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e Introduction

e How does a convolutional layer see raw data?
e Spectral features and morphological features
e Explainability tool for spectral processing

e Specific application in this study:
e EEG-based polysomnography
e Two models and two datasets

e Advantage:

e Understand and improve model functioning
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s Filter spectrum retrieval
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e Raw feature extraction: CNN-based
e Model I:

e EEGNet (Lawhern et al., [1])
e Filter spectrum retrieval:

e Discrete Fourier transform, followed by averaging magnitudes
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- Filter spectrum retrieval ||
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oo : = - e compl. i
VAN A AP ] - pooling 4 LI/
A RNV

pooling 2 LA/

e Convolutions on multiple
scales using complementary | .., G ;
pooling T

1
1
1 G ] :
: pooling 8 onvolution I

1
1
1
:
1
1 / : | : :
I : l | ! :
! L AAAAAAAAAAAAAN ] v . . sCa e'. 1 =
I /AN S PN RAS: : 4%7/ /)7 integration ! .
e convolution
| RIS pool. 4 fC=1 convolution ):_ complement. | | merged ; Mmodule output
' ea 1
1
@ |
1
1
1
1
|
gnal

e Requires combining the
scales

GRVEY S 4

* Agency for

\ Science, Technology
and Research
SINGAPORE




«’ Multi-scale ftilter spectrum
retrieval
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assignment matrix (see subsection II-D)
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filter
spectrum

e DFT & averaging magnitudes per scale

e Fourier frequencies determined by sampling rate and downsampling factor
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e Use assignment matrix to combine the scales
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« Between-class spectral
variation

e Which frequencies are useful for classification?
e Use measure directly computed from data
e Measure for variation of spectral power between classes:
1. average spectral density across all samples for each class
2. compute standard deviation between the classes
3. normalise by within-class spectral variation
e Within-class spectral variation:
1. compute standard deviation for each class

2. average across classes
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L Polysomnography
datasets

e ISRUC-S3 [3]:
e 10 healthy participants, 8,589 annotated samples
e Used channels: 6 EEG, 2 EOG, 1 EMG

e Sleep-EDF-20 [4]:
e 20 healthy participants, 42,308 annotated samples
e Used channels: 2 EEG, 1 EOG

e 5 sleep stages

e 30 second samples @ 100Hz

e cutoff frequency 40Hz
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«Z Filter spectrum correlates
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e Dashed: between-class spectral variation (frontal channel)

e Low frequencies (9, 0, a):
e trained EEGNet & MSA-CNN filters correlate with data-based variation
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« Spectrum-data correlation
aligns with performance

ISRUC-S3 Sleep-EDF-20

e Abstract previous results:
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= Conclusion

e Explainability tool:
e Understand spectral processing in CNNs for EEG
e Convolution filter spectrum correlates with variation in data
e Higher single-channel performance for higher correlation
e Helps gain insight into model performance
e Limitations:

e Correlation estimates may be unreliable due to limited number of
data points

e Comparison between correlation estimates and performance for
channel importance analysis was only assessed visually

e Relatively small size of the datasets used in this study may limit

the transferability of our model
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