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Abstract— A non-invasive brain—computer interface (BCI)
system based on electroencephalogram (EEG) signals is
presented to facilitate intuitive control of assistive devices
for individuals with motor impairments. EEG recordings
corresponding to actual and imagined motor movements
are transformed into two-dimensional representations us-
ing the Gramian Angular Summation Field (GASF) tech-
nique, effectively encoding temporally significant fea- tures.
The resulting GASF images are classified using the Goog-
LeNet convolutional neural network architecture, achieving
a classification accuracy of up to 94.4% across both real and
imagined movement tasks. Experimental results demon-
strate that the proposed model attains higher accuracy in
recognizing actual movements compared to imagery-based
movements, indicating its potential as a practical solution
for reliable motor intention decoding in assistive and reha-
bilitative applications.

Keywords— Motor Imagery, Convolutional Neural Networks,
Gramian Angular Summation Field, Electroencephalogram.

1. INTRODUCTION

Motor impairments resulting from neurological disorders
such as stroke, spinal cord injury, and neurodegenerative
diseases affect millions of individuals worldwide, often
leading to partial or complete loss of voluntary muscle
control and severely limiting their ability to perform daily
activities. Conventional assistive devices, including me-
chanical prostheses and interfaces based on residual mus-
cle activity, frequently prove inadequate, particularly for
individuals with severe motor disabilities. Consequently,
there is a critical need for natural, accessible, and robust
systems that can bridge the gap between neural intention
and physical action [1, 2].

Brain-computer interfaces represent a paradigm shift in
human-machine interaction, establishing a direct com-
munication pathway between the brain and external de-
vices. BCI holds immense potential for individuals with
motor impairments, offering a means to bypass damaged
motor pathways and restore lost communication and con-
trol [1-3], Among various neural recording modalities,
electroencephalography (EEG) stands out as an inexpen-
sive, portable, and non-invasive method ideally suited for
practical BCI systems [4]. EEG-based devices have been
utilized for controlling wheelchairs, robotic arms and
prosthetic limbs, offering new avenues for restoring au-
tonomy to individuals with motor impairments [5].

Despite these promising advances, EEG-based BCls face
substantial technical challenges. EEG signals are inher-
ently noisy, exhibit low signal-to-noise ratios, and are
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susceptible to artifacts and inter-subject variability, all of
which hinder reliable decoding of motor intentions [6, 7].
Additionally, extracting discriminative features from raw
EEG data to achieve robust classification of motor tasks
remains a significant obstacle. Recent progress in artifi-
cial intelligence and neuroscience has motivated the inte-
gration of advanced signal processing and deep learning
techniques to improve BCI performance [6, 8].

In this context, motor movement detection using EEG
whether executed or imagined plays a pivotal role in as-
sistive technology and neuro-rehabilitation. Executed
movements involve actual physical motions, such as
grasping or reaching, whereas motor imagery (MI) tasks
require individuals to mentally rehearse specific move-
ments without overt execution. Both paradigms evoke
characteristic brain patterns, including movement- re-
lated cortical potentials (MRCPs), which can be lever-
aged for decoding motor intentions [3, 4]. Importantly,
MlI-based BCIs have demonstrated promise for con-
trolling external devices and supporting motor rehabilita-
tion, especially for individuals unable to perform physi-
cal movements [5, 9].

Advanced methods, such as optimized spatial filtering
and deep convolutional neural networks (CNNs), have
been developed to address the challenges of noisy EEG
data and complex neural dynamics [6—8]. However,
many existing systems struggle with consistency and
scalability across users. To overcome these limitations,
this study proposes a novel paradigm in which one-di-
mensional EEG signals are projected into two- dimen-
sional representations using the Gramian Angular Sum-
mation Field (GASF) technique [9]. This transformation
enables the application of state-of-the-art deep learning
models originally designed for visual data, such as the
GoogLeNet CNN architecture, to effectively classify mo-
tor tasks.

