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Seismocardiography (SCG) refers to vibrations detectable on the chest wall surface originating from cardiac 

valve, muscle, and turbulent blood flow. SCG analysis appears to be useful in the diagnosis and monitoring 

of various cardiac pathologies. Removing noise artifacts from SCG is essential for proper extraction of the 

signal features that may have a diagnostic value. SCG signals contain both low-frequency cardiac vibrations 

(<20 Hz) and heart valve sounds (>20Hz) [1].  It would not be effective to apply simple band-pass filtering 

when the noise spectrum is within SCG frequency band. Deep learning (DL) has shown promising results 

in removing noise artifacts from electroencephalogram (EEG) and other signals [2][3][4][6][7]. Increasing 

SCG signal to noise ratio (SNR) would help determine signal features more accurately which can increase 

the SCG diagnostic utility.  

In the current study, a supervised DL approach is utilized to study denoising SCG signals by the removal 

of building noise. SCG was recorded from 4th intercoastal space using a uniaxial accelerometer while a 

second accelerometer detected building noise during the same recording session. Two different models 

were implemented. First, a recurrent neural network (RNN) using long short-term memory (LSTM) 

network (called Model-1 in the current study) that can denoise signals. The second model (called Model-2) 

Figure 1. Flowchart showing preprocessing, noise addition, segmentation and dataset creation 
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• Data collected from one 
subject. 

• Uniaxial accelerometer 
used for SCG and noise 
recording. 

• Sampling frequency 
10kHz. 

• Duration 3 minutes. 

• Noise added to clean 
SCG  

• SNR range 1 to 3 in 
0.1 increments. 

• Total 21 sets of noisy 
SCG signals created. 

• The noisy and clean signals are 
segmented. 

• R-peaks of ECG signal is used as 
reference. 

• There are 186 segments for each 
noisy signal. 

• Clean SCG signal is also 
segmented. using the same 
reference.  

• Each noisy segment is 
paired with its clean 
counterpart to create a 
single dataset. 

• The whole dataset is split 
into training (80%), 
validation (10%) and testing 
(10%) dataset. 
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first converts 1D time series into 2D data using short term Fourier transform (STFT) then use a RNN 

involving LSTM network to remove noise then converts the 2D data back to a denoised time series signal. 

Both DL models showed promising results in removing actual building noise from SCG where SNR 

improvement was achieved. When supervised learning methods are employed, clean SCG signals are 

needed as a “ground truth” reference signal. The data was collected for 3 minutes from two male subjects 

who sat still on a chair. Bandpass filtering (0.1-50 Hz) was applied and the resulting signal was used as the 

ground truth SCG. SCG signal is known to have most of its energy in this frequency band [5][8]. The second 

accelerometer was attached to the chair to simultaneously collect the building noise signal. To generate the 

noisy SCG signal, the building noise was added to the clean SCG signal at different signal to noise ratios 

(SNR) from 1 to 3 in 0.1 increments (resulting in 21 different SNR levels), which was chosen based on 

expected noise levels. The clean and the 21 noisy signals were then segmented using the R-peaks of the 

ECG signals which yielded 186 heart beats at each SNR level resulting in 3906 (=186x21) pairs of noisy 

SCG and clean SCG signals. All signals were normalized by (maximum - minimum values to have the same 

range). Figure 1. shows the detailed dataset creation method.  

The deep learning model takes the noisy SCG as input, denoted by xc in equation (1), trains itself to learn a 

nonlinear function ‘f’ which maps the noisy SCG into denoised SCG, defined as y in the equation (1). The 

mean square error (MSE) between the denoised output, y and the ground truth xg are used to calculate a 

loss function (equation (2)). Here, the model compares each SCG beat and tries to minimize the loss 

function for all beats used for model training. After the training, all data in the test dataset are used to 

evaluate the models. The training and testing took about 24 hours on a system having Intel®Xeon® 

processor and NVDIA RTX 2080. 

𝑦 = 𝑓(𝑥𝑐) (1) 

𝐿𝑜𝑠𝑠𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑔𝑖)

2
; 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑏𝑒𝑎𝑡 𝑁

𝑖=1  (2) 

 

The performance of the models is evaluated based on the three matrices given by equations (3), (4) and (5). 

