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Abstract— Despite significant advances in deep learning-
based sleep stage classification, the clinical adoption of
automatic classification models remains slow. One key
challenge is the lack of explainability, as many models
function as black boxes with millions of parameters. In
response, recent work has increasingly focussed on enhanc-
ing model explainability. This study contributes to these
efforts by introducing an explainability tool for spectral
processing of individual EEG channels. Specifically, this
tools retrieves the filter spectrum of low-level convolutional
feature extraction and compares it with the classification-
relevant spectral information in the data. We apply our
tool on the EEGNet and MSA-CNN models using the
ISRUC-S3 and Sleep-EDF-20 datasets. The tool reveals
that spectral processing plays a significant role in the
lower frequency bands. In addition, comparing the corre-
lation between filter spectrum and data-derived spectral
information with univariate performance indicates that the
model naturally prioritises the most informative channels
in a multimodal setting. We specify how these insights can
be leveraged to enhance model performance. The code for
the filter spectrum retrieval and its analysis is available at
https://github.com/sgoerttler/MSA-CNN.

Keywords— electroencephalogram, sleep stage classification,
deep learning, explainable AI.

I. INTRODUCTION

Sleep stage classification is essential for assessing sleep
and diagnosing sleep disorders using polysomnogra-
phy [1]. With advances in machine learning, deep
learning-based sleep stage classification has garnered
significant attention [2]. However, despite promising
results, its clinical adoption remains limited due to
challenges in validation, professional integration, and
explainability [3].

Explainability is particularly crucial for regulatory com-
pliance and building trust among clinicians and patients
while advancing model development [4]. As a conse-
quence, explainability of sleep stage classification mod-
els has gained significant traction in recent years. For
instance, gradient-weighted class activation mapping
has been used for sample-specific post-hoc explanation
of input importance [5, 6], as well as for highlight-
ing weighted attention [7]. Furthermore, self-attention
has been utilised to explain input importance [8] and
even temporal interactions [9] in individual samples.
While these approaches demonstrate sample-specific
explanations, model explainability can also be global
at the dataset level. For example, surrogate ablation

techniques have been used to assess the contribution
of individual modalities globally [10]. Note that despite
this abundance of available explainability techniques,
each method generally captures only specific aspects of
model behaviour and is often dependent on the model
architecture.

This work aims to extend existing efforts by introducing
a method for explaining spectral information processing
globally in a multivariate context. Our approach can be
applied to models that leverage temporal convolutions
to extract spectral and morphological features from
the raw signal, which are common in EEG signal
classification [11]. In particular, our method retrieves the
frequency spectrum of filters in the first convolutional
layer. This layer may comprise several pathways to
cover the multiple spectral scales relevant in neuro-
physiology [9, 12], in which case we employ a uni-
fication assignment matrix to integrate these pathways.
Further, we correlate the extracted filter spectrum with
the classification-relevant spectral information in the
data, which provides insight into the extent of spec-
tral information processing. Lastly, we compare these
correlations with the single-channel performance.

We evaluate the proposed method on the EEGNet intro-
duced by Lawhern et al. [13] as well as our previously
introduced Multi-Scale and Attention Convolutional
Neural Network (MSA-CNN), using two datasets. Both
models are multivariate, CNN-based, and designed to
capture a broad spectral range from 0 Hz to around
50 Hz.

II. METHODOLOGY

II-A. Method Overview

The principal idea of our proposed method is to ex-
plain channel-wise spectral processing within the first
convolutional feature extraction layer. This layer can
capture both spectral features (e.g., EEG oscillations)
and morphological features (e.g., waveform shape).
While this layer typically operates on a single scale,
which is determined by the sampling rate, the layer
may also operate on multiple scales, such as in the
case of the MSA-CNN model. The filters of these
convolutions capture distinct frequencies, which are
determined by their Fourier transform and their scale.
For multi-scale configurations, frequencies at different
scales may overlap and thus require unification. The
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Figure 1. Overview of proposed filter spectrum retrieval model for uni- (a–b) and multi-scale (c–e) configurations. (a) Trained
uni-scale CNN model, such as the EEGNet [13]. The first convolutional layer extracts temporal features from the raw signals,
followed by higher-order modules. (b) Proposed uni-scale filter spectrum retrieval using the trained convolutional filter weights.
(c) Trained multi-scale CNN model, such as the MSA-CNN [9]. The first layer comprises temporal convolutions on multiple
scales, which are aggregated before being passed to the higher-order modules. (d) The multi-scale filter spectrum retrieval
conducts the steps in b separately for each scale before the scales are averaged using the unification assignment matrix. (e) The
unification assignment matrix Sunif transforms scale-based frequency to unified frequency.

amplitude values of the Fourier components are then
averaged across filters to yield the final amplitude spec-
trum. This spectrum is then compared with the between-
class spectral variation in the data, which serves as an
indicator of classification-relevant spectral information.
An overview of our proposed method for uni-scale (a–
b) and multi-scale (c–e) configurations is presented in
Figure 1.