The primary objective of this research is to develop a
CNN model to decode motor signals (actual and im-
agery). The remainder of this paper is organized as fol-
lows: Section II reviews related work in EEG-based mo-
tor intention detection and BCI development. Section III
describes the proposed framework, detailing the signal
processing steps and classification algorithms. Section
IV presents experimental results and analysis. Finally,
Section V concludes the paper and discusses potential fu-
ture research directions.
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II. RELATED WORK

A range of studies has been conducted on the detection
of motor movements and motor imagery (MI) using elec-
troencephalographic (EEG) signals, with significant im-
plications for the development of brain—computer inter-
face (BCI) systems for motor control and rehabilitation.

Jain et al. [10] explored subject-independent trajectory
prediction using pre-movement EEG signals acquired
during a grasp-and-lift task. Their research sought to as-
sess the viability of forecasting hand kinematics from
EEG signals recorded prior to movement initiation. EEG
data were collected from ten healthy individuals using a
64-channel cap, with emphasis on the pre-movement pe-
riod. They introduced a deep learning architecture inte-
grating CNNs and long short-term memory net- works to
decipher motor-neural information contained within the
EEG signals. The approach attained a mean prediction
accuracy of 74.6% across all participants, underscoring
the capacity of pre-movement EEG for trajectory predic-
tion in BCls.

Du et al. [11] introduced a 3D capsule network model to
identify motor imagery movements from EEG signals.
This method incorporated temporal and spatial EEG fea-
tures using a multi-layer 3D convolution module com-
bined with capsule networks, designed to extract com-
plex spatial representations. The model was tested on the
BCI Competition IV dataset, demonstrating an average
classification accuracy of 84.028% and a Co- hen’s
kappa value of 0.789, which validates its efficacy in clas-
sifying four-class motor imagery tasks.

Arpaia et al. [12] developed a fully wearable BCI system
that utilizes eight dry EEG sensors to detect motor im-
agery and provides multimodal feedback via extended re-
ality to improve online MI recognition. Their research,
which involved 27 healthy individuals split into neu-
rofeedback and control groups, revealed that the neu-
rofeedback group attained a higher mean classification
accuracy of 69% compared to the control group’s 62%.
The findings highlight the potential of employing a wear-
able BCI with dry sensors for MI detection, suggesting
valuable applications in tele-rehabilitation settings.

Lomelin et al. [13] explored the classification of MI
movements using CNN-based methods on EEG data. The
study utilized the PhysioNet Motor Movement/Imagery
Dataset, which includes EEG recordings from 109 sub-
jects performing various motor tasks. By experimenting
with data representations such as spectrograms and mul-
tidimensional raw EEG data, the study showcased the po-
tential of deep learning architectures, specifically CNNs,
in accurately classifying MI tasks.

Collazos et al. [14] proposed a CNN-based connectivity
framework to enhance the interpretability of neural re-
sponses in MI-based BCIs. EEG data were collected from
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50 subjects performing finger-related MI tasks. The
method involved clustering subjects based on classifier
performance and extracting functional connectivity pat-
terns through kernel-based cross-spectral estimation of
EEG signals. The approach achieved an average ac- cu-
racy improvement of 10% over the baseline EEGNet
model, reducing the proportion of "poor skill" subjects
from 40% to 20%, and effectively addressing both inter-
and intra-subject variability in MI EEG data.

Ma et al. [15] developed an extensive EEG dataset to in-
vestigate cross-session variability in motor imagery
brain-computer interface studies. The dataset comprises
five sessions from 25 participants, each completing 100
trials of both left- and right-hand motor imagery tasks.
The results indicated substantial difficulties due to cross-
session variability, with average within-session accuracy
at 68.8% and cross-session accuracy decreasing to
53.7%. Nevertheless, the implementation of cross- ses-
sion adaptation methods enhanced performance to
78.9%, underscoring the dataset’s importance for studies
on cross-session and cross-subject generalization in MI-
based BCls.

