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Abstract— A non-invasive brain–computer interface (BCI) 
system based on electroencephalogram (EEG) signals is 
presented to facilitate intuitive control of assistive devices 
for individuals with motor impairments. EEG recordings 
corresponding to actual and imagined motor movements 
are transformed into two-dimensional representations us- 
ing the Gramian Angular Summation Field (GASF) tech-
nique, effectively encoding temporally significant fea- tures. 
The resulting GASF images are classified using the Goog-
LeNet convolutional neural network architecture, achieving 
a classification accuracy of up to 94.4% across both real and 
imagined movement tasks. Experimental results demon-
strate that the proposed model attains higher accuracy in 
recognizing actual movements compared to imagery-based 
movements, indicating its potential as a practical solution 
for reliable motor intention decoding in assistive and reha-
bilitative applications. 

Keywords— Motor Imagery, Convolutional Neural Networks, 
Gramian Angular Summation Field, Electroencephalogram. 

I. INTRODUCTION 
Motor impairments resulting from neurological disorders 
such as stroke, spinal cord injury, and neurodegenerative 
diseases affect millions of individuals worldwide, often 
leading to partial or complete loss of voluntary muscle 
control and severely limiting their ability to perform daily 
activities. Conventional assistive devices, including me-
chanical prostheses and interfaces based on residual mus-
cle activity, frequently prove inadequate, particularly for 
individuals with severe motor disabilities. Consequently, 
there is a critical need for natural, accessible, and robust 
systems that can bridge the gap between neural intention 
and physical action [1, 2]. 

Brain-computer interfaces represent a paradigm shift in 
human-machine interaction, establishing a direct com-
munication pathway between the brain and external de-
vices. BCI holds immense potential for individuals with 
motor impairments, offering a means to bypass damaged 
motor pathways and restore lost communication and con-
trol [1–3], Among various neural recording modalities, 
electroencephalography (EEG) stands out as an inexpen-
sive, portable, and non-invasive method ideally suited for 
practical BCI systems [4]. EEG-based devices have been 
utilized for controlling wheelchairs, robotic arms and 
prosthetic limbs, offering new avenues for restoring au-
tonomy to individuals with motor impairments [5].  

Despite these promising advances, EEG-based BCIs face 
substantial technical challenges. EEG signals are inher-
ently noisy, exhibit low signal-to-noise ratios, and are 

susceptible to artifacts and inter-subject variability, all of 
which hinder reliable decoding of motor intentions [6, 7]. 
Additionally, extracting discriminative features from raw 
EEG data to achieve robust classification of motor tasks 
remains a significant obstacle. Recent progress in artifi-
cial intelligence and neuroscience has motivated the inte-
gration of advanced signal processing and deep learning 
techniques to improve BCI performance [6, 8]. 

In this context, motor movement detection using EEG 
whether executed or imagined plays a pivotal role in as-
sistive technology and neuro-rehabilitation. Executed 
movements involve actual physical motions, such as 
grasping or reaching, whereas motor imagery (MI) tasks 
require individuals to mentally rehearse specific move-
ments without overt execution. Both paradigms evoke 
characteristic brain patterns, including movement- re-
lated cortical potentials (MRCPs), which can be lever- 
aged for decoding motor intentions [3, 4]. Importantly, 
MI-based BCIs have demonstrated promise for con- 
trolling external devices and supporting motor rehabilita-
tion, especially for individuals unable to perform physi-
cal movements [5, 9]. 

Advanced methods, such as optimized spatial filtering 
and deep convolutional neural networks (CNNs), have 
been developed to address the challenges of noisy EEG 
data and complex neural dynamics [6–8]. However, 
many existing systems struggle with consistency and 
scalability across users. To overcome these limitations, 
this study proposes a novel paradigm in which one-di-
mensional EEG signals are projected into two- dimen-
sional representations using the Gramian Angular Sum-
mation Field (GASF) technique [9]. This transformation 
enables the application of state-of-the-art deep learning 
models originally designed for visual data, such as the 
GoogLeNet CNN architecture, to effectively classify mo-
tor tasks. 

