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Abstract— The electrocardiogram (ECG) is an inexpen-
sive and widely available tool for cardiac assessment.
Despite its standardized format and small file size, the
high complexity and inter-individual variability of ECG
signals (typically a 60,000-size vector with 12 leads at
500 Hz) make it challenging to use in deep learning
models, especially when only small training datasets are
available. This study addresses these challenges by ex-
ploring feature generation methods from representative
beat ECGs, focusing on Principal Component Analy-
sis (PCA) and Autoencoders to reduce data complex-
ity. We introduce three novel Variational Autoencoder
(VAE) variants—Stochastic Autoencoder (SAE), Annealed
B-VAE (AB-VAE), and Cyclical 3-VAE (Cf-VAE)—and
compare their effectiveness in maintaining signal fidelity
and enhancing downstream prediction tasks using a Light
Gradient Boost Machine (LGBM). The AS-VAE achieved
superior signal reconstruction, reducing the mean absolute
error (MAE) to 15.7+3.2 uV, which is at the level of signal
noise.

Moreover, the SAE encodings, when combined with tradi-
tional ECG summary features, improved the prediction
of reduced Left Ventricular Ejection Fraction (LVEF),
achieving an holdout test set area under the receiver
operating characteristic curve (AUROC) of 0.901 with a
LGBM classifier. This performance nearly matches the
0.909 AUROC of state-of-the-art CNN model but requires
significantly less computational resources. Further, the
ECG feature extraction-LGBM pipeline avoids overfitting
and retains predictive performance when trained with less
data. Our findings demonstrate that these VAE encodings
are not only effective in simplifying ECG data but also
provide a practical solution for applying deep learning in
contexts with limited-scale labeled training data.

Keywords— Electrocardiogram, Dimensionality Reduction,
Variational Autoencoder, Signal Processing

I. INTRODUCTION

The electrocardiogram (ECG) is a non-invasive clini-
cal tool that records the heart’s electrical activity via
electrodes on the skin, typically as a 12-lead ECG over
10 seconds at 500 Hz, producing 60,000 data points.
The 10-sec ECG spans 8-17 cardiac cycles at usual
heart rates. Each cycle includes P wave (atrial depolar-
ization), QRS complex (ventricular depolarization), and
T wave (ventricular repolarization), with characteristics
like amplitude and duration varying heavily across leads
and different individuals, reflecting differences in car-
diac structure and function. The P wave is short, low
frequency and low amplitude; QRS complex is short,
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high frequency and high amplitude while the T wave is
long, low frequency and intermediate amplitude.

These waves and intervals between cardiac cycles are
interspersed with periods of zero electrical activity (or
electrical baseline) which makes the signal data distribu-
tion very skewed. All humans have unique hearts with
variations in size, anatomy and electrophysiology, ac-
counting for the interindividual differences in the ECG
signal. E.g., one person might have a QRS complex
amplitude of 0.25 mV and another 5 mV.

The morphology of each person’s ECG can be very
different, e.g., an ECG lead of one person might have a
smooth monophasic positive QRS complex (R wave)
while another might have a notched R wave while
another has triphasic Q-R-S deflections. Age, sex, body
structure, the specific lead in question and cardiac
diseases all affect the morphology of the ECG.

The complexity of ECG signals poses challenges for
Deep Learning (DL) due to high variance in wave
morphology, skewed data distribution, and temporal
volatility. This complexity and diversity makes it chal-
lenging for DL models to generalize from and requires
large training datasets to avoid overfitting. This problem
of inadequate training ECG samples for DL is especially
encountered for rare clinical outcomes like myocardial
infraction or invasive procedures like catheter ablation.
Our objective is to perform robust ECG feature ex-
traction to facilitate the training of effective predictive
models despite constraints on the sample size of training
datasets.