The first two are the relative root mean squared error (RRMSE) for both the temporal and spectral domains 

RNN model - 1   Noisy SCG Denoised 
SCG 

LS
TM

  (
fe

at
u

re
s=

1
) 

re
LU

 

D
ro

p
O

u
t 

(0
.3

5
) 

LS
TM

 (
fe

at
u

re
s=

2
) 

Fc
 (

fe
at

u
re

s=
2

) 

D
ro

p
O

u
t 

(0
.3

5
) 

Fc
 (

fe
at

u
re

s=
1

) 

• Number of time steps = L 
• Number of features =1  

• The input and output data size of the model = (L x 1). 
• The first and second LSTM layers have 80 and 100 hidden units, 

respectively. 
• Loss function is the MSE between denoised SCG and the ground 

truth. 
• Optimizer = Adam. 
• Learning rate = 0.05, β₁ = 0.9, β₂ = 0.999, Epsilon = 1e-8. Epoch 400. 

• Number of time steps = L 
• Number of features =1  

Figure 2.  Flowchart of RNN model-1. 
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(equation 3 and 4, respectively). The third matric is the correlation coefficient (CC). Each matric provides 

a different measure of signal distortion. 

𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
𝑅𝑀𝑆(𝑦−𝑥𝑔)

𝑅𝑀𝑆(𝑥𝑔)
 (3) 

𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 =
𝑅𝑀𝑆(𝐹𝐹𝑇(𝑦)−𝐹𝐹𝑇(𝑥𝑔))

𝑅𝑀𝑆(𝐹𝐹𝑇(𝑥𝑔))
                                                                                                                                                                              (4) 

𝐶𝐶 =  
𝐶𝑜𝑣(𝑦,𝑥𝑔)

√𝑉𝑎𝑟(𝑦)𝑉𝑎𝑟(𝑥𝑔)
                                                                                                                                                                                                         (5)  
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Figure 3.  Flowchart of RNN model-2. The conversion of time series data using STFT, and conversion of the denoised 2D 

output back to 1D data. 
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The temporal and spectral representation of a typical SCG beat, where the ground truth (i.e., original), 

contaminated, and denoised signal (using RNN Model-2) are provided in Figure 4.  

 

  

 

The performance metrics against SNR values of the test dataset is shown in the Figure 6. and Figure 7. By 

comparing the temporal and spectral metrics for the low-pass and the DL filtering methods, it can be seen 

that the two DL models showed similar results. 

Figure 4.  Denoised SCG from  RNN model-2, contaminated SCG and the original SCG beat in the (a) time domain. (b) 

frequency domain 

(a) (b) 

(a) (b) 

Figure 5.  Denoised SCG from lowpass filter, contaminated SCG and the original SCG beat in the (a) time domain. (b) 

frequency domain 
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These results also indicated that both RNN models performed better than low-pass filtering since they 

reduced the root mean square difference (RRMSE) between filtered and clean SCG beat and achieved 

higher correlation coefficient. For example, as can be seen in Figure 6., the lowpass filter resulted RRMSE 

of 0.39-0.66 (for the SCG waveform) while denoising with DL resulted in RRMSE of 0.23-0.33. In addition, 

the lowpass filter resulted RRMSE of 0.26-0.44 (for the SCG Spectrum) while denoising with DL resulted 

in RRMSE of 0.14-0.21. Figure 7. Showed similar trends. In addition, at the lowest SNR (SNR=1), the 

RNN Model-2 slightly outperformed Model-1 in the frequency domain while Model-1 performed slightly 

better in the time domain.  

The current pilot study suggests the technical feasibility of the proposed DL models for filtering building 

noise from SCG signals. Limitations of the study include considering a small number of subjects and 

studying only one type of noise.  Larger number of subjects will be included in future studies as SCG in 

different individuals are expected to vary [9][10]. A leave-one-subject-out approach can be used to help test 

the generality of the trained models. The current study is an initial step towards denoising SCG in real life 

environments. Building noise was considered first since it was the most consistent and uncontrollable noise 

in the current study. Future studies will investigate other kinds of noise (e.g., movement artifacts, speech, 

coughing, which are usually intermittent) that are encountered in clinical settings.   