The primary objective of this research is to develop a 
CNN model to decode motor signals (actual and im-
agery). The remainder of this paper is organized as fol-
lows: Section II reviews related work in EEG-based mo-
tor intention detection and BCI development. Section III 
describes the proposed framework, detailing the signal 
processing steps and classification algorithms. Section 
IV presents experimental results and analysis. Finally, 
Section V concludes the paper and discusses potential fu-
ture research directions. 
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II. RELATED WORK 
A range of studies has been conducted on the detection 
of motor movements and motor imagery (MI) using elec-
troencephalographic (EEG) signals, with significant im-
plications for the development of brain–computer inter-
face (BCI) systems for motor control and rehabilitation. 

Jain et al. [10] explored subject-independent trajectory 
prediction using pre-movement EEG signals acquired 
during a grasp-and-lift task. Their research sought to as-
sess the viability of forecasting hand kinematics from 
EEG signals recorded prior to movement initiation. EEG 
data were collected from ten healthy individuals using a 
64-channel cap, with emphasis on the pre-movement pe-
riod. They introduced a deep learning architecture inte-
grating CNNs and long short-term memory net- works to 
decipher motor-neural information contained within the 
EEG signals. The approach attained a mean prediction 
accuracy of 74.6% across all participants, underscoring 
the capacity of pre-movement EEG for trajectory predic-
tion in BCIs. 

Du et al. [11] introduced a 3D capsule network model to 
identify motor imagery movements from EEG signals. 
This method incorporated temporal and spatial EEG fea-
tures using a multi-layer 3D convolution module com-
bined with capsule networks, designed to extract com-
plex spatial representations. The model was tested on the 
BCI Competition IV dataset, demonstrating an average 
classification accuracy of 84.028% and a Co- hen’s 
kappa value of 0.789, which validates its efficacy in clas-
sifying four-class motor imagery tasks. 

Arpaia et al. [12] developed a fully wearable BCI system 
that utilizes eight dry EEG sensors to detect motor im-
agery and provides multimodal feedback via extended re-
ality to improve online MI recognition. Their research, 
which involved 27 healthy individuals split into neu-
rofeedback and control groups, revealed that the neu-
rofeedback group attained a higher mean classification 
accuracy of 69% compared to the control group’s 62%. 
The findings highlight the potential of employing a wear-
able BCI with dry sensors for MI detection, suggesting 
valuable applications in tele-rehabilitation settings. 

Lomelin et al. [13] explored the classification of MI 
movements using CNN-based methods on EEG data. The 
study utilized the PhysioNet Motor Movement/Imagery 
Dataset, which includes EEG recordings from 109 sub-
jects performing various motor tasks. By experimenting 
with data representations such as spectrograms and mul-
tidimensional raw EEG data, the study showcased the po-
tential of deep learning architectures, specifically CNNs, 
in accurately classifying MI tasks. 

Collazos et al. [14] proposed a CNN-based connectivity 
framework to enhance the interpretability of neural re-
sponses in MI-based BCIs. EEG data were collected from 

50 subjects performing finger-related MI tasks. The 
method involved clustering subjects based on classifier 
performance and extracting functional connectivity pat-
terns through kernel-based cross-spectral estimation of 
EEG signals. The approach achieved an average ac- cu-
racy improvement of 10% over the baseline EEGNet 
model, reducing the proportion of "poor skill" subjects 
from 40% to 20%, and effectively addressing both inter- 
and intra-subject variability in MI EEG data. 

Ma et al. [15] developed an extensive EEG dataset to in-
vestigate cross-session variability in motor imagery 
brain-computer interface studies. The dataset comprises 
five sessions from 25 participants, each completing 100 
trials of both left- and right-hand motor imagery tasks. 
The results indicated substantial difficulties due to cross- 
session variability, with average within-session accuracy 
at 68.8% and cross-session accuracy decreasing to 
53.7%. Nevertheless, the implementation of cross- ses-
sion adaptation methods enhanced performance to 
78.9%, underscoring the dataset’s importance for studies 
on cross-session and cross-subject generalization in MI- 
based BCIs. 