Traditional ECG simplification using summary statis-
tics (e.g., heart rate, QRS duration, etc. [1]) fails to
capture nuanced morphology differences. For instance,
two ECGs could have identical summary statistics but
exhibit completely different morphologies, such as Left
Bundle Branch Block (LBBB) versus Right Bundle
Branch Block (RBBB). Prior studies, like Kumar and
Chakrapani’s PCA-based approach [2] or Dasan and
Panneerselvam’s convolutional denoising Autoencoder
(AE) with LSTM [3], reduce ECG dimensionality but
often miss non-linear relationships critical for diagnosis.

Recent work has explored more advanced genera-
tive and representation-learning techniques to overcome
these limitations. Nishikimi et al. [4] developed a
variational autoencoder—based neural electrocardiogram
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synthesis model trained on signals generated by a finite-
element heart simulator, demonstrating the capacity of
VAEs to reproduce physiologically plausible ECG mor-
phology. Complementarily, Zhang et al. [S] proposed a
self-supervised ECG representation learning framework
using manipulated temporal-spatial reverse detection,
showing that meaningful ECG features can be learned
without explicit labels. These studies highlight the
growing use of VAEs and self-supervised methods for
modeling non-linear ECG dynamics, motivating our ex-
ploration of structured latent representations optimized
for morphology-specific clinical tasks.

Variational Autoencoders (VAEs) have been used for
data augmentation, but can also address these limitations
by capturing non-linear features and providing a struc-
tured latent space for better generalization. VAE models
provide an opportunity for effectively reducing ECG
data dimensionality without imposing linear constraints
and enable extraction of a limited set of variables
capturing the entire ECG information. We sought to
optimize the VAE framework by testing different ap-
proaches to the self-supervised learning. Therefore, we
assess different loss functions to achieve our objective of
dimensionality reduction yet preserving ECG morpho-
logical information and downstream predictions from
the extracted features.

We propose a VAE-based framework with three novel
variants—Stochastic Autoencoder (SAE), Cyclical B-
VAE (CB-VAE), and Annealed BVAE (AfB-VAE)—to
optimize ECG latent representations for high-fidelity
signal reconstruction and improved predictive perfor-
mance, esp. with limited-size training datasets. These
variants balance reconstruction fidelity and latent space
regularization, enabling DL on limited ECG datasets
and facilitate integration with simpler algorithms like
tree-based models, offering an alternative to stan-
dard DL methods like Convolutional Neural Networks
(CNNs).

II. METHODS
II-A. Data

We reduced 10-sec ECG recordings to a 750 ms rep-
resentative beat, created by the Philips IntelliSpace-
ECG system to produce a mean average beat from
the 10 second signal. This was notch filtered (60 Hz),
Butterworth band-pass filtered (0.05 Hz low, 60 Hz
high), and median filtered (rolling window width of
11). The use of the representative beat captures key
morphological features while shrinking data size by
eliminating the redundant multiple cardiac cycles.

Then, using Kors’s conversion matrix [6], we trans-
formed the eight independent ECG leads (I, II, V1-V6)
into three orthogonal X (right to left), Y (cranial to
caudal), and Z (anterior to posterior) leads, reducing

979-8-3315-7370-6/25/$31.00 ©2025 IEEE

IEEE SPMB 2025

Page 2 of 8

the 1000 Hz 120,000-datapoint 10-sec 12-lead ECG
to a 2250-datapoint 750 ms 3-lead ECG as shown in
Figure 1.

For training stability, we applied global absolute max
scaling, normalizing signals to [-1, 1] by dividing by
the dataset’s maximum absolute amplitude, followed by
mean subtraction to help the electrical baseline be close
to or equal to zero while minimizing noise.

Step 1 Step 2 Step 3
12 Lead, 10 Second ECGs 12 Lead, 0.75 Second ECGs 3 Lead, 0.75 Second ECGs
(500Hz) (1000Hz) (1000Hz)
VAl Y Wt
. A Kors Matrix
. » . > o
. .
ve
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LGBM Downstream Tasks
30-vector
encodings

"

Figure 1. Data pipeline for downstream prediction tasks. Con-
verting from 10 s data to 0.75 s to X,Y,Z beats to 30-vector
encoding.