An et al. [16] addressed the classification of EEG MI sig-
nals using a single-channel CNN approach optimized for
multi-class tasks. The proposed framework incorporated
a data evaluation strategy and an auto-selected regulari-
zation mechanism to enhance the spatial filtering capa-
bilities of the network. Experimental results on datasets
containing four mental tasks demonstrated average clas-
sification accuracies of 79.01% and 83.70%, respec-
tively, showcasing the effectiveness of the method in im-
proving the detection of MI movements compared to tra-
ditional algorithms.

Collectively, these studies illustrate the ongoing progress
in detecting motor movements and MI using EEG sig-
nals, employing advanced deep learning architectures,
wearable EEG systems, and innovative data processing
strategies. They underscore the feasibility and promise of
EEG-based BClIs for applications in neurorehabilitation,
motor control, and assistive technologies, while also
highlighting challenges such as cross-subject variability,
session-to-session inconsistencies, and the need for ro-
bust generalization.

By critically examining key studies and methodologies
on EEG-based detection of motor movements and motor
imagery, several research gaps have been identified par-
ticularly regarding the integration of advanced deep
learning models into real-world BCI applications. The lit-
erature highlights persistent challenges in ad- dressing in-
ter- and intra-subject variability, achieving consistent
cross-session performance, and enhancing the interpreta-
bility of neural responses in diverse motor tasks. Further-
more, limitations remain in the comprehensive analysis
of EEG data representations across one-dimensional
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(1D), two-dimensional (2D), and three- dimensional (3D)
formats, which are essential for robust and generalizable
BCI Systems

In light of these observations, our proposed work seeks
to advance the field by improving the extraction and clas-
sification of motor-related EEG features through the fol-
lowing contributions:

e Extraction of Temporal Correlations: We propose to
leverage the Gramian Angular Field (GAF) technique
to transform 1D EEG time- series signals into 2D im-
ages, effectively capturing the temporal correlations in-
herent in EEG dynamics for enhanced feature represen-
tation.

e Development of a CNN-based Classification Frame-
work: We aim to design a convolutional neural network
(CNN) architecture based on GoogleNet to classify
EEG data into four distinct motor imagery classes,
thereby improving the accuracy and robustness of mo-
tor intention detection in BCI systems.

Through these contributions, our work endeavors to
bridge the gap between existing research and practical
deployment of EEG-based BCls, providing a more inter-
pretable, accurate, and reliable system for motor move-
ment classification.

III. MAERIALS AND METHODS

This section details the dataset used in this study, the fea-
ture extraction process that uses the Gramian Angu- lar
Summation Field technique, and the classification mod-
els used to analyze the extracted features. Figure 1 pro-
vides an overview of the proposed methodology.

1lI-A. Data set

In this study, a publicly accessible database was utilized
to access EEG signals related to movement and imagery
[17]. The dataset comprises 1,500 EEG recordings, each
lasting between one and two minutes, obtained from 109
participants. EEG data were captured from 106 volun-
teers using a 64-channel cap via the BCI2000 platform.
Each participant engaged in 14 trials or sessions, includ-
ing two one-minute baseline recordings; one with eyes
open and the other with eyes closed, along with three
two-minute sessions for each of the four designated tasks.
These tasks consisted of motor imagery involving the left
hand, right hand, both feet, and the tongue.

In Task 1, participants were prompted to repeatedly
clench and unclench the fist corresponding to the side of
the screen where a visual target appeared, continuing un-
til the target’s disappearance. Task 2 required partici-
pants to imagine clenching and unclenching the fist cor-
responding to the side of the screen where a visual target
appeared, sustaining the imagery until the target disap-
peared. In Task 3, the appearance of a target at the top of
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the screen instructed EEG Motor
participants to repeat- Imagery Data
edly clench and un- (Physionet)
clench both fists, {}
whereas a target at the Temporal feature
bottom of the screen extraction using

) GASF
signaled them to move
both feet until the tar- ]\/l i
t disappeared. Task CNN Classifier
ge PP ’ using GoogleNet

4 involved motor im-
agery; participants
were asked to imagine
clenching and un-
clenching both fists
when a target appeared at the top of the screen, or to im-
agine moving both feet when the target appeared at the
bottom of the screen, continuing the imagery until the tar-
get disappeared. For the purposes of this study, record-
ings from 30 subjects were selected for detailed analysis,
and trials corresponding to the tasks described above
were included in the evaluation.

