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The electrocardiogram is a 10-second, 12-lead 4007
recording sampled at 500 Hz, producing about 2o |
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heartbeats. Each cycle includes the P wave (atrial 0 /L\\ |
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ECG signals are highly skewed due to intervals of
electrical inactivity, and morphology varies
widely across individuals—ranging from smooth
to notched or triphasic complexes—reflecting
differences in anatomy, physiology, lead
placement, and disease.
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Background on the problem

Deep learning performs well on ECG only when supported by large datasets, because a 10-
second, 12-lead ECG contains 60,000 high-dimensional datapoints with substantial
morphological variability and skewed distributions.

As data complexity increases, the amount of data needed to model it also increases. The
complexity of ECG signals poses challenges for Deep Learning (DL) due to high variance in
wave morphology, skewed data distribution, and temporal volatility. Hence, we need a
solution to the ECG data complexity problem in smaller datasets.

Smaller datasets—such as those involving rare conditions or invasive procedures e.g.,
post-ablation atrial fibrillation (A-Fib)—are insufficient for DL to generalize without
overfitting.

Variational autoencoders address this problem by learning compact
representations and reconstructing signals, enabling robust feature extraction
when data volume is limited. Our goal is to exploit such representations to build
reliable predictive models despite restricted sample sizes.
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Our Solution. The S-VAE Model

We propose a VAE-based framework with three novel variants—Stochastic
Autoencoder (SAE), Cyclical BVAE (CB-VAE), and Annealed BVAE (AB-VAE)—
to optimize ECG latent representations for high-fidelity signal reconstruction
and improved predictive performance, especially with limited-size training
datasets.

These variants balance reconstruction fidelity and latent space
regularization, enabling DL on limited ECG datasets and facilitate integration
with simpler algorithms like tree-based models, offering an alternative to
standard DL methods like Convolutional Neural Networks (CNNs).

We trained these novel VAEs on >1 million ECGs to represent representative
beat x-y-z-lead ECG into 30 encodings. A compression of 60,000 data points
to 30. VAE extracted encodings were used to train LGBM models to classify
labels from conventional ECGs.
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Model Pipeline

All VAE models featured an encoder-

—> U —
decoder structure built with \ /

Convolutional Neural Networks (CNNSs).
Encoder Decoder '
X —» € > 7 —» X
The encoder included four 2D AR NSl
convolutional layers (filters: 256, 256,
512, 512) with a filter width of 9, stride of / |, o L \

2, TanH activations, and batch
normalization, followed by two fully
connected layers with L2 regularization
(0.01) and dropout (0.25).

The latent variable z was sampled from a Gaussian distribution (except the SAE, which is a
stochastic distribution) via the reparameterization trick.

The decoder mirrored the encoder with two fully connected layers and four transpose
convolutional layers (filters: 512, 256, 128, 3) to reconstruct the signal. Models were

trained on ~1.1 million ECGs using TensorFlow, Adam optimizer (learning rate: 0.000001),
50 epochs, and a batch size of 32, on a GeForce RTX 3090 with 128 GB RAM and an AMD
Ryzen 9 3900XT CPU, though inference is lightweight and hardware agnostic.
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Data Preprocessing
We reduced 10-sec ECG recordings to a 750ms representative beat, created by the Philips
IntelliSpaceECG system to produce a mean average beat from the 10 second signal. This was
notch filtered (60 Hz), Butterworth band-pass filtered (0.05Hz low, 60Hz high), and median filtered
(rolling window width of 11). The use of the representative beat captures key morphological
features while shrinking data size by eliminating the redundant multiple cardiac cycles.

Then, using Kors’s conversion matrix, we transformed the eight independent ECG
leads (I, Il, V1-V6) into three orthogonal X (right to left), Y (cranial to caudal), and Z
(anterior to posterior) leads, reducing the 1,000Hz 120,000-datapoint 10-sec 12-
lead ECG to a 2250-datapoint 750ms 3-lead ECG as shown in Figure 1.
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KL Loss Beta Values Used

In the CB-VAE, we adopt a cyclical annealing schedule in which B varies from0to 5
across training, effectively toggling the model between three regimes: pure
autoencoder (=0), standard VAE (B=1), and B-VAE (B>1). At =0, the loss consists
solely of reconstruction error; at B=1, the model incorporates a conventional KL
penalty; and at B>1, the KL term is amplified to prioritize disentanglement.

Whereas the original cyclical annealing work cycled B between 0 and 1 with a hard
reset, our approach spans 0-5 without reset, rising over 10 epochs and decaying over
the next 10, yielding a 20-epoch cycle. This configuration accelerates convergence,
enabling usable reconstructions within approximately 10 epochs.