II-B. EEGNet Architecture

The EEGNet is a lightweight CNN architecture intro-
duced by Lawhern et al. [13]. The model comprises
three convolutional layers arranged in two blocks as
well as a classification layer. The first block consists of

a temporal convolutional layer and a depthwise spatial
convolutional layer. The second block consists of a
separable convolution, which comprises a depthwise
temporal convolution and a point-wise convolution.
Each convolutional layer is followed by batch nor-
malisation, while each block ends with a sequence of
exponential linear unit, average pooling and dropout.
The classification layer consists of a fully connected
layer and a softmax operation. Note that the spatial layer
in the first block and the second block correspond to
the higher-order feature extraction block in Figure 1(a).
For consistency, the current study uses the same model
parameters as the original study.
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II-C. Multi-Scale and Attention Convolutional Neural
Network (MSA-CNN)

The MSA-CNN [9] is shown in Figure 1(c). To begin
with, a multi-scale convolution and a scale-integration
convolution extract spectral features for each channel.
Subsequently, the channels are combined using a global
spatial convolution. The time-resolved features are then
passed to an attention-based Temporal Context Module
(TCM), which captures long-range temporal dependen-
cies. The TCM combines multi-head attention with
a feed-forward neural network. Finally, the resulting
features are averaged over time and classified using a
fully connected layer.

II-D. Unification Assignment Matrix

In many deep learning-based neurophysiology models,
the first convolutional layer comprises convolutions on
more than one scale [9, 12, 14–16]. This requires
the use of a unification assignment matrix Sunif for
our explainability tool, which assigns the scale-based
frequencies to unified frequencies on a single scale.

The scale-based frequencies are collected in the list
fsc = ( f (I)0 , f (I)1 , ..., f (II)0 , ..., f (IV)

⌊Nt/2⌋), where the super-
script denotes the scale and the subscript indexes the
frequency within that scale. We determine the list of
unique frequencies funiq by sorting fsc by magnitude
and removing duplicate frequencies. The unnormalised
unification assignment matrix is then given by:

Ŝunif,i j =

{
1, if funiq[i] = fsc[ j],
0, otherwise.

(1)

The matrix is then normalised using the diagonal matrix
Dii = ∑ j Ŝunif,i j. This yields the full frequency unifica-
tion matrix Sunif =D−1Ŝunif, which transforms the scale-
based frequencies into their unified representation as

funif = Sunif fsc. (2)

II-E. Filter Spectrum Retrieval

An overview of the uni- and multi-scale filter spectrum
retrieval is given in Figure 1(b) and 1(d), respectively.
The filter spectrum is retrieved from the filter weights
W of the trained model. In the case of unimodal filters,
where filters are shared across all neurophysiological
channels, the weight matrix has shape K ×L× S, with
K denoting the number of output channels, L the length
of the filter, and S the number of scales. Subsequently,
the discrete Fourier transform (DFT) is applied to the
filter weights along the second, temporal dimension.
Only the magnitudes of all positive frequencies are
kept for further processing. The resulting feature maps
are averaged across the K output channels, producing
the filter spectrum in terms of frequency and scale.
For multi-scale configurations, the scales are unified by

multiplying the filter spectrum by the assignment matrix
Sunif.

II-F. Between-Class Spectral Variation

This section describes a measure that assesses the
spectral information relevant for classification for each
channel. To this end, we introduce the between-class
spectral variation, which quantifies spectral density vari-
ation between class means normalised by within-class
variation. Specifically, we compute the spectral density
as the square root of Welch’s power spectral density for
every time series. The between-class variation is then
retrieved by firstly averaging the spectral density across
all samples for each class, and subsequently computing
the standard deviation between the classes. On the
other hand, the within-class variation is retrieved by
computing the standard deviation for each class before
averaging across classes. Lastly, we divide the between-
class variation by the within-class variation to obtain our
final measure of relevant spectral information.