1II-B. Preprocessing of EEG Signals

Figure 1. Proposed methodology

Raw EEG signals are highly susceptible to various arti-
facts, including eye movements, muscle contractions,
and external electrical interference that can obscure the
underlying neural patterns of interest. To enhance signal
quality and facilitate accurate analysis, the following pre-
processing techniques were applied:

Band-pass Filtering: A band-pass filter was employed to
isolate the most relevant frequency bands associated with
motor activity, specifically the 830 Hz range encom-
passing the mu and beta rhythms. This step effectively
attenuates low-frequency drifts and high-frequency noise
unrelated to motor processes.

Normalization: The amplitudes of the EEG signals across
all channels were normalized to a common scale to re-
duce inter-session variability and ensure consistency
across recordings, thereby facilitating more robust fea-
ture extraction and classification.

Artifact Removal: Algorithms targeting non-cerebral ar-
tifacts were implemented to suppress noise arising from
eye movements (e.g., blinks, saccades) and muscle activ-
ity (e.g., jaw clenching), which often overlap in fre-
quency with cortical EEG signals. This artifact rejection
step was crucial to preserving the integrity of the motor-
related EEG components.

1II-C. Transformation into Image Representations with
the Support of GASF.

While traditional approaches typically rely on numerical
EEG features, we opted to transform the time-series EEG
signals into image-like representations using the Gramian
Angular Summation Field (GASF) technique. This
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method captures the intrinsic temporal correlations
within the EEG signals by projecting the time-series data
into polar coordinates, effectively encoding the relation-
ships among signal values as 2D grayscale images.

The GASF was adopted in this study as it provides a sym-
metric, positive-definite representation of the EEG time
series, effectively preserving both magnitude infor-
mation and temporal correlations across all time points.
In contrast, the Gramian Angular Difference Field
(GADF) yields an antisymmetric encoding that empha-
sizes phase variation but may obscure amplitude-depend-
ent relationships critical for distinguishing motor-related
EEG dynamics. Alternative imaging techniques such as
recurrence plots or Markov transition fields capture ei-
ther binary recurrence patterns or probabilistic state tran-
sitions, which are less suited for convolutional feature ex-
traction due to their sparse or highly stochastic spatial
distributions. The structured and continuous nature of
GASF images facilitates stable convolutional learning
and enhances discriminability among motor tasks.

To exploit the spatial feature extraction capabilities of
convolutional neural networks (CNNs), the one-dimen-
sional EEG time series were transformed into two-di-
mensional image representations. GASF was employed
owing to its ability to encode global temporal correlations
in a geometrically interpretable form. Unlike traditional
feature vectors that rely on handcrafted descriptors, the
GASF transformation projects normalized EEG ampli-
tudes into the polar coordinate space, where each time
point is represented by an angular component corre-
sponding to its signal magnitude. The resulting Gramian
matrix captures pairwise relationships among all tem-
poral samples, effectively translating temporal dependen-
cies into structured spatial textures suitable for convolu-
tional learning.

This approach enables the CNN to learn hierarchical spa-
tial features corresponding to the intrinsic temporal dy-
namics of EEG activity. The mathematical formulation
of'the GASF, including its normalization, polar encoding,
and reconstruction properties, is presented below [18].

Let time series EEG signal be presented by
X={x1,X2,x3...xL}of length L. and x(t) denotes the ob-
served signal at time “t”

Step 1:Normalization: Since the GASF transformation uses
trigonometric encoding, the input sequence is normalized to
the interval [—1,1] to ensure numerical stability and angular
validity.