 

(b) (c) (a) 

Figure 6.  Peromance matrics of first recording against the SNR values, (a) Average RRMSE (Temporal), (b) Average 

RRMSE (Spectral),  (c) CC (Temporal) 

(b) (c) (a) 

Figure 7. Peromance matrics of second recording against the SNR values, (a) Average RRMSE (Temporal), (b) Average 

RRMSE (Spectral),  (c) CC (Temporal) 
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Abstract

• Seismocarldiography (SCG) refers to vibrations 

detectable on the chest wall surface originating from 

cardiac valve, muscle, and turbulent blood flow 

which appears to be useful in the diagnosis and 

monitoring of various cardiac pathologies.

• Removing noise artifacts from SCG is essential for 

proper and accurate extraction of the signal features 

which can improve the diagnostic utility. 

• SCG signals contain both low-frequency cardiac 

vibrations (<20 Hz) and heart valve sounds (>20Hz) 

[1]. It would not be effective to apply simple band-

pass filtering when the noise spectrum is within SCG 

frequency band.

• In the current study, a supervised DL approach is 

utilized to study denoising SCG signals by the 

removal of building noise.

Methodology

• SCG was recorded from 4th intercoastal space using 

a uniaxial accelerometer while a second 

accelerometer detected building noise during the 

same recording session. 

• The data was collected for 3 minutes from  two male 

subjects who sat still on a chair. 

• Bandpass filtering (0.1-50 Hz) was applied and the 

resulting signal was used as the ground truth SCG. 

SCG signal is known to have most of its energy in 

this frequency band [2][3].

• Two different supervised DL models were 

implemented. All the models uses LSTM networks, 

only difference is first model takes 1D timeseries 

data while the second model deals with 2D data 

using short term Fourier transform (STFT).

Flowchart of The Models

Performance Matrices

• The deep learning model takes the noisy SCG as 

input, denoted by xc in equation (1), trains itself to 

learn a nonlinear function ‘f’ which maps the noisy 

SCG into denoised SCG, defined as y in the equation 

(1). 

• The loss function during training is based on the 

equation (2).

• In the testing section,  two time domain and one 

spectral domain performances were measured given 

in equation (3), (4) and (5). 

𝑦 = 𝑓 𝑥𝑐                                                                                                     ….…(1)      

𝐿𝑜𝑠𝑠𝑀𝑆𝐸 =
1

𝑁
σ𝑖=1

𝑁 𝑦𝑖 − 𝑥𝑔𝑖
2

; 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑏𝑒𝑎𝑡 ….…(2) 

𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
𝑅𝑀𝑆 𝑦−𝑥𝑔

𝑅𝑀𝑆 𝑥𝑔
                                       .……(3)

𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 =
𝑅𝑀𝑆(𝐹𝐹𝑇 𝑦 −𝐹𝐹𝑇 𝑥𝑔 )

𝑅𝑀𝑆(𝐹𝐹𝑇 𝑥𝑔 )
                             .……(4)

𝐶𝐶 =
𝐶𝑜𝑣(𝑦,𝑥𝑔)

𝑉𝑎𝑟 𝑦 𝑉𝑎𝑟(𝑥𝑔)
 …….(5) 

Sample Denoised Output

Results

• All the performance metrics against SNR values of 

the test dataset is shown in the Figure 6. and Figure 

7. By comparing the temporal and spectral metrics 

for the low-pass and the DL filtering methods, it can 

be seen that the two DL models showed similar 

results.

• These results also indicated that both RNN models 

performed better than low-pass filtering since they 

reduced the root mean square difference between 

filtered and clean SCG beat and achieved higher 

correlation coefficient. 

Conclusion 

• The current pilot study suggests the technical 

feasibility of the proposed DL models for filtering 

building noise from SCG signals. 

• Limitations of the study include considering a small 

number of subjects and only one type of noise. 

• Larger number of subjects will be included in future 

studies to as SCG in different individuals are expected 

to vary [4][5].

• The current study is an initial step towards denoising 

SCG in real life environments.

• Building noise was considered first since it was the 

most consistent and uncontrollable noise. 

• Future studies will investigate other kinds of noise 

(e.g., movement artifacts, speech, etc.) that are 

encountered in clinical settings. 
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Number of time steps = L

Number of features =1 

• The input and output data size of the model = (L x 1).

