphasizing recent advances in 

deep learning architectures, transfer learning, and language model integration were commonly used in this 

process [3, 4]. Current findings are drawn from 109 papers, organized into five thematic sections. The 

number of papers reviewed, and their corresponding focus areas are presented in Figure 1.  

Analysis of the neurocognitive foundations literature reveals that imagined speech is a motor-grounded, 

hierarchically organized cognitive process. The phenomenon represents a truncated form of overt speech, 

sharing similar neural pathways while lacking the final articulatory execution phase. The interdependence 

of motor/articulatory and auditory-perceptual components demonstrate that imagined speech is not merely 

"silent speech" but a distinct phenomenon whose multidimensional variability, temporal processing 

constraints, and individual differences in strategy have critical implications for imagined speech BCI 

development. Functional neuroimaging and neurolinguistics research highlight a core network for imagined 

speech involving the inferior frontal gyrus (Broca’s area), supplementary motor area, and superior temporal 

gyrus, interacting via the phonological loop to support lexical access and syntax generation. Fluent 

imagined speech requires rapid lexical retrieval, seamless syntax assembly, and dynamic working memory 

updates to manage serial order and 

semantic coherence. Break-downs in any 

component can manifest as hesitations or 

incoherent output [2].  

We reviewed 13 research articles on non-

invasive neural decoding. These studies 

predominantly EEG or MEG often in 

combination with fNIRS, to classify 

imagined phonemic or word level speech 

commands. The superior temporal 

resolution of an EEG makes it the 

predominant modality for imagined speech 

BCIs. Reviews report classification 
 

Figure 1. Overview of the literature based on focus area 
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accuracies for small vocabularies (3–5 words) between 60–95% using feature extraction and deep learning 

[3]. However, EEG suffers from low spatial resolution and high susceptibility to noise and artifacts, 

impairing continuous decoding of fluent speech. MEG captures brain activity with millisecond temporal 

precision comparable to EEG, while providing better spatial resolution for localizing neural sources. 

However, MEG systems require magnetically shielded rooms and expensive sensor arrays, limiting 

accessibility compared to EEG, and generate large data volumes that complicate real-time processing [4]. 

Despite these constraints, subject-independent MEG decoding (where models generalize to new users 

without retraining) has achieved accuracies approaching those of subject-dependent systems through 

domain adaptation and curriculum learning [5], demonstrating MEG's potential for practical, fluent BCIs 

for speech decoding. fNIRS offers greater spatial resolution in comparison with EEG but limited by latency 

that constrains real-time fluency [6].  

Across 31 studies in Signal Acquisition and Processing, it is noted that the focus is clearly on improving 

the quality of the data in non-invasive methods. The typical steps followed are signal collection, 

preprocessing, and artifact reduction. Independent component analysis and related techniques are 

commonly used for artifact removal. This is supported by regression and adaptive filters when reference 

signals are available. Building on these preprocessing techniques, recent work emphasizes the design of 

effective feature representations for fluent decoding. Traditional approaches segment signals into fixed 

windows, extracting spectral features such as power spectral density, band power. Sliding windows 

combined with deep learning methods such as Convolutional Neural Networks and Bidirectional Long 

Short-Term Memory networks are used in the recent approaches to capture temporal dependencies [7]. 

Transfer learning strategies, further refine feature extraction by leveraging simpler binary tasks (imagined 

speech vs. rest) to improve multi-class decoding performance [8]. 

Most of the papers that discuss computational architectures are focused on deep learning for EEG-based 

BCIs. CNNs and RNNs outperform traditional methods but face challenges in data scale and 

interpretability. In imagined-speech decoding, CNN variants and transformer-based models such as 

EEGformer [9] achieve strong multiclass performance by modeling temporal and frequency dependencies. 

Hybrid architectures like CTNet enhance generalization and efficiency, while transfer learning and cross-

subject adaptation address data scarcity.  