An et al. [16] addressed the classification of EEG MI sig-
nals using a single-channel CNN approach optimized for 
multi-class tasks. The proposed framework incorporated 
a data evaluation strategy and an auto-selected regulari-
zation mechanism to enhance the spatial filtering capa-
bilities of the network. Experimental results on datasets 
containing four mental tasks demonstrated average clas-
sification accuracies of 79.01% and 83.70%, respec-
tively, showcasing the effectiveness of the method in im-
proving the detection of MI movements compared to tra-
ditional algorithms. 

Collectively, these studies illustrate the ongoing progress 
in detecting motor movements and MI using EEG sig-
nals, employing advanced deep learning architectures, 
wearable EEG systems, and innovative data processing 
strategies. They underscore the feasibility and promise of 
EEG-based BCIs for applications in neurorehabilitation, 
motor control, and assistive technologies, while also 
highlighting challenges such as cross-subject variability, 
session-to-session inconsistencies, and the need for ro-
bust generalization. 

By critically examining key studies and methodologies 
on EEG-based detection of motor movements and motor 
imagery, several research gaps have been identified par-
ticularly regarding the integration of advanced deep 
learning models into real-world BCI applications. The lit-
erature highlights persistent challenges in ad- dressing in-
ter- and intra-subject variability, achieving consistent 
cross-session performance, and enhancing the interpreta-
bility of neural responses in diverse motor tasks. Further-
more, limitations remain in the comprehensive analysis 
of EEG data representations across one-dimensional 
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(1D), two-dimensional (2D), and three- dimensional (3D) 
formats, which are essential for robust and generalizable 
BCI Systems 

In light of these observations, our proposed work seeks 
to advance the field by improving the extraction and clas-
sification of motor-related EEG features through the fol-
lowing contributions: 

• Extraction of Temporal Correlations: We propose to 
leverage the Gramian Angular Field (GAF) technique 
to transform 1D EEG time- series signals into 2D im-
ages, effectively capturing the temporal correlations in-
herent in EEG dynamics for enhanced feature represen-
tation. 

• Development of a CNN-based Classification Frame-
work: We aim to design a convolutional neural network 
(CNN) architecture based on GoogleNet to classify 
EEG data into four distinct motor imagery classes, 
thereby improving the accuracy and robustness of mo-
tor intention detection in BCI systems. 

Through these contributions, our work endeavors to 
bridge the gap between existing research and practical 
deployment of EEG-based BCIs, providing a more inter-
pretable, accurate, and reliable system for motor move-
ment classification. 

III. MAERIALS AND METHODS 
This section details the dataset used in this study, the fea-
ture extraction process that uses the Gramian Angu- lar 
Summation Field technique, and the classification mod-
els used to analyze the extracted features. Figure 1 pro-
vides an overview of the proposed methodology. 

III-A. Data set 

In this study, a publicly accessible database was utilized 
to access EEG signals related to movement and imagery 
[17]. The dataset comprises 1,500 EEG recordings, each 
lasting between one and two minutes, obtained from 109 
participants. EEG data were captured from 106 volun-
teers using a 64-channel cap via the BCI2000 platform. 
Each participant engaged in 14 trials or sessions, includ-
ing two one-minute baseline recordings; one with eyes 
open and the other with eyes closed, along with three 
two-minute sessions for each of the four designated tasks. 
These tasks consisted of motor imagery involving the left 
hand, right hand, both feet, and the tongue. 

In Task 1, participants were prompted to repeatedly 
clench and unclench the fist corresponding to the side of 
the screen where a visual target appeared, continuing un-
til the target’s disappearance. Task 2 required partici-
pants to imagine clenching and unclenching the fist cor-
responding to the side of the screen where a visual target 
appeared, sustaining the imagery until the target disap-
peared. In Task 3, the appearance of a target at the top of 

the screen instructed 
participants to repeat-
edly clench and un-
clench both fists, 
whereas a target at the 
bottom of the screen 
signaled them to move 
both feet until the tar-
get disappeared. Task 
4 involved motor im-
agery; participants 
were asked to imagine 
clenching and un-
clenching both fists 
when a target appeared at the top of the screen, or to im-
agine moving both feet when the target appeared at the 
bottom of the screen, continuing the imagery until the tar-
get disappeared. For the purposes of this study, record-
ings from 30 subjects were selected for detailed analysis, 
and trials corresponding to the tasks described above 
were included in the evaluation. 

