

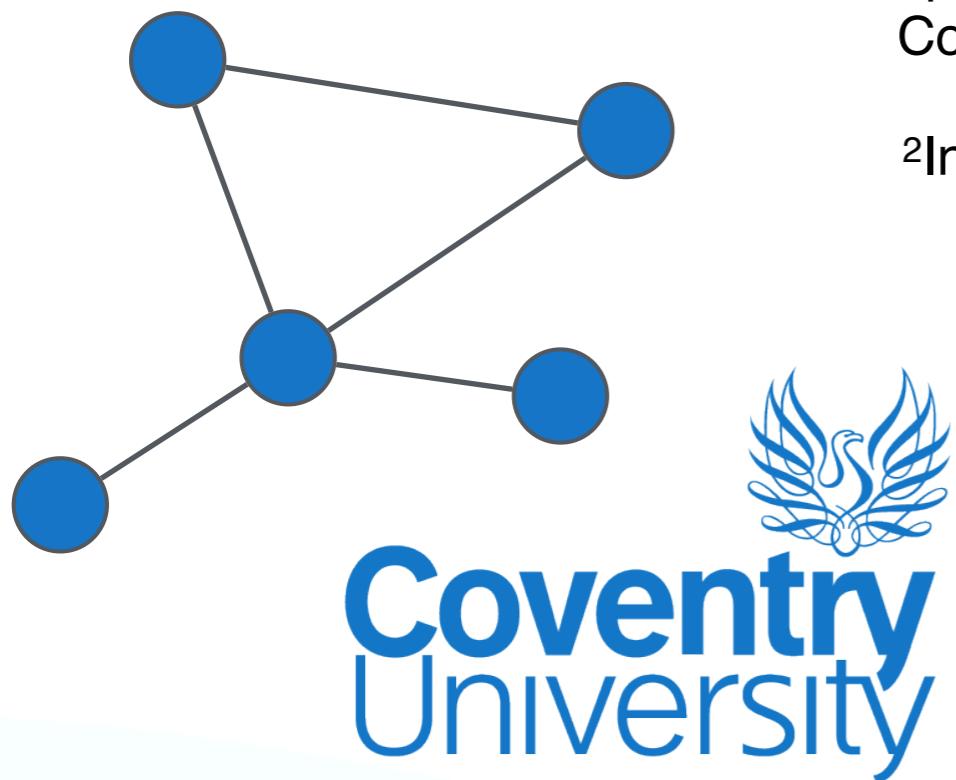
Retrieving Filter Spectra in CNN for Explainable Sleep Stage Classification

IEEE SPMB 2025

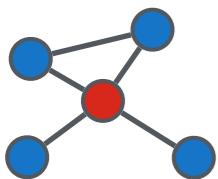
Stephan Goerttler^{1,2}, Yucheng Wang², Fei He¹ and Min Wu²

¹Centre for Computational Science and Mathematical Modelling,
Coventry University, Coventry, UK