Encoder
Network

Unlike z-score normalization (per-patient or global),
which reduces inter-patient amplitude differences, abso-
Iute max scaling preserves these clinically important rel-
ative differences. This approach combines the centering
benefits of z-score normalization with the preservation
of intra- and inter-patient amplitude ratios critical for
ECG analysis.

This approach is computationally efficient compared to
using 10 second data. The advantage of a representative
beat over 10 second data is signal fidelity, reduced data
complexity, and training speed.

The downside to the representative beat approach is
crucial information about specific health conditions can
be lost entirely such as beat-to-beat variance in pa-
tients with atrial fibrillation or premature ventricular
complexes. This can be crucial for both diagnostics and
screening and for robustness within the model. Future
publications will be done from our team on modeling
10 second data with this VAE approach.

Preliminary work shows that this method can be done

on 10 second data with as good or better results on
predicting signal morphology and certain downstream
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prediction tasks with a slightly altered loss function.
Those results will be published in future work on this
project.

This project was approved by The University of Kansas
Medical Center IRB (STUDY00160252). Our dataset,
comprised of 1,065,368 twelve-lead ECGs obtained at
our medical center between 2008-2022, was split by
unique patient IDs into training (90%) and test (10%)
sets. ECGs were linked to echocardiographic data when
available on querying Healthcare Enterprise Repository
for Ontological Narration (HERON) [7][8]. The average
age was 64.57 £ 15.4 years old, average sex male
56.74%, and ethnically 77.02% White, 14.84% Black,
0.88% Asian, and 7.26% Other. The data was gathered
from multiple machines on different locations within
our health system. This data represents a wide variety
of clinical scenarios and health outcomes, which should
allow our models to generalize across outcomes.

II-B. Overview of the Models

We compare 7 models to reduce the dimensionality of
ECG data: PCA, AE, SAE, VAE, 3-VAE, C3-VAE, and
AB-VAE. The SAE, CB-VAE, and AB-VAE are novel
implementations of VAEs, each with unique features
tailored to address challenges in ECG data encoding.

The PCA model was trained using the Incremental
PCA method from the sci-kit learn library. It was
configured to produce 30 components to match the 30
latent encodings generated by the VAESs, enabling a fair
comparison between different methods. The AE and the
VAE variants (SAE, VAE, BVAE, CB-VAE, AB-VAE)
were trained using the same architecture, with a tailored
loss function specific to each model, as discussed in
subsequent sections.

II-C. Overview of VAEs

All VAE models featured an encoder-decoder structure
built with Convolutional Neural Networks (CNNs). The
encoder included four 2D convolutional layers (filters:
256, 256, 512, 512) with a filter width of 9, stride of 2,
TanH activations, and batch normalization, followed by
two fully connected layers with L2 regularization (0.01)
and dropout (0.25). The latent variable z was sampled
from a Gaussian distribution (except the SAE, which
is a stochastic distribution) via the reparameterization
trick:

7=u+00¢ (D

Where z is the latent variable encoding, u is the popula-
tion mean, o is the standard deviation of the population
distribution, and € is a small randomly sampled value
to allow for back propagation via the reparameterization
trick [9]. The decoder mirrored the encoder with two
fully connected layers and four transpose convolutional
layers (filters: 512, 256, 128, 3) to reconstruct the
signal. Models were trained on ~1.1 million ECGs using
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Figure 2. Overview of VAE architecture

TensorFlow, Adam optimizer (learning rate: 0.000001),
50 epochs, and a batch size of 32, on a GeForce RTX
3090 with 128 GB RAM and an AMD Ryzen 9 3900XT
CPU, though inference is lightweight and hardware-
agnostic. The general model architecture can be seen
in Figure 2. The model’s architecture can be found here
[10].

