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Analysis of time series data for classification or prediction tasks is very useful in various applications such 
as healthcare, climate studies and finance. As big data resources have recently become available in a number 
of fields such as healthcare [1], finance [3]-[5]  and climate change [6], it is now possible to apply state of 
the art deep learning models. Traditional methods such as autoregressive integrated moving average 
(ARIMA) [7], long short-term memory networks (LSTM) [8], gated recurrent units (GRUs) [9] and 
recurrent neural networks (RNN) [10] have provided robust frameworks in the analysis of time series data. 
However, these methods have limitations when applied to big data sets and when used to model long-term 
dependencies. The emergence of transformer-based architectures [11], as show in Figure 1, and 
technologies such as ChatGPT [12], has demonstrated the potential for analyzing time series data with long-
term dependencies and advancing the basic science by discovering new underlying structure. In this review, 
we provide a detailed analysis of state of the art in deep learning systems that model long-term context. 

Time series analysis techniques are evolving rapidly. Historically popular approaches such as LSTMs and 
GRUs suffer from the vanishing gradient problem when attempting to model extremely long-term 
phenomena. Systems based on an attention mechanism [11] leverage positional embedding modules and 
have been effectively employed in raw EEG data classification related to motor imagery tasks. A 
transformer-based architecture using a multi-head self-attention mechanism has been shown to provide 
promising levels of accuracy  [13]. Furthermore, a novel decoding method called Spatial-Temporal Tiny 
Transformer (S3T), has highlighted the use of attention mechanisms [14].  

Similarly, the combination of a self-supervised learning task 
and transformer models appear to be promising [15]. 
Transformer networks have been implemented to improve the 
performance and explainability of automatic seizure detection 
models, especially for continuous, long-term intracranial 
electroencephalogram (iEEG) data [16]. Impressive results, 
with high event-based sensitivity and low false positive rates, 
were demonstrated across two iEEG datasets. Consequently, 
the benefits of deep learning and transformer models are being 
recognized in commercial settings. A comparative analysis of 
commercial seizure-detection software packages like 
Besa 2.0, Encevis 1.7, and Persyst 13 revealed no significant 
difference in their per-patient detection rates [13]. However, 
this study pointed out significant variance in the false alarm 
rate, underlining the need for continued improvement in 
commercial offerings. 

The ability of large memory models to capture long-term 
dependencies in time-series data enables the detection of 
subtle, complex patterns that may be indicative of impending 
seizure activity. This capability is particularly crucial in 
detecting seizures, which may be overlooked by traditional 

 
Figure 1. The original transformer model proposed 
in [11] 
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methods. Furthermore, these models can be trained on 
large, diverse datasets, allowing them to generalize 
across a wide range of seizure types and patient 
populations. Figure 2 provides a summary of the 
various application areas where transformer-based 
architectures are used, along with the most popular 
architectures for each application. Different 
applications in signal processing that addresses time-
series related tasks such as forecasting, classification, 
and anomaly detection will be compared in the final 
review paper. The review will also compare popular 
variations of transformers including Vanila [17], 
LogTrans [18], InParformer [19], Informer [20], 
Sageformer [21], Autoformer [22], Pyraformer [23], 
W-Transformers [24], Quatformer [25], 
FEDformer [26], and Crossformer [27]. 

The success of the attention mechanism in natural language processing has motivated researchers to apply 
this technique to many fields involving time series analysis. Even though the attention mechanism has 
demonstrated the ability to capture temporal patterns over long periods of time, research in this area is 
relatively nascent and evolving rapidly. Systems based on these architectures are extremely complex and 
difficult to implement. As the data resources available for training are growing exponentially, the 
optimization of these architectures for specific applications will continue to pose challenges. The goal of 
this review is to make this new generation of technology more accessible to the community. Updates to this 
review will be available on GitHub at https://github.com/sanect/timeSeries_transformers. 
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Abstract
• Long-term dependencies play a crucial role in the 

analysis of the time series data in applications such 
as healthcare, climate change, finance etc.

• The emergence of transformer-based technologies 
such as ChatGPT have demonstrated the potential 
for analyzing time series data in which modeling of 
long-term dependencies is crucial.

• In this abstract, we provide a review of various 
transformer-based models that are used to model 
long-term context in time series data.

• The combination of self-supervised learning and 
transformer models is a promising approach to 
improve the performance and explainability of 
automatic seizure detection models, especially for 
continuous EEG data.

Introduction
• Traditional methods such as autoregressive 

integrated moving average (ARIMA), long short-
term memory networks (LSTM), gated recurrent 
units (GRUs) and recurrent neural networks (RNN) 
have provided robust frameworks in the analysis of 
time series data

• These methods have limitations when applied to big 
data sets and when used to model long-term 
dependencies.