The AB-VAE applies a reverse annealing strategy in which B begins at 10 and declines
to 0 over 50 epochs. This allows the model to initially emphasize latent space
structure and disentanglement before shifting toward reconstruction fidelity,
resulting in superior generative output.

By contrast, the SAE fixes =0, removing the KL term entirely. This produces a
stochastic encoder trained only via reconstruction loss, learning whatever latent
distribution best minimizes error rather than approximating a Gaussian prior. While
the classical VAE framework targets Gaussian latent structure for generation, the SAE
strategically abandons that constraint to maximize reconstruction quality—
especially beneficial for downstream ECG tasks—while retaining some stochastic
advantages of VAEs.
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Original X vs Reconstruced X Original Y vs Reconstruced Y Original Z vs Reconstruced Z

—_X —_Y 600 4 _Z
—— Recon X 2004 —— Recon Y —— Recon Z
1501 Normal
100 400 4
$ 100 o]
= 200 -
7
&
S 501 -100 |
3 so
01 [}
-200
ol
~200 1
-300
=50 r T T T r T T T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 P
— X w04 — ¥ %001 — uallt
—— Recon X —— Recon Y —— Recon Z
150{ LBBB 504 400 4
04 300 1
100
>
i 501 200 ]
)
2 50
i ~100
= 100
. Reconstructed ECGs
~150
0 o]
-200
] from the VAE
504 ~250
T T T T T T T T T T T T T T T T —200 1 T T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 d .
_ - ~”_ encodings.
~—— Recon X 1001 ~—— Recon Y 100 4 ~—— Recon Z
75
w RBBB —_ Teet
50 4 50 4 u e - r I I n a
< 50 4
U') z:‘ 25 4 04 04
= 5 Orange=Reconstructe
- 5o
< 3 0 50 |
=251 ~100
~1001
— 50
o ~1501
~1501
> o =75
= w 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
V) = 200 1 — X — — z
o T —— Recon X 2004 —— ReconY 400 4 —— Recon Z
w0 BiV Paced
> 100 - 300 -
— — 04
> o s 200 1
@] s
) = & -2004 100
Q (W} 2 04
< ~1004 -400 1
—~ E ~100 1
—200 4 —600 4 =2004
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time (ms)



Model

Ist 250 ms (p wave)

2nd 250 ms (QRS)

3rd 250 ms (T wave)

Full signal MAE

Full signal MSE

Full signal DTW

MAE (uV) Avg + SD  MAE (uV) Avg + SD  MAE (uV) Avg = SD  MAE (uV) Avg + SD  (uV?) Avg + SD Avg + SD
PCA 19.1£6.5 29.5£7.3 2277£7.7 24.0£5.0 1842.9+840.0 667.9+£218.7
AE 11.2+3.0 23.2+£55 12.8+3.7 15.8£3.1 739.8+316.1 313.7+£94.0
SAE 11.4+£2.7 31.74£8.1 12.7+£3.4 18.7£3.7 1131.3+£514.8 387.3+£131.8
VAE 11.9+2.7 28.9+6.9 12.84+3.3 17.9+3.5 996.2+433.2 361.2+115.5
B-VAE 11.5+£3.0 23.6£5.6 13.1£3.7 16.2+3.2 755.6+325.6 317.5+94.8
AB-VAE 11.2+3.0 22.6+5.3 12.8+3.8 15.7+£3.2 701.6+304.8 308.1+92.1
cf-VAE 12.0+2.6 31.9+6.6 14.0+£3.8 19.3+3.4 1202.74+491.3 400.6+130.3
Model X Signal MAE (uV) Y Signal MAE (uV) 7 Signal MAE (uV) X Signal DTW Y Signal DTW  Z Signal DTW
PCA 25.8+214 25.6+20.7 23.5+21.0 751.9+856.4 715.8+778.0 647.2+766.0
AE 16.3+13.4 16.9+13.1 16.5£13.2 338.0+412.4 337.0+£384.9 332.6+390.8
SAE 19.7+12.8 21.1£12.7 17.1+£11.9 429.54+404.8 455.94+406.5 340.0£362.3
VAE 18.9£14.0 20.5+14.4 16.44+11.8 400.4+413.1 419.5£400.1 327.94349.7
B-VAE 16.9+14.0 17.8+14.0 15.9+12.6 346.5+413.8 350.4+390.2 321.4+£376.6
AB-VAE 16.1+13.5 16.9+12.9 16.0+13.1 334.3+411.2 335.8+384.4 321.7+381.1
cB-VAE 20.6£14.9 22.0+£15.2 17.8£11.5 438.2+425.6 462.34+422.5 365.5£358.2
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MAE, MSE, and DTW for different models for

representative beat X, Y, Z-lead ECG reconstructions
(N=1,065,368)




Experiments and Results

We evaluated seven dimensionality-reduction approaches for ECG data: PCA, AE, SAE, VAE, [3-
VAE, CB-VAE, and AB-VAE. The SAE, CB-VAE, and AB-VAE represent novel VAE-based designs
incorporating mechanisms intended to address the unique demands of ECG representation
learning.