Here is an example of how equations should look:

x(t)—-min (X)
max(X)—-min (X)

X = -1, Xnorm€[—-1,1] @)

This step preserves the shape of the signal while constraining
it to a bound domain.
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Step2: Data is transformed into polar coordinates:

@; = cos1x; )

where x; denotes the value of the time series at timestamp t
and g; represents the corresponding angular value. Thus, the
time series is mapped into an angular domain, where signal
amplitudes becomes an angle and time is represented radi-
ally.

Step 3: Regularize the timestamps.

The regularization of the time stamp is performed using the
equation
t
rt—ﬁ,t—l,Z,...,n 3
where N acts as a constant factor to regularize the span of the
coordinate system, ensuring that the timestamps are appro-
priately scaled.

Step 4: The GASF can be constructed in matrix form using the
formula G;; = cos(@; + @;), and is defined as

cos(P1 + @1) cos(@1 + @n)
GASF = cos(02 + @1) cos(@2 + @n) )
cos(n + 01) cos(n + on)

Although both the GASF and GADF can encode tem-
poral relationships, GASF was selected because it gen-
erates a symmetric matrix that preserves magnitude-
based correlations and produces smooth spatial textures
suitable for CNN feature extraction. In contrast, GADF
yields an antisymmetric representation emphasizing
phase differences and sign-variant patterns, which re-
duces spatial coherence and interpretability.

Since EEG motor-related dynamics are primarily gov-
erned by amplitude modulations in the mu and beta
bands, GASF provides a more stable and discriminative
representation for deep learning—based classification.
This transformation not only preserves critical temporal
and frequency information inherent in the original EEG
sequences but also enables the application of powerful
image-based deep learning models, such as Convolu-
tional Neural Networks (CNNs), which are specifically
designed to extract complex spatial patterns and hierar-
chical features. By leveraging GASF, we obtained a rich,
structured input format for our deep learning framework,
facilitating more accurate and interpretable modeling of
motor-related neural dynamic.

Figure 2 illustrates process of the GASF image database
creation from EEG data collected from 30 subjects. Orig-
inally the data is stored in the . edf” format. Regarding
varying signal lengths, all EEG trials were segmented to
equal durations before transformation, thereby eliminat-
ing any potential distortion due to inconsistent sampling
intervals. In our study, normalization of the EEG time se-
ries to the interval [—1,1] is performed independently for
each signal segment before GASF transformation. This
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A
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Figure 2. Feature extraction and image database creation

step is essential for mapping EEG amplitudes onto the
valid domain of the cosine function used in polar encod-
ing. Each EEG trial was first segmented into equal-length
windows before applying the GASF transformation, en-
suring temporal consistency across samples. The result-
ing Gramian matrices are visualized as heat maps, where
the intensity of each pixel represents the magnitude of the
corresponding element in the Gramian matrix.

Additionally, representative GASF images correspond-
ing to the four-motor imagery and movement tasks are
presented in Figure 3. Each GASF image encodes pair-
wise temporal correlations among normalized EEG am-
plitudes, where color intensity represents the cosine of
the angular summation between two time points. Warm
colors (red—orange) indicate strong positive correlations,
while cool colors (blue—cyan) denote weaker or negative
correlations. Class 1 exhibits irregular alternating pat-
terns, suggesting heterogeneous temporal dependencies.
Class 2 displays a smooth diagonal dominance with sta-
ble correlation regions, indicating well-synchronized
motor activity. Class 3 shows cross-shaped structures

[ .:..I-: -l | | u

"
| ||
l1lll I
EN
m ||
| |
@ (b)
|
R

(© (d)
Figure 3. Sample GASF images during four different tasks
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representing oscillatory coupling across temporal seg-
ments, and Class 4 reveals a coherent centralized hotspot
reflecting globally correlated activation. These visually
distinct correlation textures demonstrate the ability of
GASEF to convert temporal EEG dynamics into spatially
structured patterns suitable for deep convolutional fea-
ture extraction. These GASF images were subsequently
cropped to remove irrelevant borders and resized as
needed before being used as inputs to the convolutional
neural network (CNN) model for classification.

