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Major Depressive Disorder (MDD) is a complex and heterogeneous psychiatric condition that affects indi-
viduals across the lifespan, from childhood to old age [1]. Its widespread prevalence worldwide highlights
the urgent need for advancements in early diagnosis and improved treatment strategies, particularly in pe-
diatric populations. Achieving accurate early diagnosis, especially through electroencephalography (EEG),
demands a multidisciplinary approach that brings together expertise in neuroscience, psychology, and com-
putational methods. This collaborative effort is essential to meet the needs of both researchers and clinicians
in addressing the challenges of MDD. In this research, in line with our previous studies focused on MDD
[2, 3, 4], we employ a graph-based network applied to resting-state EEG Functional Connectivity (FC) to
investigate and gain deeper insights into the brain networks involved in MDD in children and adolescents.
Graph-based networks are among the most widely used deep learning models for representing graph data
structures, such as networks, due to their exceptional ability to handle complex pairwise relationships [5, 6].
These relationships span both imaging and non-imaging features across different subjects, enabling more
detailed and comprehensive data analysis [7]. The motivation behind this research is to enhance classifica-
tion diagnostic models for MDD in children and adolescents by comparing them with healthy, age-matched
controls. While most studies have focused on fMRI data, we emphasize the use of high-density EEG, a non-
invasive and widely recommended method with high temporal resolution for measuring brain functional
activity [8].

METHOD

In this research, we developed a comprehensive pipeline for EEG data pre-processing and connectivity
model computation. The pre-processing was divided into two main steps: EEG data preparation and connec-
tivity model calculation. The EEG pre-processing steps closely followed the methodology described in [2],
including detecting bad-channels, interpolation, resampling, filtering, re-referencing, and up to the removal
of bad artifacts using Independent Component Analysis (ICA). EEG data was segmented into chunks of
4,000 samples (equivalent to 15.6 seconds per segment). For each segment, a Multi-Variate Auto-Regressive
Independent Component Analysis (MVARICA) model [9] was fitted to the data. The model’s hyperparam-
eters were optimized before fitting on each EEG chunk independently, under the assumption that the EEG
signals were non-stationary. Once the MVARICA model was fitted to the segmented EEG data, it was
possible to compute several connectivity measures. The noise covariance matrix and model coefficients
extracted from the MVARICA model were used to calculate various connectivity measures, including Co-
herence, Partial Coherence, Partial Directed Coherence (PDC), full-frequency PDC (ffPDC), PDC factor,
generalized PDC (gPDC), Directed Transfer Function (DTF), full-frequency DTF (ffDTF), dDTF, and gen-
eralized DTF (gDTF) across all channels in both directions. These connectivity measurements were then
divided into specific frequency bands: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz),
and Gamma (30–70 Hz). The model was trained using data from the Healthy Brain Network (HBN) [10],
which comprised 214 datasets of children and adolescents aged 5 to 21. Among these, 44 participants were
diagnosed with MDD, and 170 were classified as healthy. During the model training process, the input data
was structured in a tabular format, with rows representing segmented data samples from each participant
across the different frequency bands and connectivity channel interactions. The final dataset consisted of
31,290 rows: 4,995 from individuals with MDD and 26,295 from typically developing participants. The
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columns represented attributes, which included the connectivity measurement for each channel interaction
(11,881 attributes per measurement). A Random Forest model was employed using 5-fold cross-validation,
with data split subject-wise, and class weights were applied to address the issue of class imbalance. The
performance metrics used to evaluate the model included F1-Score, Cohen’s Kappa, and Matthews Corre-
lation Coefficient (MCC). The best model was selected based on the highest F1-Score achieved across all
folds. Furthermore, the Random Forest model provided a ranking of attribute importance through the Gini
importance method, allowing for insight into the most relevant connectivity features for classification.