1I-D. Modified ELBO Loss

The reconstruction process is guided by an Evidence
Lower Bound (ELBO) loss function that combines
a weighted Mean Squared Error (MSE) between the
original and reconstructed signals, a Kullback-Leibler
(KL) divergence term to regularize the latent space
and promote feature disentanglement [11]. The KL loss
measures the difference between the learned latent space
distribution and a prior standard normal distribution. Its
purpose is to regularize the latent space by forcing the
encoder to output a probability distribution, defined by
mean ({;) and log variance (In(o;)), that is close to the
prior distribution.

The KL Loss helps smooth the latent space which is
useful if the VAE is used for augmented data generation.
A B term is used to control the balance between recon-
struction quality and latent space regularization. Each
250-ms section of the signal (P wave, QRS complex,
and T wave) has unique weights that are selected to
diminish the effects of differences in their amplitudes.
This allows the model to focus evenly across all the
waves and accurately reconstruct all of them without
giving priority to the higher amplitude QRS complex.

The loss function Lg is given below
Lg =Lg+BKL 2
Lg = 0p-Lp+ 0Ogrs - Lgrs + 671 Lt 3)
KL=—0.5 (1 +1n(02) — (1:)? — e1"<0z2>) )

Where Lg is the total loss of the model by which the
model’s gradient is updated. Where Lg is a weighted
MSE for the P, QRS, and T wave segments where
Lpjgrs/T is the MSE between the input x and its re-
construction x’ for each segment, and KL is the closed-
form expression for the KL divergence between the
learned latent Gaussian g(z|x) = .4 (li;,62) and the
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unit Gaussian prior p(z) = A47(0,1). We used weights,
Op = 20.0, Ogrs = 10.0 and 67 = 15.0, to balance
reconstruction across the segments, countering the QRS
complex’s higher amplitude, which would otherwise
dominate training loss using unweighted MSE. The KL
term ensured smoothness in the encodings and promote
feature disentanglement. B = 3 was selected for B-VAE
to enhance a smooth latent space structure.

II-E. Overview of Novel Variants

For the CB3-VAE, we implemented a cyclical anneal-
ing schedule where the values of § range from O to
5, changing each epoch during training. This cycling
means that the model alternates between three different
loss functions: AE (B = 0), VAE (8 = 1), and 3-VAE
(B>1). At B=0, the model is essentially just an AE
where the loss function only includes the reconstruction
error, Lg. At B=1, the model is a regular VAE with
a KL loss and error term[9]. At B>1, there is an
additional term added to increase the model’s focus on
disentanglement by enhancing the effect of KL on the
total loss[12].

By cycling from 0 to 5 we make the model go through
periods of focusing purely on reconstruction and periods
where the model focuses more on understanding the
abstract interaction between the data points. The original
paper which introduced cyclical annealing KL loss [13]
had the 8 term cycle between 0 and 1. They also had 8
hard reset back to 0 from 1. Instead, we propose to have
the B term go between 0 and 5 without a hard reset. 3
goes from 0 to 5 in 10 epochs and 5 to 0 in 10 epochs
with a complete cycle every 20 epochs. This cyclical
annealing approach accelerates convergence, enabling
the model to produce usable reconstructions within just
10 epochs.

The AB-VAE, on the other hand, utilizes a reverse
annealing process. In this variant, the 8 value starts at
10 and is gradually reduced to O over the course of 50
epochs. This process allows the model to initially focus
on disentanglement and the structure of the latent space
before shifting its emphasis toward reconstruction. By
beginning with a high B value, the AB-VAE emphasizes
the regularization of the latent space, which can lead to
more meaningful and distinct features in the encoded
representations. This produced a model which was ex-
ceptionally good at reconstruction fidelity.

For the SAE, the value of B was set to 0, which omits
the KL term altogether. This essentially creates an AE
with a stochastic latent distribution, z, which is only
trained using the reconstruction loss. So, instead of
learning a Gaussian distribution from the KL loss, it
learns the distribution which minimizes the reconstruc-
tion loss. The purpose of the VAE architecture was
to create a Gaussian distribution for data generation
purposes. The SAE is a counter-intuitive departure from
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that to create an encoder which only focuses on the
reconstruction of the ECG signal. The SAE allows for
a more flexible and data-driven approach to encoding
which improves the performance of downstream tasks
while retaining some benefits of VAEs.

