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ECG Data
The electrocardiogram is a 10-second, 12-lead 
recording sampled at 500 Hz, producing about 
60,000 data points and capturing 8–17 
heartbeats. Each cycle includes the P wave (atrial 
depolarization, green/left), QRS complex 
(ventricular depolarization, orange/center), and T 
wave (ventricular repolarization, red/right), which 
differ dramatically in duration, amplitude, and 
frequency.

ECG signals are highly skewed due to intervals of 
electrical inactivity, and morphology varies 
widely across individuals—ranging from smooth 
to notched or triphasic complexes—reflecting 
differences in anatomy, physiology, lead 
placement, and disease. 
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Background on the problem

Deep learning performs well on ECG only when supported by large datasets, because a 10-
second, 12-lead ECG contains 60,000 high-dimensional datapoints with substantial 
morphological variability and skewed distributions. 

As data complexity increases, the amount of data needed to model it also increases. The 
complexity of ECG signals poses challenges for Deep Learning (DL) due to high variance in 
wave morphology, skewed data distribution, and temporal volatility. Hence, we need a 
solution to the ECG data complexity problem in smaller datasets.

Smaller datasets—such as those involving rare conditions or invasive procedures e.g., 
post-ablation atrial fibrillation (A-Fib)—are insufficient for DL to generalize without 
overfitting. 

Variational autoencoders address this problem by learning compact 
representations and reconstructing signals, enabling robust feature extraction 
when data volume is limited. Our goal is to exploit such representations to build 
reliable predictive models despite restricted sample sizes.
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Our Solution. The S-VAE Model

We propose a VAE-based framework with three novel variants—Stochastic 
Autoencoder (SAE), Cyclical βVAE (Cβ-VAE), and Annealed βVAE (Aβ-VAE)—
to optimize ECG latent representations for high-fidelity signal reconstruction 
and improved predictive performance, especially with limited-size training 
datasets. 

These variants balance reconstruction fidelity and latent space 
regularization, enabling DL on limited ECG datasets and facilitate integration 
with simpler algorithms like tree-based models, offering an alternative to 
standard DL methods like Convolutional Neural Networks (CNNs).

We trained these novel VAEs on >1 million ECGs to represent representative 
beat x-y-z-lead ECG into 30 encodings. A compression of 60,000 data points 
to 30. VAE extracted encodings were used to train LGBM models to classify 
labels from conventional ECGs.



T
h

e
 U

N
IV

E
R

S
IT

Y
 o

f 
 K

A
N

S
A

S
T

h
e

 U
N

IV
E

R
S

IT
Y

 o
f 

 K
A

N
S

A
S

T
h

e
 U

N
IV

E
R

S
IT

Y
 o

f 
 K

A
N

S
A

S
M

e
d

ic
a

l 
C

E
N

T
E

R
Model Pipeline
All VAE models featured an encoder-
decoder structure built with 
Convolutional Neural Networks (CNNs).
 
The encoder included four 2D 
convolutional layers (filters: 256, 256, 
512, 512) with a filter width of 9, stride of 
2, TanH activations, and batch 
normalization, followed by two fully 
connected layers with L2 regularization 
(0.01) and dropout (0.25).

The latent variable z was sampled from a Gaussian distribution (except the SAE, which is a 
stochastic distribution) via the reparameterization trick.

The decoder mirrored the encoder with two fully connected layers and four transpose 
convolutional layers (filters: 512, 256, 128, 3) to reconstruct the signal. Models were 
trained on ~1.1 million ECGs using TensorFlow, Adam optimizer (learning rate: 0.000001), 
50 epochs, and a batch size of 32, on a GeForce RTX 3090 with 128 GB RAM and an AMD 
Ryzen 9 3900XT CPU, though inference is lightweight and hardware agnostic.
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Data Preprocessing
We reduced 10-sec ECG recordings to a 750ms representative beat, created by the Philips 
IntelliSpaceECG system to produce a mean average beat from the 10 second signal. This was 
notch filtered (60 Hz), Butterworth band-pass filtered (0.05Hz low, 60Hz high), and median filtered 
(rolling window width of 11). The use of the representative beat captures key morphological 
features while shrinking data size by eliminating the redundant multiple cardiac cycles.

Then, using Kors’s conversion matrix, we transformed the eight independent ECG 
leads (I, II, V1-V6) into three orthogonal X (right to left), Y (cranial to caudal), and Z 
(anterior to posterior) leads, reducing the 1,000Hz 120,000-datapoint 10-sec 12-
lead ECG to a 2250-datapoint 750ms 3-lead ECG as shown in Figure 1.
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KL Loss Beta Values Used
In the Cβ-VAE, we adopt a cyclical annealing schedule in which β varies from 0 to 5 
across training, effectively toggling the model between three regimes: pure 
autoencoder (β=0), standard VAE (β=1), and β-VAE (β>1). At β=0, the loss consists 
solely of reconstruction error; at β=1, the model incorporates a conventional KL 
penalty; and at β>1, the KL term is amplified to prioritize disentanglement. 
Whereas the original cyclical annealing work cycled β between 0 and 1 with a hard 
reset, our approach spans 0–5 without reset, rising over 10 epochs and decaying over 
the next 10, yielding a 20-epoch cycle. This configuration accelerates convergence, 
enabling usable reconstructions within approximately 10 epochs.