Incremental PCA from scikit-learn was configured to produce 30 components, matching the
30-dimensional latent encodings of the VAE models to ensure methodological parity. All
autoencoder variants were trained using a shared network architecture, differentiated only by
loss-function specification as outlined in later sections.

For downstream evaluation, we selected prediction of reduced left ventricular ejection fraction
(LVEF = 35%), the principal defining feature of heart failure with reduced ejection fraction. Our
benchmark was a CNN trained directly on 10-second, 12-lead ECG signals, based on Mayo
Clinic’s CNN architecture.

We then compared this baseline to Light Gradient Boosted Machine (LGBM)
models trained on latent encodings from each autoencoder. For LGBM, eight
hyperparameters were modified from defaults: Maximum Depth (15), Colsample
Bytree (0.9), Extra Trees mode (True), Top-K (100), Learning Rate (0.1), number of
estimators (1,000,000 with early stopping), and regularization parameters a and
A (0.95).
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Model QRS Duration (ms) AmplitudeQRs_3D (},LV) VTIQRS_3D ([,LVS)
MAE = SD R MAE £ SD R- MAE + SD  R-

PCA 3.1+12.9 0.727 108.3+173.3 0.838  3.16t5.32 0.923
AE 8.7£13.8 0.687 108.8+175.3 0.835 3.684+5.96 0.903
SAE 8.3+13.2 0.712 109.1&176.6 0.835  3.42+5.64 0914
VAE 84+t13.4 0.705 109.7x=177.6 0.833  3.46%+5.72 00911

B-VAE 8.5x13.5 0.697 109.6t177.4 0.833  3.54+£5.83 0.908
AB-VAE 834133 0.709 107.7£175.3 0.837 3.4445.68 0.912
cf-VAE  8.34+13.3 0.708 110.2+177.9 0.832  3.44+5.69 0.912

Prediction in test set of ECG measurements with
LGBM using representative beat X, Y, Z-lead ECG
encoded variables (n=97,464)
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Model RBBB (8.06% Prevalence) LBBB (3.99% Prevalence)
AUROC Sensitivity AUROC Sensitivity
PCA 0.9435 0.894 0.9637 0.939
AE 0.9390 0.881 0.9618 0.938
SAE 0.9504 0.906 0.9701 0.948
VAE 0.9507 0.904 0.9688 0.950
B-VAE 0.9473 0.895 0.9689 0.949
AB-VAE 0.9499 0.903 0.9686 0.947
cfB-VAE 0.9516 0.908 0.9697 0.949

Prediction in test set of RBBB and LBBB with
LGBM using representative beat X, Y, Z-lead ECG
encoded variables (n=97,464), specificity set at 0.9.
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Model Reduced LVEF (<35%) LVEF, %
AUROC Sensitivity MAE =+ SD R-

PCA 0.799 0.616 8.86+12.15  0.247
AE 0.810 0.656 9.05£12.42  0.213
SAE 0.820 0.665 8.96+12.28 0.231
VAE 0.819 0.676 8.95+12.26  0.233
B-VAE 0.812 0.663 9.05£12.39  0.217
AB-VAE 0.818 0.666 8.96+12.29  0.229
cB-VAE 0.820 0.675 8.97+12.28 0.231
ECG statistics 0.761 0.554 9.55£12.92  0.148

Prediction in test set of reduced LVEF with LGBM
using representative beat X, Y, Z-lead ECG encoded
variables in test set (n=30,554). Reduced LVEF
14.09% prevalence, specificity set at 0.9.
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Performance of different machine learning models
in predicting reduced LVEF (LVEF<35%) from ECG data
(Holdout Test Set: n=15,987), specificity set at 0.9.
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¢ trained with raw signal data
b trained with summary statistics and SAE encodings.

Model Training Sample Size  AUROC  Sensitivity
CNN, 100% (n=143,644) 0.909 0.742
9.5% (n=13,568) 0.630 0.177
ResNet, 100% (n=143,644) 0.892 0.672
10% (n=14,364) 0.855 0.586
1% (n=1,436) 0.811 0.462
g 0.1% (n=143) 0.705 0.281
& LGBM, 100% (n=143,644) 0.901 0.702
5 10% (n=14,364) 0.870 0.610
= 1% (n=1,436) 0.846 0.525
g 0.1% (n=143) 0.761 0.361
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SAEs outperform the other variants

The strong downstream performance of the SAE indicates that emphasizing
reconstruction fidelity rather than latent space regularization can be advantageous
for ECG representation learning. Unlike conventional VAE variants, the SAE
optimizes exclusively for reconstruction error, enabling it to capture ECG
variability more effectively. Notably, the inferior results of the deterministic AE
underscore the contribution of stochastic sampling in enhancing generalizability.