Integrating pre-trained NLP models and RNN-based models, enables contextual smoothing in EEG-to-text 

decoding. Techniques like beam search and probabilistic decoding can re-rank output hypotheses, while 

GPT-style autocorrection adjusts word sequences for coherence. Post processing pipelines leveraging these 

models typically include constrained re-ranking, confidence threshold calibration, and strategies to ground 

outputs and mitigate hallucinations. Such hybrid approaches can transform word-level predictions into 

coherent sentence strings. A summary of these post-processing techniques is shown in Figure 2. 

Lexical continuity and 

syntactic coherence 

define fluency in BCI 

outputs. Key matrices 

that are used to 

measure fluency are 

Words per Minute 

(WPM), Sentence 

Coherence Score, 

Latency and 

Perplexity. While 

these matrices provide 

quantitative measures 

 
Figure 2. Machine learning and Deep Learning Approaches. 
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of fluency, subjective assessments such as user satisfaction, perceived naturalness etc., complement 

objective metrics but lack standardization. Developing benchmark tasks and combined fluency indices is 

critical for rigorous evaluation. Public EEG datasets such as the Chinese Imagined Speech Corpus (Chisco) 

with more than 20,000 sentences of high-density EEG recordings of imagined speech from healthy adults 

facilitate large-scale model training [10].  

Decoding of imagined speech using non-invasive BCIs remains a challenge. Progress from word-level 

classification to continuous text generation requires high quality neural recording, advanced decoding 

architectures, and powerful language models, supported by standardized datasets and fluency-focused 

evaluation frameworks. Authors are creating a standard dataset while reviewing the state of the art and 

updates to this review, will be available at https://github.com/cnerlab/brain-to-text/. We acknowledge the 

Vision Group of Science and Technology, Karnataka, India, for supporting this review by providing 

facilities under GRD1116. 
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Abstract

• Imagined speech is the internal simulation of speaking without 

producing audible sound, offering a promising communication channel 

for individuals with severe speech impairments through brain-computer 

interfaces (BCIs).

• Current approaches predominantly target word or phoneme level 

classification using EEG, MEG, and fNIRS modalities, achieving 60-95% 

accuracy for small vocabularies (3-5 words) .

• Research gap: Continuous, coherent, and contextually relevant imagined 

speech decoding remains challenging, particularly achieving fluency.

• Review scope: This paper synthesizes 109 research articles across 

neurocognitive foundations, non-invasive neural modalities, signal 

processing methodologies, computational architectures, and fluency-

specific evaluation metrics.

• Key focus: This work emphasizes fluency-specific challenges including 

lexical continuity, syntactic coherence, and real-time decoding 

constraints.

Background and Methods

• Imagined speech is a motor-grounded,  hierarchically organized 

cognitive process.

• Core brain regions involved in silent speech decoding include the 

inferior frontal gyrus (Broca's area), supplementary motor area, and 

superior temporal gyrus which interact via the phonological loop to 

support imagined speech production.

• Fluency requirements include rapid lexical retrieval, seamless syntax 

assembly, and dynamic working memory updates are essential for 

continuous, coherent imagined speech generation.

• Papers emphasizing recent advances in deep learning architectures, 

transfer learning, and language model integration were commonly used 

in this process.

•  Current findings are drawn from 109 papers, organized into five thematic 

sections. The number of papers reviewed, and their corresponding focus 

areas are presented in the figure below.

Methodology

Signal Acquisition

• 13 studies reviewed on non-invasive neural decoding using EEG, MEG, 

and fNIRS modalities. 

• EEG predominates due to superior temporal resolution, portability, and 

cost-effectiveness compared to MEG (expensive, requires shielded 

rooms) and fNIRS (latency constraints).

Signal Processing (31 studies reviewed):

• Pre-processing pipeline: Signal collection > Artifact reduction using ICA 

> Regression and adaptive filters. 