III-B. Preprocessing of EEG Signals 

Raw EEG signals are highly susceptible to various arti-
facts, including eye movements, muscle contractions, 
and external electrical interference that can obscure the 
underlying neural patterns of interest. To enhance signal 
quality and facilitate accurate analysis, the following pre-
processing techniques were applied: 

Band-pass Filtering: A band-pass filter was employed to 
isolate the most relevant frequency bands associated with 
motor activity, specifically the 8–30 Hz range encom-
passing the mu and beta rhythms. This step effectively 
attenuates low-frequency drifts and high-frequency noise 
unrelated to motor processes. 

Normalization: The amplitudes of the EEG signals across 
all channels were normalized to a common scale to re-
duce inter-session variability and ensure consistency 
across recordings, thereby facilitating more robust fea-
ture extraction and classification. 

Artifact Removal: Algorithms targeting non-cerebral ar-
tifacts were implemented to suppress noise arising from 
eye movements (e.g., blinks, saccades) and muscle activ-
ity (e.g., jaw clenching), which often overlap in fre-
quency with cortical EEG signals. This artifact rejection 
step was crucial to preserving the integrity of the motor-
related EEG components. 

III-C. Transformation into Image Representations with 
the Support of GASF. 

While traditional approaches typically rely on numerical 
EEG features, we opted to transform the time-series EEG 
signals into image-like representations using the Gramian 
Angular Summation Field (GASF) technique. This 

 
Figure 1. Proposed methodology 
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method captures the intrinsic temporal correlations 
within the EEG signals by projecting the time-series data 
into polar coordinates, effectively encoding the relation-
ships among signal values as 2D grayscale images. 

The GASF was adopted in this study as it provides a sym-
metric, positive-definite representation of the EEG time 
series, effectively preserving both magnitude infor-
mation and temporal correlations across all time points. 
In contrast, the Gramian Angular Difference Field 
(GADF) yields an antisymmetric encoding that empha-
sizes phase variation but may obscure amplitude-depend-
ent relationships critical for distinguishing motor-related 
EEG dynamics. Alternative imaging techniques such as 
recurrence plots or Markov transition fields capture ei-
ther binary recurrence patterns or probabilistic state tran-
sitions, which are less suited for convolutional feature ex-
traction due to their sparse or highly stochastic spatial 
distributions. The structured and continuous nature of 
GASF images facilitates stable convolutional learning 
and enhances discriminability among motor tasks. 

To exploit the spatial feature extraction capabilities of 
convolutional neural networks (CNNs), the one-dimen-
sional EEG time series were transformed into two-di-
mensional image representations. GASF was employed 
owing to its ability to encode global temporal correlations 
in a geometrically interpretable form. Unlike traditional 
feature vectors that rely on handcrafted descriptors, the 
GASF transformation projects normalized EEG ampli-
tudes into the polar coordinate space, where each time 
point is represented by an angular component corre-
sponding to its signal magnitude. The resulting Gramian 
matrix captures pairwise relationships among all tem-
poral samples, effectively translating temporal dependen-
cies into structured spatial textures suitable for convolu-
tional learning. 

This approach enables the CNN to learn hierarchical spa-
tial features corresponding to the intrinsic temporal dy-
namics of EEG activity. The mathematical formulation 
of the GASF, including its normalization, polar encoding, 
and reconstruction properties, is presented below [18]. 

Let time series EEG signal be presented by 
X={x1,x2,x3…xL}of length L  and x(t) denotes the ob-
served signal at time “t” 
Step 1:Normalization: Since the GASF transformation uses 
trigonometric encoding, the input sequence is normalized to 
the interval [−1,1] to ensure numerical stability and angular 
validity. 

Here is an example of how equations should look: 

𝑥! = 2 × "($)&'!(	(*)
'+"(*)&'!(	(*)

− 1	, 𝑋𝑛𝑜𝑟𝑚	Є	[−1,1] (1) 

This step preserves the shape of the signal while constraining 
it to a bound domain. 