SAE encodings consistently outperformed alternatives across predictive tasks
while maintaining high-quality signal reconstruction, challenging the
prevailing assumption that explicit latent regularization is universally beneficial.
These findings suggest that reconstruction-centric objectives canyield
encodings that are equally—and in some cases more—informative. Moreover,
the broader VAE family retains the capacity to generate synthetic signal data,
providing additional utility beyond compression and prediction.
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Conclusions

These findings demonstrate that VAE-derived encodings enable conventional
machine learning models to achieve performance comparable to deep learning
systems trained on full-resolution ECG waveforms, despite requiring far less data
and computational overhead. This capability is particularly advantageous for
diagnostic development in minority cohorts, rare disease contexts, or invasive
clinical settings where large datasets are impractical or unavailable.

More broadly, our results show that the intrinsic complexity and heterogeneity of
ECG signals can be effectively compressed via PCA and VAE frameworks for diverse
downstream predictive tasks. Specifically, we show that a 10-second, 12-lead ECG
comprising roughly 60,000 samples at 500 Hz can be distilled to a 30-dimension
latent representation with minimal loss of clinically relevant information.




The UNIVERSITY of KANSAS

Medical CENTER

Thank you for your attention

Any Questions?



	Slide 1: The University of Kansas Medical Center   ECG Latent Feature Extraction with Autoencoders for Downstream Prediction Tasks Chris Harvey Sumaiya Shomaji Zijun Yao Amit Noheria 
	Slide 2: ECG Data  The electrocardiogram is a 10-second, 12-lead recording sampled at 500 Hz, producing about 60,000 data points and capturing 8–17 heartbeats. Each cycle includes the P wave (atrial depolarization, green/left), QRS complex (ventricular de
	Slide 3: Background on the problem 
	Slide 4: Our Solution. The S-VAE Model  We propose a VAE-based framework with three novel variants—Stochastic Autoencoder (SAE), Cyclical βVAE (Cβ-VAE), and Annealed βVAE (Aβ-VAE)—to optimize ECG latent representations for high-fidelity signal reconstruct
	Slide 5: Model Pipeline All VAE models featured an encoder-decoder structure built with Convolutional Neural Networks (CNNs).   The encoder included four 2D convolutional layers (filters: 256, 256, 512, 512) with a filter width of 9, stride of 2, TanH act
	Slide 6: Data Preprocessing We reduced 10-sec ECG recordings to a 750ms representative beat, created by the Philips IntelliSpaceECG system to produce a mean average beat from the 10 second signal. This was notch filtered (60 Hz), Butterworth band-pass fil
	Slide 7: KL Loss Beta Values Used In the Cβ-VAE, we adopt a cyclical annealing schedule in which β varies from 0 to 5 across training, effectively toggling the model between three regimes: pure autoencoder (β=0), standard VAE (β=1), and β-VAE (β>1). At β=
	Slide 8: Reconstruction Quality  Reconstructed ECGs from the VAE encodings. Blue=Original Orange=Reconstructed
	Slide 9: MAE, MSE, and DTW for different models for representative beat X, Y, Z-lead ECG reconstructions (N=1,065,368)
	Slide 10: Experiments and Results We evaluated seven dimensionality-reduction approaches for ECG data: PCA, AE, SAE, VAE, β-VAE, Cβ-VAE, and Aβ-VAE. The SAE, Cβ-VAE, and Aβ-VAE represent novel VAE-based designs incorporating mechanisms intended to address
	Slide 11: Prediction in test set of ECG measurements with LGBM using representative beat X, Y, Z-lead ECG encoded variables (n=97,464)
	Slide 12: Prediction in test set of RBBB and LBBB with LGBM using representative beat X, Y, Z-lead ECG encoded variables (n=97,464), specificity set at 0.9.
	Slide 13: Prediction in test set of reduced LVEF with LGBM using representative beat X, Y, Z-lead ECG encoded variables in test set (n=30,554). Reduced LVEF 14.09% prevalence, specificity set at 0.9.
	Slide 14: Performance of different machine learning models in predicting reduced LVEF (LVEF≤35%) from ECG data (Holdout Test Set: n=15,987), specificity set at 0.9.
	Slide 15: SAEs outperform the other variants  The strong downstream performance of the SAE indicates that emphasizing reconstruction fidelity rather than latent space regularization can be advantageous for ECG representation learning. Unlike conventional 
	Slide 16: Conclusions  These findings demonstrate that VAE-derived encodings enable conventional machine learning models to achieve performance comparable to deep learning systems trained on full-resolution ECG waveforms, despite requiring far less data a
	Slide 17: Thank you for your attention  Any Questions? 