• Systems based on an attention mechanism 
leverage positional embedding modules and have 
been effectively employed in raw EEG data 
classification related to motor imagery tasks.

A Typical Transformer Architecture

Application Areas
• A summary of various application areas where 

transformer-based architectures have been 
successful along with the most popular 
architectures for each application:

Comparison to Time Series Models
• Transformer models have shown improvements in 

terms of accuracy, computational efficiency while 
handling long term dependencies. 

• Traditional time series models often have lower 
computational complexity but may require additional 
steps for trend and seasonality decomposition, 
which can increase the overall computation time.

• The self-attention module in standard Transformers 
has a quadratic time and memory complexity, posing 
a computational bottleneck for long sequences.

• To address this, models like LogTrans and 
Pyraformer introduce a sparsity bias in the attention 
mechanism, while models like Informer and 
FEDformer utilize the low-rank properties of the self-
attention matrix to reduce complexity.

• Traditional models have a limited memory 
mechanism and can remember and utilize only a 
fixed number of previous data points. This inherently 
restricts their ability to capture long-range 
dependencies effectively.

• While Transformer models offer higher accuracy and 
better handling of long-range dependencies, they 
often come with higher computational costs 
compared to traditional time series models. A 
comparison of computational efficiency for 12 
different time series data sets is shown below:

Advancements and Innovations
• Standard transformer designs excel in capturing 

global dependencies, but do not fully exploit the 
characteristics of time-series data, such as local 
structures that are better captured by conventional 
approaches such as convolutional or recurrent 
architectures.

• Interpretability remains a challenge, raising 
questions about their trustworthiness and bias.

• Recent innovations in transformer architectures, 
particularly those focusing on long-term time series 
forecasting, have introduced several significant 
advancements.

• Recent developments in attention mechanisms and 
efficiency enhancements have led to the 
introduction of more sophisticated time-series 
forecasting models. ETSFORMER, for instance, 
leverages exponential smoothing attention and 
frequency attention to improve efficiency.

• NAST, on the other hand, employs a non-
autoregressive architecture with a unique spatial-
temporal attention mechanism.

• Innovative Decomposition and Trend Analysis 
Techniques have been used in TDFormer, Differential 
Attention Fusion Model and FEDFORMER.

• Enhanced Multiscale and Long-Sequence 
Forecasting have been implemented in Scaleformer 
and Informer architectures.

Limitations and Challenges
• Computational Demands: Transformers are 

computationally intensive due to their complex 
architecture, which can be challenging for long 
sequence time-series forecasting. They often require 
high computational resources, particularly for training 
large models, which can be a limiting factor.

• Need for Large Datasets: Transformers typically 
require large datasets to train effectively due to their 
numerous trainable parameters. This need for 
extensive data can be a challenge in scenarios where 
data is scarce or expensive to acquire, such as many 
bioengineering or health sciences applications.

• Overfitting Issues: There is a risk of overfitting, 
especially when dealing with time series data that has 
complex patterns. Overfitting can lead to models that 
perform well on training data but poorly generalize to 
new, unseen data.

• Quadratic Time Complexity: The self-attention 
mechanism has a quadratic time complexity with 
respect to the sequence length, which can be 
prohibitive for very long time series. This issue limits 
the scalability of models in certain applications.

• Handling Long-Range Dependencies: While 
transformers are designed to capture long-range 
dependencies, their effectiveness can vary depending 
on the nature of the time series data. Application-
specific adaptations are required.

• Context Window Length: While models learn long-
term dependencies, they are limited by temporal 
coherence and context fragmentation.

Summary
• Compared to traditional models, a transformer 

architecture can be effective in analyzing long-term 
dependencies in time series data.

• Long-term dependencies in the data are useful in 
several applications, such as natural language 
processing, computer vision, and audio signal 
processing, as well as in various domains such as 
healthcare, climate studies, and finance.

• Innovations in transformer models are focusing on 
efficient ways to model long-term context, which 
poses a combinatorial problem, and prevents 
efficient integration of long-term and local 
constraints. 

• This latter point is particularly important in sequential 
physical signal data such as speech, cardiology or 
EEG signals.
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• A transformer architecture relies solely on 
attention mechanisms that allow the model to 
process inputs and outputs in parallel.

• The transformer follows an encoder-decoder 
structure, employing stacked self-attention and 
point-wise fully connected layers. 

• An attention function in the model
maps a query and a set of key-value 
pairs to an output, computed as
a weighted sum of the values.

• A transformer utilizes 
multi-head attention 
and incorporates 
positional encodings 
to maintain 
information about 
the order of 
sequence tokens.

• Transformers can 
handle raw input data 
without the need 
for extensive 
feature engineering. 
(minimal preprocessing 
and postprocessing). Updates to this review will be available on GitHub at 

https://github.com/sanect/timeSeries_transformers
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