RESULTS AND DISCUSSION Table 1. Random Forest testing score in each
connectivity measurement, channelwise

Connectivity
Measure-
ment

F1
Scores MCC Cohen

Kappa

COH 0.451 0.491 0.395
Real COH 0.481 0.512 0.423
PC 0.892 0.876 0.869
Real PC 0.921 0.907 0.903
PDC 0.954 0.945 0.943
PDC Factor 0.975 0.970 0.969
ffPDC 0.964 0.956 0.955
gPDC 0.942 0.930 0.928
DTF 0.836 0.816 0.802
ffDTF 0.819 0.796 0.782
dDTF 0.848 0.827 0.816
gDTF 0.813 0.793 0.776

Our model demonstrated strong performance, as shown in Table 1,
achieving an F1-Score of 0.975, a MCC of 0.970, and a Cohen’s
Kappa score of 0.969 for the PDC Factor. In comparison, the DTF
and its related measurements performed worse than PDC and its
variants. This is likely due to data limitations during the construc-
tion of the MVARICA model. We suggest adjusting the segmenta-
tion threshold to improve the performance of DTF and related met-
rics while maintaining sufficient training data for effective model
optimization. Interestingly, connectivity measurements that exclude
indirect influences outperformed those that included them. This can
be attributed to the nature of direct measurements, which more ex-
plicitly capture causal interactions. Graph-based models, such as
those used in this study, tend to excel in environments where causal
interactions are central, as emphasized by [11]. Furthermore, the
best-performing model highlighted notable channel interactions, specifically between E115-E111 and E67-
E67, as shown in Figure 1. These findings underscore the potential of using direct connectivity measures,
like the PDC Factor, to capture key interactions relevant to distinguishing MDD from healthy controls.

CONCLUSIONS

In conclusion, our study demonstrates the feasibility and effectiveness of using graph-based networks, par-
ticularly Random Forest models, to classify MDD in children and adolescents. The strong classification
metrics achieved in this study underscore the potential of these networks to enhance our understanding of
the neurophysiological disruptions associated with MDD by identifying clinically relevant alterations in
functional brain connectivity. However, to further validate and refine these findings, replication with larger
datasets is recommended. Additionally, future research should explore the impact of using a larger segmen-
tation threshold, which may improve the performance of metrics such as the DTF and its related measures,
including dDTF. Overall, this study highlights the promise of graph-based approaches in advancing the
diagnosis and understanding of MDD and sets the foundation for future investigations into brain network
dynamics in psychiatric disorders.
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Figure 1. Learned feature importance for PDC Factor
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Pre-processing

➢ EEG pre-processing starts with bad channel 
identification (through PREP pipeline) and interpolation, 
followed by Band pass filter (1-70 Hz) and a notch filter 
at 60 Hz. 

➢ Resampling 500 to 256 Hz and channels referenced 
based on average of channels. 

➢ ICA is used to remove bad artifacts. 
➢ The data was then segmented into chunks of 4000 

samples. Each chunk was used to fit and train a 
MultiVariate AutoRegressive ICA (MVARICA) model. 

➢ The model hyperparameters were optimized and used to 
compute Coherence and Direct Transfer Function (DTF) 
and their other variations.

Conclusion

Dataset

The dataset used was from the Healthy Brain Network, measured in the US, on participants age 
from 5-21, with eye closed in resting state. The dataset used utilized 214 recording, of which 170 
are classified as healthy and 44 classified as MDD. The data was recorded using 128 channels, of 
which 109 was kept. 

ML setup
➢ Random Forest (RF) model was trained on data in tabular format, with 

rows representing the segmented data, with the column representing the 
channel connectivity interaction. 

➢ The model was trained using 5-fold cross validation, with class weights 
added to account for data imbalance.

➢ F1-score, Matthew Correlation Coefficient (MCC), Cohen Kappa were 
recorded

� Major Depressive Disorder (MDD) as a heterogeneous psychiatric disorder distinguished by continuous low mood, feelings of worthlessness, diminished 
interest, cognitive impairment, vegetative symptoms, feelings of excessive guilt, anhedonia, disturbed sleep, lethargy, and suicidal tendencies / ideation. 