III-D. Deep Learning Classification using Google net

In the present work, the GoogLeNet architecture was em-
ployed to train and classify EEG-derived GASF images
into four classes corresponding to the tasks described in
Section A.

The GoogLeNet architecture was selected as the classi-
fier owing to its Inception-module design, which per-
forms multi-scale convolutional operations (1x1, 3%3,
5x5) within each block, allowing simultaneous extraction
of local and global spatial features from the GASF im-
ages. Compared with shallower CNNs such as AlexNet
or deeper networks like VGG-16, GoogLeNet achieves a
superior trade-off between representational capacity and
computational cost. Preliminary evaluations confirmed
that GoogLeNet converged faster and yielded approxi-
mately 2—-3 % higher validation accuracy under identical
training conditions, validating its suitability for EEG-
based motor-intention decoding

The input layer accepts raw pixel values of the processed
images, which were resized to 224x224x3 to match the
standard input size expected by the network. The imple-
mentation was carried out using MATLAB R2024a, uti-
lizing GoogLeNet initialized with random weights (“no
weights” option) to enable training from scratch on the
dataset.

GoogLeNet is a 22-layer deep convolutional neural net-
work (CNN) notable for its inception modules, which en-
able multi-scale feature extraction with reduced compu-
tational overhead. The key components of the architec-
ture, as utilized in this study, are as follows:

Input Layer: Receives input images of size 224x224 pix-
els with three color channels (RGB), enabling compati-
bility with standard deep learning pipelines for image-
based classification.

Initial Convolutional Layer: Applies a 7x7 convolutional
filter with a stride of 2, facilitating initial feature extrac-
tion while reducing spatial resolution. Max Pooling
Layer: Employs 3x3 kernel withstride of 2 to down-sam-
ple spatial dimensions, decreasing computational com-
plexity and emphasizing the most salient early features.

Inception Modules: The core innovation of GoogLeNet,
these modules perform parallel multi-scale processing by
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combining convolutions of different sizes (1x1, 3x3,
5%5) and max pooling. Specifically, 1x1 Convolution re-
duces dimensionality and computation cost while pre-
serving essential information, 3%3 Convolution captures
medium-sized spatial features and 5x5 Convolution ex-
tracts larger and more abstract features. Max Pooling
Branch: Preserves spatial hierarchies in the data. Multiple
inception module variants such as Inception-A, Incep-
tion-B, and Inception-C are used throughout the network
to progressively refine feature extraction at different
stages. Reduction Layers that are inserted between incep-
tion modules down-sample feature maps, maintaining
computational efficiency and enabling deeper network
construction without excessive memory demands.

Intermediate Layers: A series of stacked inception mod-
ules that process the output of previous layers, allowing
the model to learn increasingly complex features as depth
increases.

Global Average Pooling: This layer aggregates each fea-
ture map into a single scalar value by computing the av-
erage, substantially reducing data dimensionality and
preparing the representation for the final classification.

Fully Connected Layer: Maps the compact feature repre-
sentations produced by global average pooling to class
scores corresponding to the four target tasks.

Softmax Activation: Converts the class scores into prob-
abilities across the four output classes, facilitating robust
multi-class classification.

Output Layer: Consists of four nodes corresponding to
the four motor movement and imagery tasks, providing
the final predicted class probabilities for each input im-
age.

By leveraging the hierarchical feature extraction capabil-
ities of GoogLeNet, this approach enables effective mod-
eling of the complex spatial patterns present in GASF-
transformed EEG signals, thereby improving classifica-
tion performance on motor-related EEG tasks.