²Institute for Infocomm Research,
A*STAR, Singapore

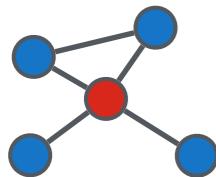


6th December 2025

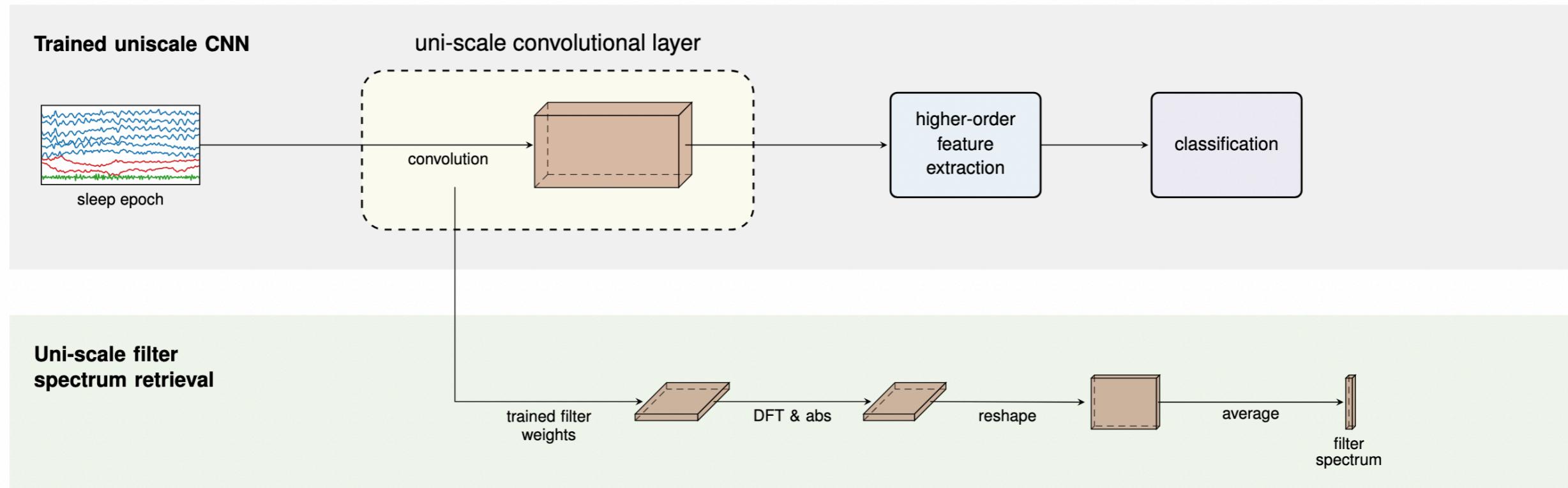


Introduction

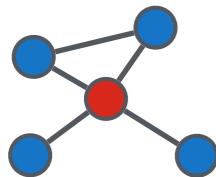
- *How does a convolutional layer see raw data?*
 - Spectral features and morphological features
 - Explainability tool for spectral processing
- Specific application in this study:
 - EEG-based polysomnography
 - Two models and two datasets
- Advantage:
 - Understand and improve model functioning