� Current assessments are mainly based on standardized diagnostic interviews (SDIs), systematic and semi-systematic psychiatric evaluation, and interviews 
of the state of patients using reported symptoms, events, occurrences, and psychological evaluations (Self report)

� Results of resting-state functional connectivity demonstrated increased alpha, decreased beta; alpha activities were observed in the subgenual prefrontal 
cortex and left dorsolateral and mediolateral prefrontal cortex.

� Prior research using graph theory analysis revealed accuracy of 80.74% for recognizing the abnormal organization of functional connectivity networks in 
mild depression (aged 18-24 y.o) and Lower clustering coefficient and a greater characteristic path length (MDD vs healthy; Qin et al., 2022; Olbrich et al., 
2014; Li et al. 2011). 

� Current research utilize graph theory analysis to identify biomarkers for MDD in children and adolescents, compared to age-matched healthy individuals.

- Feasibility and effectiveness of graph-based networks, particularly Random Forest models, in classifying MDD in children and adolescents.
- Strong classification metrics highlight the potential to enhance understanding of neurophysiological disruptions in MDD.
- Identification of clinically relevant alterations in functional brain connectivity.
- Recommendation for replication with larger datasets to validate and refine findings.
- Suggestion to explore the impact of using a different segmentation threshold or models to improve performance metrics like DTF and dDTF.
- Emphasis on the promise of graph-based approaches in advancing MDD diagnosis and understanding.
- Foundation set for future investigations into brain network dynamics in psychiatric disorders

Features Analysis

- Figure 1 shows the features importance 
analysis, extracted from the random forest 
model.

- The model was trained on the PDC Factor 
connectivity measurement

- The importance score was extracted from 
the Gini importance method.

- It is noteworthy that the interaction 
between E115 and E111 emerges as the 
most important feature

- The next three most important interactions 
are channel relationship with themselves 
(R67, E70, E39)

- The importance scores showcase that the 
model did not overfit, as there are no 
overly dominant score

- Interaction E115-E111 is a ROI interaction 
between Temporal right to Center, E67 and 
E70 are in the Occipital Left. While E39 is 
in the Temporal Left.

References

- S. Olbrich, A. Tränkner, T. Chittka, U. Hegerl, and P. Schönknecht, “Functional connectivity in major depression: increased phase synchronization between frontal cortical eeg source estimates,” Psychiatry Research: Neuroimaging, vol. 222, no. 1-2, pp. 91–99, 2014.
- K. Qin, D. Lei, W. H. Pinaya, N. Pan, W. Li, Z. Zhu, J. A. Sweeney, A. Mechelli, and Q. Gong, “Using graph convolutional network to characterize individuals with major depressive disorder across multiple imaging sites,” EBioMedicine, vol. 78, 2022.

Connectivity Threshold
- The method had a segmentation threshold, which require optimization. Increasing it, improves the MVARICA model, but decreases 

the training data for the RF model and vice versa.
- Threshold used is longer than one used in other works in MDD, with the high performance of the RF model, we can assume that the 

RF model is better suited for classifying MDD by capturing stable and consistent brain patterns, ignoring transient noise and 
fluctuations. Longer segments also better capture the dynamic nature of brain connectivity.

- The longer segments used also help improve the resolution of the connectivity measurements, which is beneficial when trying to 
analyse connectivity in lower frequency band, which tend to be shorter in length (2-4 Hz).

Performance Analysis
• PDC appears to be more robust than DTF, specially when training MVARICA 

on sparse data.
• RF is best suited to train on direct measurement, which ignores an indirect 

interactions. an environment where these causal interactions are captured is 
where graph based model excel

• The performance is robust across all metrics, specially in an imbalance 
environment (similar to clinical setting)

Performance
• Results are shown in table 

1
• Highest F1-score of 

0.975, MCC 0.970, Cohen 
Kappa of 0.969

• Highest score achieved in 
PDC Factor.

• DTF performed worse 
than PDC 

• Coherence performs the 
worst at 0.451 F1-score

• Direct measurements 
(PDC Factor and dDTF) 
perform the best in their 
respective type of 
measurements
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