Step2: Data is transformed into polar coordinates: 

∅! = cos&, 𝑥!                                    (2) 

where xi denotes the value of the time series at timestamp t 
and øi represents the corresponding angular value. Thus, the 
time series is mapped into an angular domain, where signal 
amplitudes becomes an angle and time is represented radi-
ally. 

Step 3: Regularize the timestamps. 

The regularization of the time stamp is performed using the 
equation 

𝑟$ =
$
-
; t = 1,2,… , n                             (3) 

where N acts as a constant factor to regularize the span of the 
coordinate system, ensuring that the timestamps are appro-
priately scaled. 

Step 4: The GASF can be constructed in matrix form using the 
formula 𝐺!. = cos(∅! + ∅.), and is defined as  

𝐺𝐴𝑆𝐹 = @

𝑐𝑜𝑠(∅1 + ∅1) ⋯ 𝑐𝑜𝑠(∅1 + ∅𝑛)
𝑐𝑜𝑠(∅2 + ∅1) ⋯ 𝑐𝑜𝑠(∅2 + ∅𝑛)

⋮ ⋱ ⋮
𝑐𝑜𝑠(∅𝑛 + ∅1) ⋯ 𝑐𝑜𝑠(∅𝑛 + ∅𝑛)

F      (4) 

Although both the GASF and GADF can encode tem-
poral     relationships, GASF was selected because it gen-
erates a symmetric matrix that preserves magnitude-
based correlations and produces smooth spatial textures 
suitable for CNN feature extraction. In contrast, GADF 
yields an antisymmetric representation emphasizing 
phase differences and sign-variant patterns, which re-
duces spatial coherence and interpretability. 

Since EEG motor-related dynamics are primarily gov-
erned by amplitude modulations in the mu and beta 
bands, GASF provides a more stable and discriminative 
representation for deep learning–based classification. 
This transformation not only preserves critical temporal 
and frequency information inherent in the original EEG 
sequences but also enables the application of powerful 
image-based deep learning models, such as Convolu-
tional Neural Networks (CNNs), which are specifically 
designed to extract complex spatial patterns and hierar-
chical features. By leveraging GASF, we obtained a rich, 
structured input format for our deep learning framework, 
facilitating more accurate and interpretable modeling of 
motor-related neural dynamic. 

Figure 2 illustrates process of the GASF image database 
creation from EEG data collected from 30 subjects. Orig-
inally the data is stored in the “. edf” format. Regarding 
varying signal lengths, all EEG trials were segmented to 
equal durations before transformation, thereby eliminat-
ing any potential distortion due to inconsistent sampling 
intervals. In our study, normalization of the EEG time se-
ries to the interval [−1,1] is performed independently for 
each signal segment before GASF transformation. This 
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step is essential for mapping EEG amplitudes onto the 
valid domain of the cosine function used in polar encod-
ing. Each EEG trial was first segmented into equal-length 
windows before applying the GASF transformation, en-
suring temporal consistency across samples. The result-
ing Gramian matrices are visualized as heat maps, where 
the intensity of each pixel represents the magnitude of the 
corresponding element in the Gramian matrix. 

Additionally, representative GASF images correspond-
ing to the four-motor imagery and movement tasks are 
presented in Figure 3. Each GASF image encodes pair-
wise temporal correlations among normalized EEG am-
plitudes, where color intensity represents the cosine of 
the angular summation between two time points. Warm 
colors (red–orange) indicate strong positive correlations, 
while cool colors (blue–cyan) denote weaker or negative 
correlations. Class 1 exhibits irregular alternating pat-
terns, suggesting heterogeneous temporal dependencies. 
Class 2 displays a smooth diagonal dominance with sta-
ble correlation regions, indicating well-synchronized 
motor activity. Class 3 shows cross-shaped structures 

representing oscillatory coupling across temporal seg-
ments, and Class 4 reveals a coherent centralized hotspot 
reflecting globally correlated activation. These visually 
distinct correlation textures demonstrate the ability of 
GASF to convert temporal EEG dynamics into spatially 
structured patterns suitable for deep convolutional fea-
ture extraction. These GASF images were subsequently 
cropped to remove irrelevant borders and resized as 
needed before being used as inputs to the convolutional 
neural network (CNN) model for classification. 