II-F. Comparison of Models for Downstream Predic-
tion

To compare downstream clinically relevant predictions,
we used prediction of reduced Left Ventricular Ejection
Fraction (LVEF <35%). LVEF is the percent of blood
that is pumped by the left ventricle with each contrac-
tion and reduced LVEEF is the defining feature of Heart
Failure with Reduced Ejection Fraction. The baseline
comparator CNN trained on the full 10-sec 12-lead ECG
data we used for this paper is our implementation of the
CNN model architecture from Mayo Clinic[14]. This
is a state-of-the-art CNN architecture which has been
used to model a variety of targets (sex, age, LVEF,
etc[14][15]). The performance of our CNN model for
reduced LVEF in our test set has AUROC 0.909 which
is in the range published by other centers [16].

We compare the performance of our baseline CNN
model trained on raw ECG signal data with Light
Gradient Boosted Machine (LGBM) models [17] trained
on the encodings from our AE models. For the LGBM
models, we only altered 8 parameters from their de-
fault values: Max Depth (15), Colsample Bytree(.9),
Extra Trees (True), Top K (100), Learning Rate (0.1),
Num Estimators (1,000,000 with early stopping), Reg
Alpha/Lambda (0.95).

III. EXPERIMENTS AND RESULTS

III-A. Signal Reconstruction

We evaluated seven models—PCA, AE, SAE, VAE,
B-VAE, CB-VAE, and AB-VAE—for their ability to
reconstruct ECG signals, using Mean Absolute Er-
ror (MAE), Mean Squared Error (MSE), and Dy-
namic Time Warping (DTW) scores shown in Table
1. The AB-VAE achieved the best performance, with
an MAE of 15.743.2 uyV—in range of baseline signal
noise—followed closely by the pure AE, 15.8+3.1 uV.
PCA performed notably worse, with a DTW score over
twice that of AB-VAE. This highlights the efficiency of
VAE-based models, particularly Af-VAE, in preserving
ECG signal fidelity.

Reconstructions of X, Y and Z leads from the 30 latent
variables showed that the Z lead reconstructed 11.2%
and 12.5% better than X and Y leads, respectively, pos-
sibly due to its unique morphological features related to
heart-torso anatomical relationships (Table 2). Examples
of the original signal and the reconstruction from the
AB-VAE model overlaid across varied ECG types are
shown in Figure 3.

December 6, 2025



C. Harvey, et al.: Compairson of Autoencoder ...

Page 5 of 8

Table 1. MAE, MSE, and DTW for different models for representative beat X, Y, Z-lead ECG reconstructions (N=1,065,368)

Model 1st 250 ms (p wave) 2nd 250 ms (QRS) 3rd 250 ms (T wave) Full signal MAE Full signal MSE Full signal DTW
MAE (uV) Avg + SD  MAE (uV) Avg + SD  MAE (uV) Avg + SD  MAE (uV) Avg + SD  (uV?) Avg 4+ SD Avg + SD
PCA 19.1+6.5 29.5+7.3 227477 24.0+5.0 1842.9+840.0 667.94+218.7
AE 11.2+3.0 23.245.5 12.8+3.7 15.84+3.1 739.84+316.1 313.7+£94.0
SAE 11.442.7 31.748.1 12.7+3.4 18.74+3.7 1131.3£514.8 387.3+£131.8
VAE 11.942.7 28.9+6.9 12.8+3.3 17.943.5 996.24+433.2 361.2£115.5
B-VAE 11.5£3.0 23.6+5.6 13.1£3.7 16.24£3.2 755.6+325.6 317.5£94.8
AB-VAE 11.2+3.0 22.6+5.3 12.84+3.8 15.7+3.2 701.6+304.8 308.1+92.1
cf-VAE 12.04£2.6 31.946.6 14.0+3.8 19.3+3.4 1202.7+£491.3 400.6+130.3

Table 2. Comparison of MAE and DTW for X, Y, and Z signals across models (N=97,464)