III. EXPERIMENTS

III-A. Datasets

We use the publicly available datasets ISRUC-S3
and Sleep-EDF-20 in this study. The ISRUC-S3 was
recorded by Khalighi et al. from 10 healthy subjects
during sleep [17]. The recordings were divided into
30-second epochs and labelled, resulting in a total of
8,589 annotated samples. For our experiment, we only
use channels with sufficient spectral structure, which in-
cludes the six referenced electroencephalography (EEG)
channels, the two electrooculography (EOG) channels,
and the electromyogram (EMG) channel. The input
signals are downsampled to 100 Hz and preprocessed
with a fourth-order low-pass Butterworth filter at 40 Hz
cutoff frequency.

The Sleep-EDF-20 dataset is sourced from Phys-
ioBank [18]. The dataset comprises 20 subjects and has
overall 42,308 labelled, artefact-free 30-second samples
with a sampling rate of 100 Hz. Channels with spectral
structure include two referenced EEG channels (Fpz-
Cz and Pz-Oz) and the EOG channel. Similar to the
ISRUC-S3 dataset, we preprocessed the data with a
40 Hz low-pass filter.

III-B. Model Specifications

We trained multivariate models for generating the
weight matrices for the filter spectrum retrieval, as
well as univariate models to assess the single channel
performance. Multivariate models were trained on the
entire dataset, while univariate models were trained and
evaluated using 10-fold subject-wise cross-validation,
with performance measured as mean accuracy.

We adopted the parameter settings for EEGNet as
described in the original publication [13], with minor
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Table 1. Model parameters for MSA-CNN small and MSA-
CNN large, based on multivariate or univariate inputs. Kernel
sizes are specified by their spatial and temporal dimensions

layer hyperparameter MSA-CNN (small) MSA-CNN (large)

multivar. univar. multivar. univar.

MSM I # scales 4 4
filter size 1×15 1×15
# filters / scale 8 8

MSM II filter size 1×5 1×5
# filters 16 32

spatial filter size Nch ×1 1×5 Nch ×1 1×5
# filters 32 64

TCM embedding dim. 16 32
# heads 2 4
# layers 1 2

modifications. Specifically, we reduced the filter size
from 64 to 50 due to the lower sampling rates in
this study, such that the detectable spectral resolution
of 2 Hz matches that in the original study. The same
model parameters were used for both univariate and
multivariate inputs across both datasets. To train the
models, we followed the procedure outlined in the
original publication.

The model parameters for the MSA-CNN configurations
are listed in Table 1. Both temporal convolutional layers
are set to unimodal, meaning that filters are shared
across channels. We tailored the model size to each
dataset, using a small configuration for ISRUC-S3 and
a large configuration for Sleep-EDF-20. In addition, for
the univariate configuration, we replaced the spatial con-
volution in the third layer with a temporal convolution.
All models were trained for 100 epochs using the Adam
optimizer [19], with a learning rate of 0.001 and a batch
size of 64. Regularisation was applied using a dropout
rate of 0.1 and weight decay of 0.0001.

III-C. Filter Spectrum vs. Between-Class Variation

To test our method, we retrieve the filter spectra for the
multivariate models trained on both datasets and com-
pare it to the between-class variation of each channel.
Given that filter settings are shared across channels, only
one filter spectrum is retrieved for each dataset.

For the EEGNet, a filter size of 50 at a sampling rate of
100 Hz corresponds to a detectable frequency range of
0 Hz to 48 Hz, with a frequency spacing of 2 Hz. In the
case of the MSA-CNN, the filters operate on multiple
scales. To unify the scales, a unification assignment
matrix was computed using the pooling settings shown
in Figure 1(a). Based on the filter size setting of 15 and
a sampling rate of 100 Hz, the unified frequencies span
the range 0-46.7 Hz with a maximal frequency spacing
of 6.7 Hz.

Figure 2(a–b) shows the filter spectrum for the EEGNet
model for datasets ISRUC-S3 (a) and Sleep-EDF-20
(b), while Figure 2(c–d) shows the spectrum for the

MSA-CNN model for both datasets. The filter spectrum
is overlaid with the between-class variation spectra
of the EEG channels F3-A2 (ISRUC-S3) and Fpz-Cz
(Sleep-EDF-20), which are commonly used in univariate
configurations [15, 21]. All spectra were rescaled by
dividing by the standard deviation in the frequency
range 0.5-12 Hz, which corresponds to the combined
lower EEG frequency bands δ (0.5–4 Hz), θ (4–8 Hz),
and α (8–12 Hz) [20]. For both models, the results in-
dicate substantial similarity between filter spectrum and
between-class variation in these lower frequency bands
on both datasets. For example, both models capture a
peak in between-class variation in the al pha band on
the ISRUC-S3 dataset, whereas on the Sleep-EDF-20
dataset they capture a plateau. This result indicates that
the model uses mainly lower frequencies for spectral
information-based classification. On the other hand,
the filter spectra align across datasets in the higher
frequency bands β and γ , which suggests that higher
frequencies may be used to construct complex wave
patterns shared across EEG datasets.