• Feature extraction: Traditional approaches use fixed windows with 

spectral features (power spectral density, band power). 

• Modern approaches: Sliding windows with deep learning to capture 

temporal dependencies.

Classification and Decoding:

• Traditional methods: 60-95% accuracy for small vocabularies (3-5 words) 

using spectral features. 

• Deep learning architectures: CNNs, Bidirectional LSTMs, and 

transformers (EEGformer) for multiclass performance. 

• Hybrid approaches: CTNet combines CNN-transformer strengths. 

Transfer learning leverages binary tasks to improve multi-class 

decoding.

Post-Processing:

• NLP model integration: Pre-trained language models and RNNs enable 

contextual smoothing.

• Techniques: Beam search, probabilistic decoding, GPT-style 

autocorrection for coherent sentence generation.

Performance and Evaluation

Current Classification Metrics:

• Small vocabulary tasks (3-5 words): 60-95% accuracy using feature 

extraction and deep learning methods.

• Subject-independent MEG decoding approaches subject-dependent 

accuracy levels through domain adaptation and curriculum learning.

Fluency Metrics:

• Words per Minute (WPM) - measures decoding speed.

• Sentence Coherence Score - evaluates syntactic and semantic 

continuity.

• Latency - real-time response delay.

• Perplexity - language model confidence in predictions.

Evaluation Challenges:

• Subjective assessments (user satisfaction, perceived naturalness) 

complement objective metrics but lack standardization across studies.

• Developing benchmark tasks and combined fluency indices is critical for 

rigorous evaluation.

Benchmark Datasets:

• Chinese Imagined Speech Corpus (Chisco): 20,000+ sentences of high-

density EEG recordings from healthy adults.

• Facilitates large-scale model training and standardized evaluation.

Current Limitations:

• Most systems confined to word-level or phoneme-level classification.

• Continuous, coherent, and contextually relevant speech decoding 

remains challenging.

• Gap between isolated word accuracy and fluent sentence generation.

Summary

• Current achievement: Non-invasive BCIs using EEG achieve 60-95% 

accuracy for small vocabulary (3-5 words) imagined speech 

classification through deep learning and hybrid architectures.

• Critical gap: Transitioning from isolated word-level classification to 

continuous, fluent, and contextually coherent imagined speech 

decoding remains the primary challenge.

• Requirements for fluency: Progress demands integration of high-quality 

neural recording, advanced decoding architectures (CNNs, 

transformers), powerful language models for post-processing, and 

standardized evaluation frameworks.

• Evaluation needs: Standardized benchmark datasets (like Chisco with 

20,000+ sentences) and combined fluency metrics (WPM, coherence, 

latency, perplexity) are critical for rigorous assessment.

• Future direction: Decoding imagined speech using non-invasive BCIs 

requires continued advancement in signal processing, cross-subject 

generalization, real-time processing optimization, and NLP integration to 

enable practical communication systems.

• Dataset and future updates will be available at: 

github.com/cnerlab/brain-to-text
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Computational 

Theme

Key Approaches & 

Examples

Application Insight

Traditional 

Machine 

Learning

SVM, LDA, Random 

Forests, KNN etc

Used for simpler, low-vocabulary 

classification tasks.

Deep Learning 

(Standard and 

Advanced)

EEGNet, CNNs, BiDiR 

LSTM,, Transformer 

Architecture, GAN

Strong multiclass performance by 

modeling temporal and frequency 

dependencies.
Language Models 

/ Post-Processing

Large Language Models, 

Connection Temporal, 

Word2Vec Integration, 

GPT-style autocorrection.

Address fluency challenges, 

Helping transform word-level 

predictions into coherent sentence 

strings.
Hybrid/Multi 

Approaches

EEG-fNIRS Fusion, Multi 

View Learning

Enhance generalization and 

efficiency

https://cnerlab.github.io/

https://bmsit.ac.in
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