Model X Signal MAE (uV) Y Signal MAE (uV)  Z Signal MAE (uV) X Signal DTW Y Signal DTW  Z Signal DTW
PCA 25.8+£21.4 25.6+20.7 23.5421.0 751.9£856.4 715.8£778.0 647.24766.0
AE 16.3+13.4 16.9+13.1 16.5£13.2 338.0£412.4 337.0£384.9 332.6+390.8
SAE 19.7+12.8 21.1+12.7 17.1£11.9 429.5+404.8 455.94+406.5 340.0+£362.3
VAE 18.9£14.0 20.5+14.4 16.4£11.8 400.4£413.1 419.54+400.1 327.94349.7
B-VAE 16.9+14.0 17.8+£14.0 15.9+£12.6 346.5+£413.8 350.4+390.2 321.4+376.6
AB-VAE 16.1+£13.5 16.9+12.9 16.0+13.1 334.3+411.2 335.8+384.4 321.7+381.1
cfB-VAE 20.6+14.9 22.0+15.2 17.8+11.5 438.24425.6 462.3+422.5 365.54+358.2

Table 3. Prediction in test set of ECG measurements with
LGBM using representative beat X, Y, Z-lead ECG encoded
variables (n=97,464)

Table 4. Prediction in test set of RBBB and LBBB with
LGBM using representative beat X, Y, Z-lead ECG encoded
variables (n=97,464), specificity set at 0.9.

Model QRS Duration (ms) Amplitudegrsap (UV)  VTIgrssp (UVs) Model RBBB (8.06% Prevalence) LBBB (3.99% Prevalence)
MAE + SD R* MAE £ SD I MAE + SD  R? AUROC Sensitivity AUROC Sensitivity
PCA 8.1+12.9 0.727 108.3+173.3 0.838  3.16+£5.32 0.923 PCA 0.9435 0.894 0.9637 0.939
AE 8.7+£13.8 0.687 108.8+£1753 0.835  3.68+£5.96 0.903 AE 0.9390 0.881 0.9618 0.938
SAE 8.3+132 0.712 109.1£176.6 0.835  3.42+5.64 0914 SAE 0.9504 0.906 0.9701 0.948
VAE 844134 0.705 109.7£177.6 0.833  3.46+5.72 0911 VAE 0.9507 0.904 0.9688 0.950
B-VAE 85+13.5 0.697 109.6+177.4 0.833  3.54+5.83 0.908 B-VAE 0.9473 0.895 0.9689 0.949
AB-VAE 8.3+133 0.709 107.7+175.3 0.837  3.44+5.68 0.912 AB-VAE 0.9499 0.903 0.9686 0.947
c¢B-VAE  8.3+133 0.708 110.2+177.9 0.832  3.44+5.69 0912 cf-VAE 0.9516 0.908 0.9697 0.949

III-B. Prediction of QRS Measurements

Using the 30 latent variables from each model, we
trained separate LGBM models to predict each target
label: QRS duration, 3D QRS amplitude, and scalar 3D
QRS voltage-time integral (VTIgrs—3p). For reference,
the average measured QRS duration was 94.8+15.9
ms, amplitudegrs—3p was 940.7+326.1 puV and the
VTlpgrs—3p was 30.03£10.94 uVs, and these were pre-
dicted from the encodings with an error in the range of
approximately 10%. PCA excelled with an R? of 0.923
for VTIgrs—3p, reflecting its ability to extract separable
features. Among VAEs, the SAE performed the best
with an R? of 0.914, demonstrating that the encodings
effectively capture critical signal characteristics (Table
3).