The Aβ-VAE applies a reverse annealing strategy in which β begins at 10 and declines 
to 0 over 50 epochs. This allows the model to initially emphasize latent space 
structure and disentanglement before shifting toward reconstruction fidelity, 
resulting in superior generative output.

By contrast, the SAE fixes β=0, removing the KL term entirely. This produces a 
stochastic encoder trained only via reconstruction loss, learning whatever latent 
distribution best minimizes error rather than approximating a Gaussian prior. While 
the classical VAE framework targets Gaussian latent structure for generation, the SAE 
strategically abandons that constraint to maximize reconstruction quality—
especially beneficial for downstream ECG tasks—while retaining some stochastic 
advantages of VAEs.
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Reconstruction 
Quality

Reconstructed ECGs 
from the VAE 
encodings.
Blue=Original 
Orange=Reconstructed
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MAE, MSE, and DTW for different models for 
representative beat X, Y, Z-lead ECG reconstructions 
(N=1,065,368)
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Experiments and Results
We evaluated seven dimensionality-reduction approaches for ECG data: PCA, AE, SAE, VAE, β-
VAE, Cβ-VAE, and Aβ-VAE. The SAE, Cβ-VAE, and Aβ-VAE represent novel VAE-based designs 
incorporating mechanisms intended to address the unique demands of ECG representation 
learning.

Incremental PCA from scikit-learn was configured to produce 30 components, matching the 
30-dimensional latent encodings of the VAE models to ensure methodological parity. All 
autoencoder variants were trained using a shared network architecture, differentiated only by 
loss-function specification as outlined in later sections.

For downstream evaluation, we selected prediction of reduced left ventricular ejection fraction 
(LVEF ≤ 35%), the principal defining feature of heart failure with reduced ejection fraction. Our 
benchmark was a CNN trained directly on 10-second, 12-lead ECG signals, based on Mayo 
Clinic’s CNN architecture.

We then compared this baseline to Light Gradient Boosted Machine (LGBM) 
models trained on latent encodings from each autoencoder. For LGBM, eight 
hyperparameters were modified from defaults: Maximum Depth (15), Colsample 
Bytree (0.9), Extra Trees mode (True), Top-K (100), Learning Rate (0.1), number of 
estimators (1,000,000 with early stopping), and regularization parameters α and 
λ (0.95).
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LGBM using representative beat X, Y, Z-lead ECG 
encoded variables (n=97,464)
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LGBM using representative beat X, Y, Z-lead ECG 
encoded variables (n=97,464), specificity set at 0.9.
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using representative beat X, Y, Z-lead ECG encoded 
variables in test set (n=30,554). Reduced LVEF 
14.09% prevalence, specificity set at 0.9.
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Performance of different machine learning models
in predicting reduced LVEF (LVEF≤35%) from ECG data
(Holdout Test Set: n=15,987), specificity set at 0.9.
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SAEs outperform the other variants

The strong downstream performance of the SAE indicates that emphasizing 
reconstruction fidelity rather than latent space regularization can be advantageous 
for ECG representation learning. Unlike conventional VAE variants, the SAE 
optimizes exclusively for reconstruction error, enabling it to capture ECG 
variability more effectively. Notably, the inferior results of the deterministic AE 
underscore the contribution of stochastic sampling in enhancing generalizability.

SAE encodings consistently outperformed alternatives across predictive tasks 
while maintaining high-quality signal reconstruction, challenging the 
prevailing assumption that explicit latent regularization is universally beneficial. 
These findings suggest that reconstruction-centric objectives can yield 
encodings that are equally—and in some cases more—informative. Moreover, 
the broader VAE family retains the capacity to generate synthetic signal data, 
providing additional utility beyond compression and prediction.
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Conclusions

These findings demonstrate that VAE-derived encodings enable conventional 
machine learning models to achieve performance comparable to deep learning 
systems trained on full-resolution ECG waveforms, despite requiring far less data 
and computational overhead. This capability is particularly advantageous for 
diagnostic development in minority cohorts, rare disease contexts, or invasive 
clinical settings where large datasets are impractical or unavailable.

More broadly, our results show that the intrinsic complexity and heterogeneity of 
ECG signals can be effectively compressed via PCA and VAE frameworks for diverse 
downstream predictive tasks. Specifically, we show that a 10-second, 12-lead ECG 
comprising roughly 60,000 samples at 500 Hz can be distilled to a 30-dimension 
latent representation with minimal loss of clinically relevant information.
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Thank you for your attention

Any Questions?
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