IV. RESULTS AND DISCUSSIONS

For experimental analysis, EEG data from 30 subjects
were utilized. Initially work was carried out using 10 sub-
jects [19] and an accuracy of 91.4% was obtained using
google net. To improve the accuracy, we repeated the ex-
periment on 30 different subjects and evaluated the per-
formance of the model using metrics. Each subject per-
formed four distinct motor tasks, with three trials con-
ducted per task. This procedure yielded a total of 7680
images per class through GASF transformation of the
recorded EEG signals. The dataset was partitioned into
three subsets: 70% was allocated for training, 15% for
testing, and the remaining 15% for validation. The deep
learning model was trained with a minimum batch size of
64 over 15 epochs to ensure effective convergence.
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The dataset was divided in a subject-independent man-
ner, ensuring that EEG data from any given participant
appeared exclusively in one subset (training, validation,
or testing). This segregation prevented data leakage
across subsets and guaranteed that the network learned
generalized neural representations rather than subject
specific patterns. A fivefold cross-subject validation was
further conducted to confirm generalization, yielding a
mean accuracy variation of less than 1%, thereby demon-
strating that the proposed model effectively captures sub-
ject-independent motor-intention features.

The performance of the proposed EEG-based brain com-
puter interface (BCI) system was evaluated on a multi
class classification task involving four motor movement
categories. Figure 4. depicts the confusion matrix sum-
marizing classification outcomes across all classes. The
matrix demonstrates a strong diagonal dominance, indi-
cating effective classification of both executed and imag-
ined motor tasks.

Specifically, the confusion matrix shows high true posi-
tive counts for each class: 1088 correctly predicted sam-
ples each for Classes 1 through 4. The relatively low off
diagonal misclassifications suggest that the model gener-
alizes well to unseen data. For instance, Class 1 exhibits
62 total misclassifications distributed among Classes 2 -
4 (20, 22, and 22 samples respectively), while Class 2
shows a similar pattern with 64 misclassified samples
(18, 24, and 22). Classes 3 and 4 have slightly fewer er-
rors, with 65 and 65 misclassifications respectively.

The overall accuracy achieved by the system is approxi-
mately 94.4%, consistent with the target accuracy estab-
lished during model design. This high accuracy indicates
the effectiveness of using Gramian Angu- lar Summation
Fields (GASF) for representing EEG signals, as well as
the capacity of the GoogLeNet- based convolutional neu-
ral network (CNN) to distinguish subtle differences in
EEG patterns corresponding to different motor tasks.

To evaluate performance of proposed model, one effec-
tive and ideal way is through confusion- matrix. From the
obtained confusion-matrix, most frequently used perfor-
mance measures are stated below [20].

Accuracy indicates the fraction of total number of sam-
ples which are correctly classified. Accuracy is calcu-
lated using the below equation

TP+TN

Accuracy = ——
y (TP+TN+FT+FN)

®)

Misclassification Rate is the incorrect predicted values
are denoted by classification error and is calculated as
follows:

Misclassification Rate = 1 — Accuracy (6)

Precision tells what fraction of predicted true class sam-
ples are actually true and is given by
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TP
(TP+FP)

Precision = @)
Recall tells, the fraction of all true samples which are cor-
rectly predicted as true class and is also called as True-
Positive-Rate(TPR)

TP

TPR =i

®)

Specificity indicates the fraction of all false/negative
samples which are correctly predicted as negative class
and is also called as True-Negative-Rate(TNR).

TN
TNR = (TN+FP) ©)

F1-Score is the mean of precision measure and recall
measure and is calculated by

2TP

F1 — Score = ————
(2TP+FP+FN)

(10)
F1-Score = 1 implies 100% prediction-accuracy. i.e,
higher precision value with higher recall value.

Kappa-Value compares the observed rate of accuracy
with an expected or random accuracy. Usually, kappa-
values are associated with 5 agreement categories de-
fined as light (0-0.2), fair (0.2-0.4), moderate (0.4-0.6),
substantial (0.6-0.8), almost perfect (0.8-1).