III-D. Deep Learning Classification using Google net 

In the present work, the GoogLeNet architecture was em-
ployed to train and classify EEG-derived GASF images 
into four classes corresponding to the tasks described in 
Section A.  

The GoogLeNet architecture was selected as the classi-
fier owing to its Inception-module design, which per-
forms multi-scale convolutional operations (1×1, 3×3, 
5×5) within each block, allowing simultaneous extraction 
of local and global spatial features from the GASF im-
ages. Compared with shallower CNNs such as AlexNet 
or deeper networks like VGG-16, GoogLeNet achieves a 
superior trade-off between representational capacity and 
computational cost. Preliminary evaluations confirmed 
that GoogLeNet converged faster and yielded approxi-
mately 2–3 % higher validation accuracy under identical 
training conditions, validating its suitability for EEG-
based motor-intention decoding 

The input layer accepts raw pixel values of the processed 
images, which were resized to 224×224×3 to match the 
standard input size expected by the network. The imple-
mentation was carried out using MATLAB R2024a, uti-
lizing GoogLeNet initialized with random weights (“no 
weights” option) to enable training from scratch on the 
dataset. 

GoogLeNet is a 22-layer deep convolutional neural net-
work (CNN) notable for its inception modules, which en-
able multi-scale feature extraction with reduced compu-
tational overhead. The key components of the architec-
ture, as utilized in this study, are as follows: 

Input Layer: Receives input images of size 224×224 pix-
els with three color channels (RGB), enabling compati-
bility with standard deep learning pipelines for image-
based classification. 

Initial Convolutional Layer: Applies a 7×7 convolutional 
filter with a stride of 2, facilitating initial feature extrac-
tion while reducing spatial resolution. Max Pooling 
Layer: Employs 3×3 kernel withstride of 2 to down-sam-
ple spatial dimensions, decreasing computational com-
plexity and emphasizing the most salient early features. 

Inception Modules: The core innovation of GoogLeNet, 
these modules perform parallel multi-scale processing by 

 

Figure 2. Feature extraction and image database creation 

     
(a)                          (b) 

 

     
(c)                          (d) 

Figure 3. Sample GASF images during four different tasks 
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combining convolutions of different sizes (1×1, 3×3, 
5×5) and max pooling. Specifically, 1×1 Convolution re-
duces dimensionality and computation cost while pre-
serving essential information, 3×3 Convolution captures 
medium-sized spatial features and 5×5 Convolution ex-
tracts larger and more abstract features. Max Pooling 
Branch: Preserves spatial hierarchies in the data. Multiple 
inception module variants such as Inception-A, Incep-
tion-B, and Inception-C are used throughout the network 
to progressively refine feature extraction at different 
stages. Reduction Layers that are inserted between incep-
tion modules down-sample feature maps, maintaining 
computational efficiency and enabling deeper network 
construction without excessive memory demands.  

Intermediate Layers: A series of stacked inception mod- 
ules that process the output of previous layers, allowing 
the model to learn increasingly complex features as depth 
increases. 

Global Average Pooling: This layer aggregates each fea-
ture map into a single scalar value by computing the av-
erage, substantially reducing data dimensionality and 
preparing the representation for the final classification. 

Fully Connected Layer: Maps the compact feature repre-
sentations produced by global average pooling to class 
scores corresponding to the four target tasks. 

Softmax Activation: Converts the class scores into prob- 
abilities across the four output classes, facilitating robust 
multi-class classification. 

Output Layer: Consists of four nodes corresponding to 
the four motor movement and imagery tasks, providing 
the final predicted class probabilities for each input im-
age.  

By leveraging the hierarchical feature extraction capabil-
ities of GoogLeNet, this approach enables effective mod-
eling of the complex spatial patterns present in GASF-
transformed EEG signals, thereby improving classifica-
tion performance on motor-related EEG tasks. 