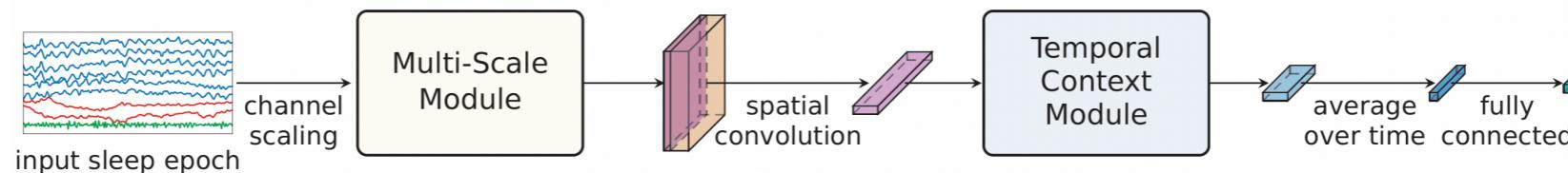
Filter spectrum retrieval



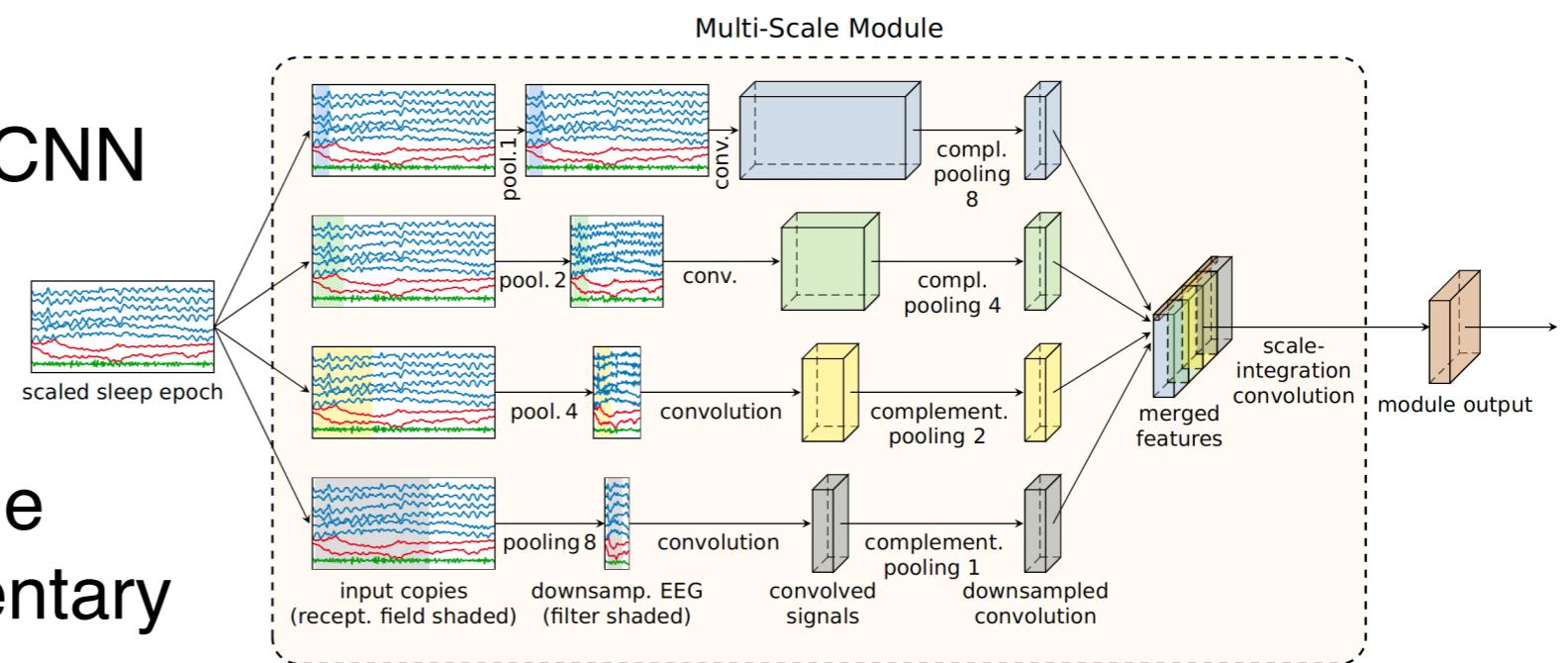
- Raw feature extraction: CNN-based
- Model I:
 - EEGNet (Lawhern *et al.*, [1])
- Filter spectrum retrieval:
 - Discrete Fourier transform, followed by averaging magnitudes