III-D. Spectral Information Extraction Relative to
Modality

To understand the specific role of channel and modal-
ity in extracting spectral information, we compute the
Pearson correlation of filter spectrum and between-class
variation in the lower frequency bands (δ , θ and α)
across channels, as shown in Figure 3(a,b). We find that
the correlation is highest for EEG, followed by EOG
and EMG, irrespective of the model or dataset. This
pattern is less pronounced for the ISRUC-S3 dataset,
where EOG channels correlate almost as strongly with
filter spectrum as EEG channels. There is also a within-
modality discrepancy between frontal and occipital EEG
channels: While for ISRUC-S3, frontal (blue) and oc-
cipital (light blue) channels correlate equally with filter
spectrum, for Sleep-EDF-20 occipital channels correlate
stronger than frontal channels.

We validate these results by comparing them to the
univariate performance for each channel and modality.
The univariate performances, shown in Figure 3(c,d),
exhibit a similar pattern, with EEG outperforming EOG
and EMG. This matching between correlation and per-
formance indicates that both models are capable of
prioritising more informative channels by optimising
the retrieval of spectral information for these channels.
Given the unimodal configuration of the first layer in
both models, this prioritisation comes at the cost of
neglecting less informative modalities.

IV. CONCLUSION

This study introduced a tool to explain the role of
spectral information processing in CNN-based classi-
fication models. We tested the tool on two multivariate
sleep stage classification models across two datasets.
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Figure 2. Rescaled filter spectrum (solid lines) for EEGNet (a,b) and MSA-CNN (c,d) on datasets ISRUC-S3 (a,c) and Sleep-
EDF-20 (b,d). The spectra are overlaid with the rescaled between-class variation of the frontal channels F3–A2 (ISRUC-S3) and
Fpz–Cz (Sleep-EDF-20), shown as dashed lines. Shaded regions along the frequency axis indicate the standard EEG frequency
bands δ (0.5–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz), and γ (30–45 Hz) [20] At lower frequency bands (δ , θ and α),
filter spectra and between-class variations align. At higher frequency bands (β and γ), filter spectra align across datasets.

For both models, we found that the convolutional filter
spectrum aligns with the spectral information available
in the data at lower frequencies, which indicates that the
models optimise spectral information extraction at these
frequencies. Note that the available spectral information
depends on the dataset and application. For example,
ISRUC-S3 shows greater between-class variation in
the α wave range than Sleep-EDF-20, likely reflecting
differences in EEG channel configuration and system
characteristics. The observed alignment highlights the
way in which convolutional layers can function as
spectral feature extractors [22].

At higher frequencies, filter spectrum and data-derived
spectral information diverge, while filter spectra align
across datasets. This suggests that the filters capture
the general morphology of EEG waves rather than
spectral information at these frequencies. The capability
to capture both spectral and morphological features is in
contrast to spectral density extractors such as Welch’s
method, which are limited to spectral features. Alto-
gether, the explainability tool provided insight into the
patterns of information processing relative to frequency,
which were strikingly similar between the two models.
In general, such similarity suggests that the models are
functionally comparable.

In a second step, we used the explainability tool to
analyse channel importance. We found that both models
prioritise the more informative channels at the expense
of less informative ones. Apart from providing insight

into model functioning, this finding may be leveraged
for performance optimisation in the following ways:
First, channel selection for single- and multi-channel
applications can be performed with only a single trained
multivariate model. Second, comparisons between filter
spectrum and between-class variation can be used to bal-
ance the frequency scales for optimal extraction of spec-
tral information. Third, large differences in between-
class variation can signal the need to perform feature
extraction separately for each modality. Together, these
examples underscore the value of our method for model
improvement specifically, and the value of explainability
for healthcare applications more generally.

Nevertheless, several limitations should be noted. First,
the correlation estimates may be unreliable due to the
limited number of data points used in their computation.
In addition, the comparison between correlation esti-
mates and performance for channel importance analysis
was only assessed visually. Lastly, the relatively small
size of the datasets used in this study may limit the
transferability of our model [23]. In future research,
we will improve the channel importance analysis by
incorporating channel ablation experiments. In addition,
we plan to test our explainability tool on larger and more
diverse datasets.
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