• The first and second LSTM layers have 80 and 100 hidden units, respectively.

• Loss function is the MSE between denoised SCG and the ground truth.

• Optimizer = Adam.

• Learning rate = 0.05, β₁ = 0.9, β₂ = 0.999, Epsilon = 1e-8. Epoch 400.

• Number of time steps = L

• Number of features =1 

Figure 2.  Flowchart of RNN model-1.
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• Number of time steps = L

• Number of features =1 

• The input and output data shape of the model = (k x (w+2)).

• The first and second LSTM layers have 80 and 100 hidden units, 

respectively.

• Loss function is the MSE between denoised SCG and the ground truth.

• Optimizer = Adam.

• Hyperparameters: Same as RNN model-1
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• Number of time steps = L

• Number of features =1 

• Window(rectangular) length, w=64

• Overlap length, m = 63

• Frequency range is ‘one sided’

Number of rows = floor(w/2)+1

Number of columns, 

k = floor(abs((L-w)/(m-L)))+1

Noisy SCG

STFT

Stacking real and imaginary 

 

• Number of rows becomes (w+2) or 66.

• Number of time steps = k

Short Time Fourier Transform

Figure 3.  Flowchart of RNN model-2. The conversion of time series data using STFT, and conversion of the denoised 2D output back to 1D data.

Figure 4.  Denoised SCG from  RNN model-2, contaminated SCG and the original SCG beat in the (a) time domain. (b) frequency domain

(a) (b)

(a) (b)

Figure 5.  Denoised SCG from lowpass filter, contaminated SCG and the original SCG beat in the (a) time domain. (b) frequency domain

(b) (c)(a)

Figure 6.  Peromance matrics of first recording against the SNR values, (a) Average RRMSE (Temporal), (b) Average RRMSE (Spectral),  (c) CC (Temporal)

(b) (c)(a)

Figure 7. Peromance matrics of second recording against the SNR values, (a) Average RRMSE (Temporal), (b) Average RRMSE (Spectral),  (c) CC (Temporal)

Segmentation using ECG R-peaks
Number of segments for each SNR: 186
Total number of noisy SCG segments:  3906

 

Clean SCG
Ground Truth

Noisy SCG Data
Number of signals: 21 

Clean SCG Data
Number of signals: 1

 

Bandpass Filter

0.1-50Hz

Actual Building Noise
Dominant frequencies: 
25Hz, 29.7Hz, 32.7 Hz & 50Hz

Raw SCG Data 

𝑁𝑜𝑖𝑠𝑦 𝑆𝐶𝐺 = 𝐶𝑙𝑒𝑎𝑛 𝑆𝐶𝐺 +  𝜆 ∗ 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑜𝑖𝑠𝑒

𝑆𝑁𝑅 =
𝑟𝑚𝑠(𝐶𝑙𝑒𝑎𝑛 𝑆𝐶𝐺)

𝜆 ∗ 𝑟𝑚𝑠(𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑜𝑖𝑠𝑒)

Clean SCG

Noisy SCG

ECG

Noisy SCG

Preprocessing Noise Addition Segmentation Dataset creation

• Data collected from one subject.

• Uniaxial accelerometer used for 

SCG and noise recording.

• Sampling frequency 10kHz.

• Duration 3 minutes.

• Noise added to clean SCG 

• SNR range 1 to 3 in 0.1 

increments.

• Total 21 sets of noisy SCG 

signals created.

• The noisy and clean signals are segmented.

• R-peaks of ECG signal is used as reference.

• There are 186 segments for each noisy signal.

• Clean SCG signal is also segmented. using the 

same reference. 

• Each noisy segment is paired with its 

clean counterpart to create a single 

dataset.

• The whole dataset is split into training 

(80%), validation (10%) and testing 

(10%) dataset.

Figure 1. Flowchart showing preprocessing, noise addition, segmentation and dataset creation
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Abstract

• Seismocarldiography (SCG) refers to vibrations 

detectable on the chest wall surface originating from 

cardiac valve, muscle, and turbulent blood flow 

which appears to be useful in the diagnosis and 

monitoring of various cardiac pathologies.

• Removing noise artifacts from SCG is essential for 

proper and accurate extraction of the signal features 

which can improve the diagnostic utility. 