III-C. Prediction of Bundle Branch Blocks

The right and left bundle branches are the main con-
duction branches for ventricular activation. Conduction
delay or block in either of these, RBBB or LBBB,
lead to increased QRS duration, both with distinctive
QRS morphological alterations. We used the Ameri-
can Heart Association/American College of Cardiology
Foundation/Heart Rhythm Society criteria for diagnosis
of RBBB and LBBB to develop custom code to identify
these conduction abnormalities [18].
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Separate LGBM models were trained on the 30 encoded
variables to predict RBBB and LBBB classification,
with VAEs outperforming PCA and AE, Table 4. The
prevalence rate of LBBB was 3.99% and RBBB was
8.06%. The CB-VAE achieved the highest AUROC for
RBBB (0.9516) and SAE for LBBB (0.9701). Despite
imbalanced label distributions, VAEs maintained high
sensitivity and specificity, indicating their capability to
capture complex QRS morphological variations.

1II-D. Downstream Clinically-relevant Prediction

The high reconstruction fidelity and predictive power
of VAE encodings validate their role as surrogates
for raw ECG signals. Unlike summary statistics, these
encodings preserve subtle morphological details. This
enables simpler tree-based (LGBM, Random Forest) or
regression models to utilize the encodings effectively
and achieve superior predictions compared to models
trained on ECG summary statistics.

To make comparisons, we used LVEF <35% as
the clinically-relevant downstream prediction. We had
303,265 ECGs on 105,370 patients paired with a unique
echocardiogram within 45 days in total for both training
and testing sets. Reduced LVEF label was present in
14.09% of the ECGs. The SAE encodings yielded
the highest AUROC (0.8203) in binary classification,
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Figure 3. Four examples (Normal, LBBB, RBBB and Biventricular Paced) of signal reconstruction (orange) with original signal
(blue) overlaid from the AB-VAE model. The model can reconstruct with a variety of noises and generally smooths out the

artifacts.

surpassing traditional ECG statistics (AUROC 0.7605)
and PCA (AUROC 0.799) shown in Table 5. Combining
SAE encodings with traditional ECG features improved
the AUROC to 0.901, nearing a state-of-the-art CNN

Table 5. Prediction in test set of reduced LVEF with LGBM
using representative beat X, Y, Z-lead ECG encoded variables
in test set (n=30,554). Reduced LVEF 14.09% prevalence,
specificity set at 0.9.

Model Reduced LVEF (<35%) LVEE, %
AUROC Sensitivity MAE + SD I

PCA 0.799 0.616 8.86+12.15  0.247
AE 0.810 0.656 9.05+12.42  0.213
SAE 0.820 0.665 8.96+12.28  0.231
VAE 0.819 0.676 8.95+12.26  0.233
B-VAE 0.812 0.663 9.05+12.39  0.217
AB-VAE 0.818 0.666 8.96+12.29  0.229
cB-VAE 0.820 0.675 8.97+12.28  0.231
ECG statistics 0.761 0.554 9.554+12.92  0.148
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using the original signal, 0.909. With only 10% training
data, the LGBM model maintained an AUROC of 0.870,
while the CNN dropped to 0.630, shown in Table 6.

Table 6. Performance of different machine learning models
in predicting reduced LVEF (LVEF<35%) from ECG data
(Holdout Test Set: n=15,987), specificity set at 0.9.

Model Training Sample Size ~ AUROC  Sensitivity
CNN, 100% (n=143,644) 0.909 0.742
9.5% (n=13,568) 0.630 0.177
ResNet,, 100% (n=143,644) 0.892 0.672
10% (n=14,364) 0.855 0.586
1% (n=1,436) 0.811 0.462
0.1% (n=143) 0.705 0.281
LGBM, 100% (n=143,644) 0.901 0.702
10% (n=14,364) 0.870 0.610
1% (n=1,436) 0.846 0.525
0.1% (n=143) 0.761 0.361

¢ trained with raw signal data
b trained with summary statistics and SAE encodings.
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These results highlight that VAE encodings allow tradi-
tional ML models using substantially less training data
and computational resources to perform comparably to
DL models trained on full ECG signals. This approach
would facilitate the development of ECG diagnostic
tools for minority populations, rare health conditions,
and invasive modalities where large training datasets are
not available.