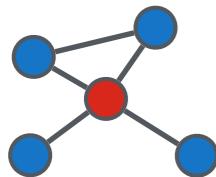


Filter spectrum retrieval II

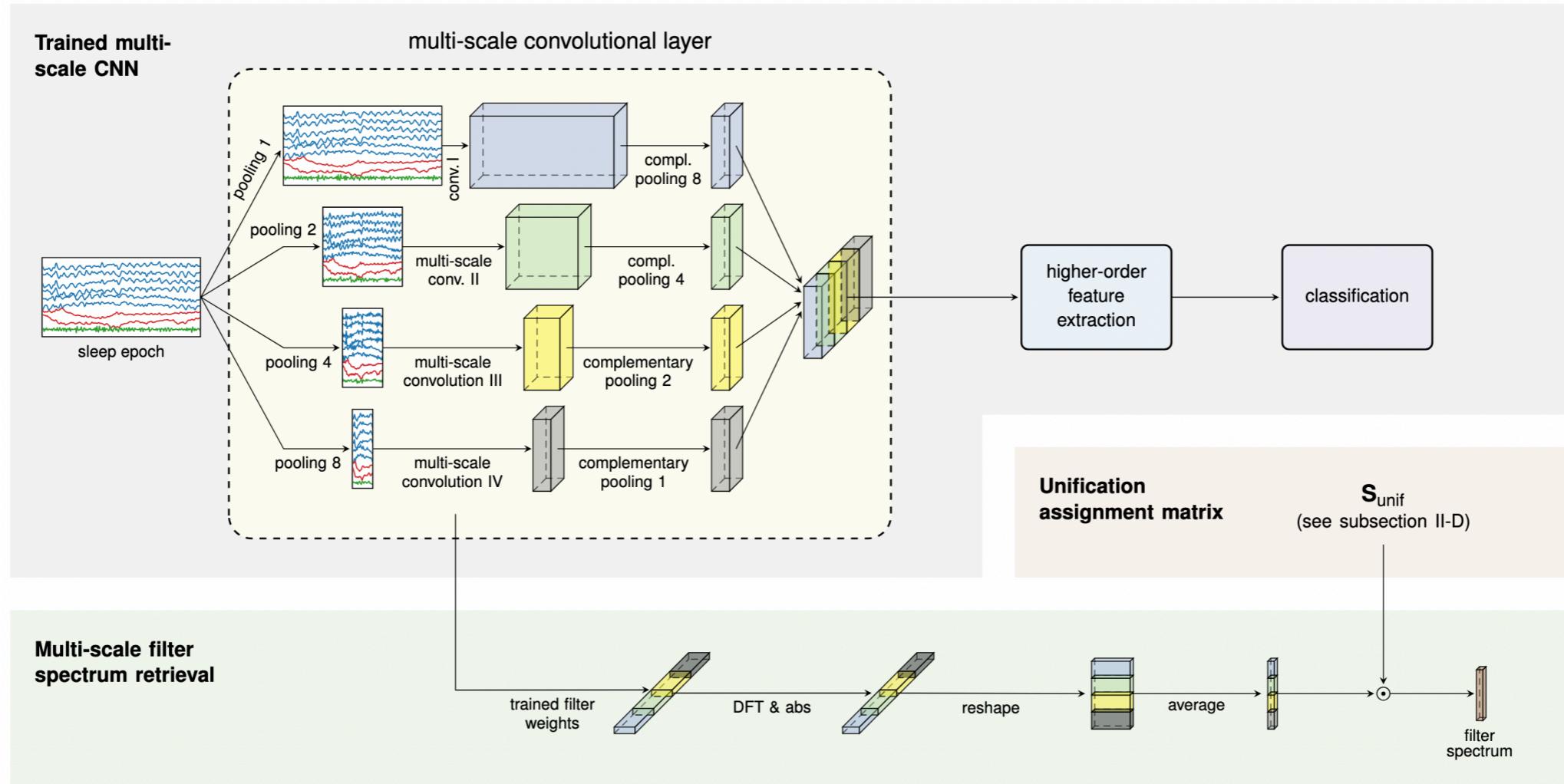


- Model II:
 - Multi-scale & attention CNN (MSA-CNN) [2]
- Special case:
 - Convolutions on multiple scales using complementary pooling
 - Requires combining the scales

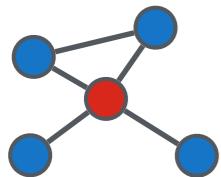




Multi-scale filter spectrum retrieval

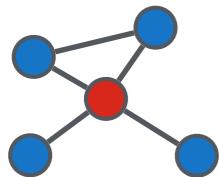


- DFT & averaging magnitudes *per scale*
- Fourier frequencies determined by sampling rate and downsampling factor
- Use assignment matrix to combine the scales



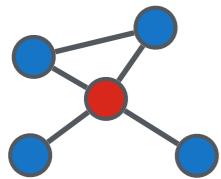
Between-class spectral variation

- *Which frequencies are useful for classification?*
 - Use measure directly computed from data
- Measure for variation of spectral power *between* classes:
 1. average spectral density across all samples for each class
 2. compute standard deviation between the classes
 3. normalise by *within-class* spectral variation
- Within-class spectral variation:
 1. compute standard deviation for each class
 2. average across classes