• SCG signals contain both low-frequency cardiac 

vibrations (<20 Hz) and heart valve sounds (>20Hz) 

[1]. It would not be effective to apply simple band-

pass filtering when the noise spectrum is within SCG 

frequency band.

• In the current study, a supervised DL approach is 

utilized to study denoising SCG signals by the 

removal of building noise.

Methodology

• SCG was recorded from 4th intercoastal space using 

a uniaxial accelerometer while a second 

accelerometer detected building noise during the 

same recording session. 

• The data was collected for 3 minutes from  two male 

subjects who sat still on a chair. 

• Bandpass filtering (0.1-50 Hz) was applied and the 

resulting signal was used as the ground truth SCG. 

SCG signal is known to have most of its energy in 

this frequency band [2][3].

• Two different supervised DL models were 

implemented. All the models uses LSTM networks, 

only difference is first model takes 1D timeseries 

data while the second model deals with 2D data 

using short term Fourier transform (STFT).

Flowchart of The Models

Performance Matrices

• The deep learning model takes the noisy SCG as 

input, denoted by xc in equation (1), trains itself to 

learn a nonlinear function ‘f’ which maps the noisy 

SCG into denoised SCG, defined as y in the equation 

(1). 

• The loss function during training is based on the 

equation (2).

• In the testing section,  two time domain and one 

spectral domain performances were measured given 

in equation (3), (4) and (5). 

𝑦 = 𝑓 𝑥𝑐                                                                                                     ….…(1)      

𝐿𝑜𝑠𝑠𝑀𝑆𝐸 =
1

𝑁
σ𝑖=1

𝑁 𝑦𝑖 − 𝑥𝑔𝑖
2

; 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑏𝑒𝑎𝑡 ….…(2) 

𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
𝑅𝑀𝑆 𝑦−𝑥𝑔

𝑅𝑀𝑆 𝑥𝑔
                                       .……(3)

𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 =
𝑅𝑀𝑆(𝐹𝐹𝑇 𝑦 −𝐹𝐹𝑇 𝑥𝑔 )

𝑅𝑀𝑆(𝐹𝐹𝑇 𝑥𝑔 )
                             .……(4)

𝐶𝐶 =
𝐶𝑜𝑣(𝑦,𝑥𝑔)

𝑉𝑎𝑟 𝑦 𝑉𝑎𝑟(𝑥𝑔)
 …….(5) 

Sample Denoised Output

Results

• All the performance metrics against SNR values of 

the test dataset is shown in the Figure 6. and Figure 

7. By comparing the temporal and spectral metrics 

for the low-pass and the DL filtering methods, it can 

be seen that the two DL models showed similar 

results.

• These results also indicated that both RNN models 

performed better than low-pass filtering since they 

reduced the root mean square difference between 

filtered and clean SCG beat and achieved higher 

correlation coefficient. 

Conclusion 

• The current pilot study suggests the technical 

feasibility of the proposed DL models for filtering 

building noise from SCG signals. 

• Limitations of the study include considering a small 

number of subjects and only one type of noise. 

• Larger number of subjects will be included in future 

studies to as SCG in different individuals are expected 

to vary [4][5].

• The current study is an initial step towards denoising 

SCG in real life environments.

• Building noise was considered first since it was the 

most consistent and uncontrollable noise. 

• Future studies will investigate other kinds of noise 

(e.g., movement artifacts, speech, etc.) that are 

encountered in clinical settings. 
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Number of time steps = L

Number of features =1 

• The input and output data size of the model = (L x 1).

• The first and second LSTM layers have 80 and 100 hidden units, respectively.

• Loss function is the MSE between denoised SCG and the ground truth.

• Optimizer = Adam.

• Learning rate = 0.05, β₁ = 0.9, β₂ = 0.999, Epsilon = 1e-8. Epoch 400.

• Number of time steps = L

• Number of features =1 

Figure 2.  Flowchart of RNN model-1.
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• Number of time steps = L

• Number of features =1 

• The input and output data shape of the model = (k x (w+2)).

• The first and second LSTM layers have 80 and 100 hidden units, 

respectively.

• Loss function is the MSE between denoised SCG and the ground truth.

• Optimizer = Adam.