IV. RESULTS AND DISCUSSIONS 
For experimental analysis, EEG data from 30 subjects 
were utilized. Initially work was carried out using 10 sub-
jects [19] and an accuracy of 91.4% was obtained using 
google net. To improve the accuracy, we repeated the ex-
periment on 30 different subjects and evaluated the per-
formance of the model using metrics. Each subject per-
formed four distinct motor tasks, with three trials con-
ducted per task. This procedure yielded a total of 7680 
images per class through GASF transformation of the 
recorded EEG signals. The dataset was partitioned into 
three subsets: 70% was allocated for training, 15% for 
testing, and the remaining 15% for validation. The deep 
learning model was trained with a minimum batch size of 
64 over 15 epochs to ensure effective convergence. 

The dataset was divided in a subject-independent man-
ner, ensuring that EEG data from any given participant 
appeared exclusively in one subset (training, validation, 
or testing). This segregation prevented data leakage 
across subsets and guaranteed that the network learned 
generalized neural representations rather than subject 
specific patterns. A fivefold cross-subject validation was 
further conducted to confirm generalization, yielding a 
mean accuracy variation of less than 1%, thereby demon-
strating that the proposed model effectively captures sub-
ject-independent motor-intention features. 

The performance of the proposed EEG-based brain com-
puter interface (BCI) system was evaluated on a multi 
class classification task involving four motor movement 
categories. Figure 4. depicts the confusion matrix sum-
marizing classification outcomes across all classes. The 
matrix demonstrates a strong diagonal dominance, indi-
cating effective classification of both executed and imag-
ined motor tasks. 

Specifically, the confusion matrix shows high true posi-
tive counts for each class: 1088 correctly predicted sam-
ples each for Classes 1 through 4. The relatively low off 
diagonal misclassifications suggest that the model gener-
alizes well to unseen data. For instance, Class 1 exhibits 
62 total misclassifications distributed among Classes 2 - 
4 (20, 22, and 22 samples respectively), while Class 2 
shows a similar pattern with 64 misclassified samples 
(18, 24, and 22). Classes 3 and 4 have slightly fewer er-
rors, with 65 and 65 misclassifications respectively. 

The overall accuracy achieved by the system is approxi-
mately 94.4%, consistent with the target accuracy estab-
lished during model design. This high accuracy indicates 
the effectiveness of using Gramian Angu- lar Summation 
Fields (GASF) for representing EEG signals, as well as 
the capacity of the GoogLeNet- based convolutional neu-
ral network (CNN) to distinguish subtle differences in 
EEG patterns corresponding to different motor tasks. 

To evaluate performance of proposed model, one effec-
tive and ideal way is through confusion- matrix. From the 
obtained confusion-matrix, most frequently used perfor-
mance measures are stated below [20]. 

Accuracy indicates the fraction of total number of sam-
ples which are correctly classified. Accuracy is calcu-
lated using the below equation 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = /01/-
(/01/-12/12-)

	                      (5) 

Misclassification Rate is the incorrect predicted values 
are denoted by classification error and is calculated as 
follows: 

Misclassification	Rate = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦              (6) 

Precision tells what fraction of predicted true class sam-
ples are actually true and is given by  
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Precision = /0
(/0120)

                           (7) 

Recall tells, the fraction of all true samples which are cor-
rectly predicted as true class and is also called as True-
Positive-Rate(TPR) 

TPR = /0
(/012-)

                                 (8) 

Specificity indicates the fraction of all false/negative 
samples which are correctly predicted as negative class 
and is also called as True-Negative-Rate(TNR). 

TNR = /-
(/-120)

                                 (9) 

F1-Score is the mean of precision measure and recall 
measure and is calculated by 

F1 − Score = 3/0
(3/012012-)

                    (10) 

F1-Score = 1 implies 100% prediction-accuracy. i.e, 
higher precision value with higher recall value.   

Kappa-Value compares the observed rate of accuracy 
with an expected or random accuracy. Usually, kappa-
values are associated with 5 agreement categories de-
fined as light (0-0.2), fair (0.2-0.4), moderate (0.4-0.6), 
substantial (0.6-0.8), almost perfect (0.8-1). 