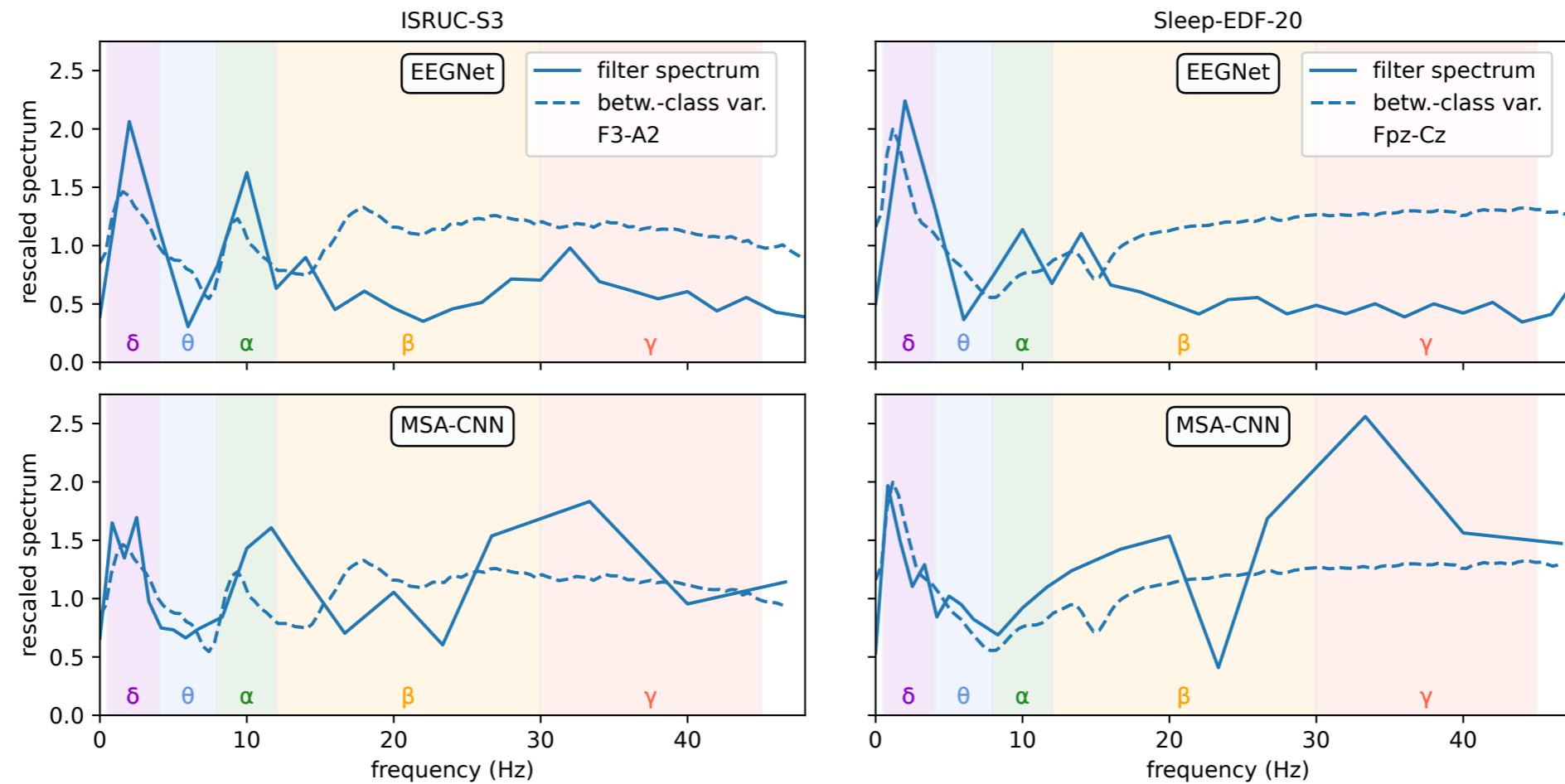


Polysomnography datasets

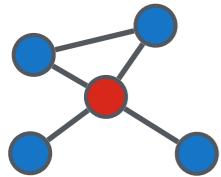
- ISRUC-S3 [3]:
 - 10 healthy participants, 8,589 annotated samples
 - Used channels: 6 EEG, 2 EOG, 1 EMG
- Sleep-EDF-20 [4]:
 - 20 healthy participants, 42,308 annotated samples
 - Used channels: 2 EEG, 1 EOG
 - 5 sleep stages
 - 30 second samples @ 100Hz
 - cutoff frequency 40Hz