• Hyperparameters: Same as RNN model-1
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• Number of time steps = L

• Number of features =1 

• Window(rectangular) length, w=64

• Overlap length, m = 63

• Frequency range is ‘one sided’

Number of rows = floor(w/2)+1

Number of columns, 

k = floor(abs((L-w)/(m-L)))+1

Noisy SCG

STFT

Stacking real and imaginary 

 

• Number of rows becomes (w+2) or 66.

• Number of time steps = k

Short Time Fourier Transform

Figure 3.  Flowchart of RNN model-2. The conversion of time series data using STFT, and conversion of the denoised 2D output back to 1D data.

Figure 4.  Denoised SCG from  RNN model-2, contaminated SCG and the original SCG beat in the (a) time domain. (b) frequency domain

(a) (b)

(a) (b)

Figure 5.  Denoised SCG from lowpass filter, contaminated SCG and the original SCG beat in the (a) time domain. (b) frequency domain

(b) (c)(a)

Figure 6.  Peromance matrics of first recording against the SNR values, (a) Average RRMSE (Temporal), (b) Average RRMSE (Spectral),  (c) CC (Temporal)

(b) (c)(a)

Figure 7. Peromance matrics of second recording against the SNR values, (a) Average RRMSE (Temporal), (b) Average RRMSE (Spectral),  (c) CC (Temporal)

Segmentation using ECG R-peaks
Number of segments for each SNR: 186
Total number of noisy SCG segments:  3906
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Number of signals: 21 
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Bandpass Filter

0.1-50Hz

Actual Building Noise
Dominant frequencies: 
25Hz, 29.7Hz, 32.7 Hz & 50Hz

Raw SCG Data 

𝑁𝑜𝑖𝑠𝑦 𝑆𝐶𝐺 = 𝐶𝑙𝑒𝑎𝑛 𝑆𝐶𝐺 +  𝜆 ∗ 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑜𝑖𝑠𝑒

𝑆𝑁𝑅 =
𝑟𝑚𝑠(𝐶𝑙𝑒𝑎𝑛 𝑆𝐶𝐺)

𝜆 ∗ 𝑟𝑚𝑠(𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑜𝑖𝑠𝑒)
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Preprocessing Noise Addition Segmentation Dataset creation

• Data collected from one subject.

• Uniaxial accelerometer used for 

SCG and noise recording.

• Sampling frequency 10kHz.

• Duration 3 minutes.

• Noise added to clean SCG 

• SNR range 1 to 3 in 0.1 

increments.

• Total 21 sets of noisy SCG 

signals created.

• The noisy and clean signals are segmented.

• R-peaks of ECG signal is used as reference.

• There are 186 segments for each noisy signal.

• Clean SCG signal is also segmented. using the 

same reference. 

• Each noisy segment is paired with its 

clean counterpart to create a single 

dataset.

• The whole dataset is split into training 

(80%), validation (10%) and testing 

(10%) dataset.

Figure 1. Flowchart showing preprocessing, noise addition, segmentation and dataset creation















Figure 4.  Denoised SCG from  RNN model-2, contaminated SCG and the original SCG beat in the (a) time 

domain. (b) frequency domain

(a) (b)

(a) (b)

Figure 5.  Denoised SCG from lowpass filter, contaminated SCG and the original SCG beat in the (a) time domain. 

(b) frequency domain



• All the performance metrics against SNR values 

of the test dataset is shown in the Figure 6. and 

Figure 7. By comparing the temporal and 

spectral metrics for the low-pass and the DL 

filtering methods, it can be seen that the two DL 

models showed similar results.

• These results also indicated that both RNN 

models performed better than low-pass filtering 

since they reduced the root mean square 

difference between filtered and clean SCG beat 

and achieved higher correlation coefficient. 



Conclusion 

•The current pilot study suggests the 

technical feasibility of the proposed DL 

models for filtering building noise from SCG 

signals. 

•Limitations of the study include considering 

a small number of subjects and only one 

type of noise. 

•Larger number of subjects will be included 

in future studies to as SCG in different 

individuals are expected to vary [4][5].

•The current study is an initial step towards 

denoising SCG in real life environments.

•Building noise was considered first since it 

was the most consistent and uncontrollable 

noise. 

•Future studies will investigate other kinds 

of noise (e.g., movement artifacts, speech, 

etc.) that are encountered in clinical 

settings. 
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