III-E. VAE Performance

The SAE’s unexpected success at ECG-based down-
stream prediction tasks suggests that prioritizing recon-
struction quality over latent space regularization (via
KL divergence) is beneficial. Unlike other VAEs, SAE
optimizes solely for reconstruction loss, better capturing
ECG variability. However, the pure AE’s inferior per-
formance highlights the value of stochastic sampling in
VAEs for generalizability.

III-F. Discussion

Our study presents significant advancements in applying
autoencoder techniques, particularly our novel VAE
variants, to ECG data analysis in clinical diagnostics.
By effectively reducing high-dimensional ECG signals
to a compact set of latent variables without requiring
extensive datasets, we address a critical challenge in
utilizing ECG data in machine learning models. Our
novel VAE variants, particularly the A-VAE and SAE,
demonstrate superior performance in preserving essen-
tial morphological features of the ECG by capturing
non-linear relationships within the data, which is cru-
cial for accurate clinical interpretations. Compared to
traditional methods like PCA, our models better retain
clinically relevant information, as evidenced by the
improved prediction of complex ECG features such as
bundle branch blocks and reduced LVEF. This enhanced
capability leads to improved diagnostic accuracy, which
is particularly impactful for conditions like heart failure
where early detection can significantly alter patient
outcomes.

The PCA components may have shown less favorable
results as PCA captures only linear subspace variance
and can distribute morphology information across many
principal components. Whereas nonlinear autoencoders
and VAEs can model nonlinear morphological variation
(amplitude, notches, multi-modal QRS shapes) more
compactly. Which may help with not only morphology
prediction but also complex nonlinear interactions such
as various clinical prediction tasks. This difference
explains why the AE and VAE variants achieve lower
MAE/DTW than PCA with the same 30-dimension
encoding shape while also achieving higher quality
prediction on clinical tasks.

By accommodating the inherent variability of ECG

signals among individuals—through the SAE’s focus
on reconstruction quality over latent space regulariza-
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tion—our approach allows for more personalized and
accurate assessments, aligning with the move towards
personalized medicine. Additionally, enabling robust
predictive models in environments with limited datasets
contributes to more equitable healthcare delivery by
providing advanced diagnostic capabilities across under-
represented and diverse populations. This extends the
utility of VAEs in ECG analysis beyond interpretability
to practical predictive performance, offering a pathway
to integrate these models into existing clinical work-
flows even with smaller datasets.

IV. CONCLUSIONS AND FUTURE WORK

This study demonstrates that ECG data, despite its
inherent complexity and variability, can be effectively
reduced using PCA and VAEs for a wide range of
downstream prediction tasks. Our approach shows that
60,000 data points in a full 10-sec 12-lead ECG at
500 Hz can be reduced to 30 latent variables with
minimal information loss. While PCA remains a strong
contender for basic feature extraction, its limitations
become apparent in more complex prediction tasks
where access to the full range of ECG signal details
is crucial. In these scenarios, the novel VAE variants,
particularly the SAE and CB-VAE, demonstrate high-
fidelity signal reconstructions and accurate downstream
predictions. The SAE encodings stood out, excelling in
all prediction tasks while also providing good signal
reconstruction. This finding challenges the conventional
wisdom that regularizing the latent space is always ben-
eficial, suggesting instead that a focus on reconstruction
quality can yield equally, if not more, valuable results.
In addition, VAEs can be used for synthetic signal data
generation.

The deficiency of our method is that the representative-
beat encodings lack the beat-to-beat information as they
are created from one representative heartbeat. The 10-
sec data is crucial for cardiac rhythm and arrhythmic
detection and additionally captures information on au-
tonomic nervous function and susceptibility to arrhyth-
mogenesis. The next frontier for complexity reduction
research for ECGs is to encode the full 10-sec signal.

By continuing to refine these encoding techniques, we
aim to create more robust diagnostic tools that can be
applied to minority populations, rare health conditions
and invasive cardiac procedures, ultimately enhanc-
ing the accessibility and effectiveness of ECG-based
diagnostics. In future work, we will explore clinical
applications of these methods in such prediction tasks
that currently lack large-scale training datasets.
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