Filter spectrum correlates with data characteristics



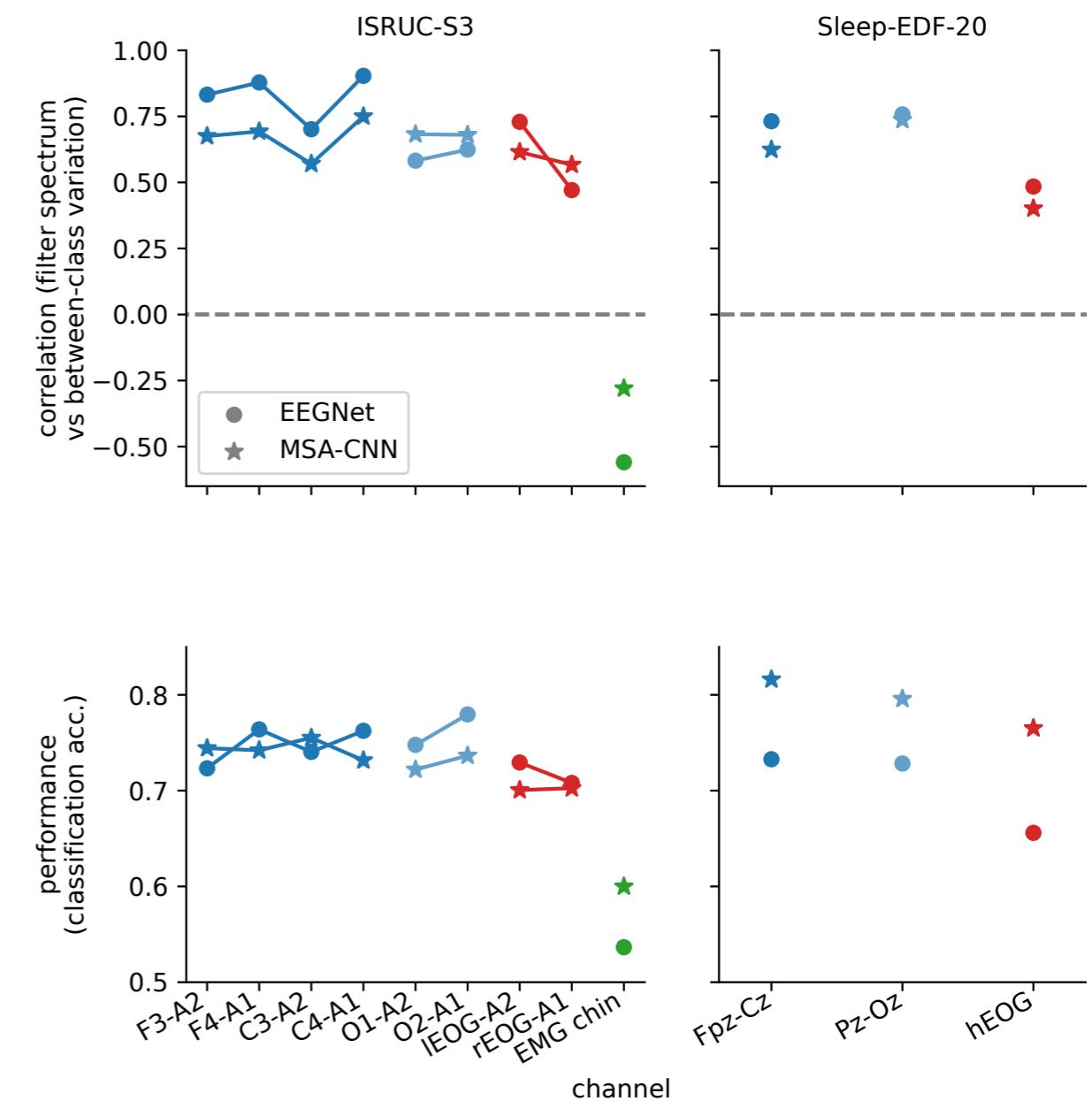
- Dashed: between-class spectral variation (frontal channel)
- Low frequencies (δ , θ , α):
 - trained EEGNet & MSA-CNN filters correlate with data-based variation

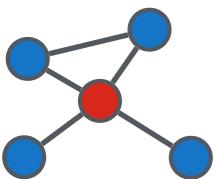


Spectrum-data correlation aligns with performance

- Abstract previous results:
 - Low-frequency correlation now one data point
- Correlation depends on channel
- Similar pattern across datasets

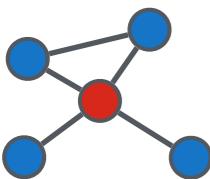
- Single-channel performance:
 - Same pattern as correlation!
- Spectral information used for classification





Conclusion

- Explainability tool:
 - Understand spectral processing in CNNs for EEG
 - Convolution filter spectrum correlates with variation in data
 - Higher single-channel performance for higher correlation
 - Helps gain insight into model performance
- Limitations:
 - Correlation estimates may be unreliable due to limited number of data points
 - Comparison between correlation estimates and performance for channel importance analysis was only assessed visually
 - Relatively small size of the datasets used in this study may limit the transferability of our model



References

- [1] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. *Journal of neural engineering*, 15(5), 056013.
- [2] Goerttler, S., Wang, Y., Eldele, E., Wu, M., & He, F. (2025). MSA-CNN: A Lightweight Multi-Scale CNN with Attention for Sleep Stage Classification. *arXiv preprint arXiv:2501.02949*.
- [3] Khalighi, S., Sousa, T., Santos, J. M., & Nunes, U. (2016). ISRUC-Sleep: A comprehensive public dataset for sleep researchers. *Computer methods and programs in biomedicine*, 124, 180-192.
- [4] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. *circulation*, 101(23), e215-e220.