The Kappa-Value is calculated as shown below

Accuracy—PE

Kappa Value = _rE) (11)
Where PE = Probability-of-agreement-by-chance
pE — (TN+FP)(TN+FN)+ (FN+TP)(FP+TP) (12)

(TP+FP+TN+FN)

The CNN model performance is evaluated through the
above defined measures for four classes is tabulated in
Table 1. The proposed GoogleNet—-GASF framework
achieved an overall classification accuracy of 94.4 %,
with per-class precision, recall, and F1-scores consist-
ently above 94 %, indicating balanced performance
across all four motor-task categories. The computed Co-
hen’s Kappa coefficient of 0.926 further confirms a very
high level of agreement beyond chance, demonstrating
the robustness of the model. The estimated macro aver-
age AUC of 0.977 suggests strong discriminative capa-
bility across all classes, reflecting the reliability of the
proposed system for both executed and imagined motor
activity recognition.

Furthermore, it was observed that actual (executed)
movements were classified with higher precision com-
pared to imagined (motor imagery) movements. This dis-
crepancy aligns with known challenges in motor imagery
classification, as imagery often produces weaker and
more variable cortical activation than physical execution.
Nonetheless, the model maintains robust performance
across both task types.
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Table 1. Performance of the model
Metric Class 1 Class 2 Class 3 Class 4
Accuracy 0.973 0.971 0.971 0.972
Misclass-Rate 0.026 0.028 0.028 0.028
Precision 0.944 0.944 0.943 0.943
Recall 0.947 0.942 0.941 0.944
Specificity 0.981 0.981 0.981 0.981
F1-Score 0.946 0.943 0.942 0.944
Kappa-Value 0.928 0.924 0.923 0.925

The balanced distribution of misclassifications across
classes also highlights the absence of class imbalance or
systematic bias toward any particular motor task. These
results suggest the proposed system’s strong potential for
real-world deployment in assistive technologies, offering
reliable decoding of motor intentions for users with se-
vere motor impairments.

A comparison of our results with recent studies have re-
vealed the improvement in various performance matrices
using the method proposed here. Jain et al. [10] achieved
74.6% accuracy in subject-independent trajectory predic-
tion using CNN-LSTM on pre-movement EEG, while Di
et al. [11] obtained 84.03% accuracy for four-class MI
classification using a 3D capsule network on BCI Com-
petition I'V data. Arpaia et al. [12] reported 69% accuracy
with a wearable eight-sensor EEG system, highlighting
limitations in low-channel count setups.

Lomelin et al. [13] and Collazos et al. [14] demonstrated
the potential of CNNs with raw EEG and connectivity
features, achieving accuracies in the 70-80% range but
lacking consistency across larger datasets. Ma et al. [15]
revealed significant drops in cross-session MI classifica-
tion accuracy (down to 53.7%), underscoring the chal-
lenges of generalization. An et al. [16] achieved 79-84%
with a single-channel CNN approach for multi- class MI
tasks.

Compared to these works, our system’s 94.4% accuracy
on four-class classification for 30 subjects represents a
significant advancement, demonstrating the effective-
ness of GASF-based feature extraction and Googl.eNet
CNN architecture for reliable, scalable EEG-based BCI
applications.

V. SUMMARY

This study presents a non-invasive brain—computer inter-
face (BCI) system that effectively decodes both executed
and imagined motor intentions from electroencephalo-
gram (EEG) signals. By transforming one- dimensional
EEG data into two-dimensional Gramian Angular Sum-
mation Field (GASF) images and leveraging a Goog-
LeNet convolutional neural network (CNN) architecture,
the proposed system achieved a classification accuracy of
94.4% across four motor tasks in data collected from 30
subjects. This result represents a clear improvement over
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existing approaches, demonstrating the benefits of com-
bining advanced time-series imaging techniques with
deep learning models for motor intention recognition.

The findings highlight the system’s potential for real-
world applications in assistive technology and neuro re-
habilitation, offering an affordable and accurate solution
for restoring motor function control to individuals with
severe motor impairments. Future work will focus on ad-
dressing cross-session and cross-subject variability, inte-
grating adaptive learning techniques to personalize the
system to individual users, thereby enhancing robustness
and generalizability for practical deployment.
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