The Kappa-Value is calculated as shown below 

Kappa	Value = 45567+58&09
(,&09)

                    (11)     

Where PE = Probability-of-agreement-by-chance 

PE = (:;1<=)(:;1<;)1(<;1:=)(<=1:=)
(:=1<=1:;1<;)

             (12)     

The CNN model performance is evaluated through the 
above defined measures for four classes is tabulated in 
Table 1. The proposed GoogLeNet–GASF framework  
achieved an overall classification accuracy of 94.4 %, 
with per-class precision, recall, and F1-scores consist-
ently above 94 %, indicating balanced performance 
across all four motor-task categories. The computed Co-
hen’s Kappa coefficient of 0.926 further confirms a very 
high level of agreement beyond chance, demonstrating 
the robustness of the model. The estimated macro aver-
age AUC of 0.977 suggests strong discriminative capa-
bility across all classes, reflecting the reliability of the 
proposed system for both executed and imagined motor 
activity recognition. 

Furthermore, it was observed that actual (executed) 
movements were classified with higher precision com-
pared to imagined (motor imagery) movements. This dis-
crepancy aligns with known challenges in motor imagery 
classification, as imagery often produces weaker and 
more variable cortical activation than physical execution. 
Nonetheless, the model maintains robust performance 
across both task types. 

The balanced distribution of misclassifications across 
classes also highlights the absence of class imbalance or 
systematic bias toward any particular motor task. These 
results suggest the proposed system’s strong potential for 
real-world deployment in assistive technologies, offering 
reliable decoding of motor intentions for users with se-
vere motor impairments. 

A comparison of our results with recent studies have re-
vealed the improvement in various performance matrices 
using the method proposed here. Jain et al. [10] achieved 
74.6% accuracy in subject-independent trajectory predic-
tion using CNN-LSTM on pre-movement EEG, while Di 
et al. [11] obtained 84.03% accuracy for four-class MI 
classification using a 3D capsule network on BCI Com-
petition IV data. Arpaia et al. [12] reported 69% accuracy 
with a wearable eight-sensor EEG system, highlighting 
limitations in low-channel count setups. 

Lomelin et al. [13] and Collazos et al. [14] demonstrated 
the potential of CNNs with raw EEG and connectivity 
features, achieving accuracies in the 70–80% range but 
lacking consistency across larger datasets. Ma et al. [15] 
revealed significant drops in cross-session MI classifica-
tion accuracy (down to 53.7%), underscoring the chal-
lenges of generalization. An et al. [16] achieved 79–84% 
with a single-channel CNN approach for multi- class MI 
tasks. 

Compared to these works, our system’s 94.4% accuracy 
on four-class classification for 30 subjects represents a 
significant advancement, demonstrating the effective- 
ness of GASF-based feature extraction and GoogLeNet 
CNN architecture for reliable, scalable EEG-based BCI 
applications. 

V. SUMMARY 
This study presents a non-invasive brain–computer inter-
face (BCI) system that effectively decodes both executed 
and imagined motor intentions from electroencephalo-
gram (EEG) signals. By transforming one- dimensional 
EEG data into two-dimensional Gramian Angular Sum-
mation Field (GASF) images and leveraging a Goog-
LeNet convolutional neural network (CNN) architecture, 
the proposed system achieved a classification accuracy of 
94.4% across four motor tasks in data collected from 30 
subjects. This result represents a clear improvement over 

Table 1. Performance of the model 

Metric Class 1 Class 2 Class 3 Class 4 
Accuracy 0.973 0.971 0.971 0.972 
Misclass-Rate 0.026 0.028 0.028 0.028 
Precision 0.944 0.944 0.943 0.943 
Recall 0.947 0.942 0.941 0.944 
Specificity 0.981 0.981 0.981 0.981 
F1-Score 0.946 0.943 0.942 0.944 
Kappa-Value 0.928 0.924 0.923 0.925 
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existing approaches, demonstrating the benefits of com-
bining advanced time-series imaging techniques with 
deep learning models for motor intention recognition. 

The findings highlight the system’s potential for real- 
world applications in assistive technology and neuro re-
habilitation, offering an affordable and accurate solution 
for restoring motor function control to individuals with 
severe motor impairments. Future work will focus on ad-
dressing cross-session and cross-subject variability, inte-
grating adaptive learning techniques to personalize the 
system to individual users, thereby enhancing robustness 
and generalizability for practical deployment. 
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