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1 INTRODUCTION

Modern human-computer interfaces (HCI) are crucial for individuals facing severe neurological diseases
such as amyotrophic lateral sclerosis, brainstem stroke, and multiple sclerosis [1]. In many cases where
voluntary movements are restricted to eye control, eye movements are critical for them to perform different
tasks, like writing and communication[2][3]. Therefore, HCI systems that capture their gaze direction are
pivotal in enhancing their communication and have a better quality of life.

Eye movement can be inferred through electrooculography (EOG) signals, which detects the potential dif-
ference created by the positive charge of the cornea and the negative charge of the retina. This potential
difference can be recorded by electrodes placed around the eyes [4]. Numerous studies have developed
methods that decode EOG signals for eye-writing. Lee et al.[5] employed waveform-matching techniques,
while Fang et al.[6] used an HMM model with n-gram for Japanese Katakana character prediction. Multi-
stage convolutional neural networks (CNNs) [7] and spiking neural networks (SNNs) [8] have also been
applied for word classification based on EOG signals.

Existing eye-writing systems still encounter challenges in accurately translating EOG signals into human-
readable languages. In this context, inspired by the deep transfer learning 2D-CNN model [7], we intro-
duced a novel 1D CNN-LSTM deep-learning model with parallel branches. This model proves effective in
decoding EOG signals for voice-free communication. Notably, with a few adjustments, this versatile model
structure can function as both a word classifier, providing the probability of the word class, and a stroke
labeler, offering the probability of the stroke sequence.

2 DATASET

The dataset is a Japanese eye-writing database of EOG signals from 6 health participants with a sample rate
of 1.0 KHz[6]. It contains vertical and horizontal channels EOG data for 12 basic strokes, comprising 720
samples recorded 10 times by each participant, and EOG data for 150 words, with 4500 samples recorded 5
times by each participant, as illustrated in Figure 1(a) and Figure 1(b). Stroke EOG signals were downsam-
pled to 100 sample length, removing the silent part at the beginning. Word EOG signals were downsampled
to 1024 sample length.

(a) Stroke EOG Signal (b) Word EOG Signal

Figure 1. EOG Signal
Notes: Color red - vertical channel; Color blue - horizontal channel
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3 METHODOLOGY

3.1 MODEL STRUCTURE

The proposed word classifier and stroke sequence labeler both utilize the same 1D CNN-LSTM deep-
learning model structure, as depicted in figure 2. This model structure consists of 2 branches: the pre-trained
branch and the EOG feature extraction branch.

The pre-trained branch calculates the stroke probability map. The input word EOG signal is initially seg-
mented using a moving window with sizes of 128, 200, and 400. Each window moves equally to generate 16
segments, which are used to compute 12-stroke probability separately, as shown in figure 3. The pre-trained
stroke classification model is a 2-layer multi-layer perceptron that has been trained with EOG stroke data.

The EOG feature extraction branch consists of 4 1D-convolution layers that take the original word EOG
signal as input, maintaining the order of EOG features in the time domain. Then, the channels are maxpooled
to 16 to match the size of the stroke probability map. The stroke probability map and EOG features are
concatenated in the time domain. This is followed by a BiLSTM layer for the classification task and an
LSTM layer for the labeling task, as shown in Figure 2(a) and Figure 2(b).

Word EOG signal sequence
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(a) Word Classifier
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(b) Stroke Sequence Labeler

Figure 2. Model Structure
Notes: Cov - 1D-convolution layer; MP - maxpooling layer; Fc - fully connected layer.

Color grey - pre-trained stroke class probability generator; Color blue - EOG feature extractor;
Color orange - word classification part; Color green - stroke sequence labeling part.

After the stroke sequence labeler, a stroke-based n-gram model was applied. The model predicts items
based on the context of the preceding n strokes, assigning probability scores to each class according to the
language corpus distribution [9]. The probability P(si|si−1, ...,si−n+1) is maximized with a greedy search.

3.2 EXPERIMENTAL SETUP

We employed 5-fold cross-validation for the stroke classification model. The word classifier and stroke
sequence labeler underwent evaluation using a leave-one-trial-out strategy repeated 3 times. We trained
models for 500 epochs with an Adam optimizer, a 128 batch size, and a decreasing learning rate. We
determined the models’ parameters and some hyperparameters by the average performance in the validation
set. Data augmentation included the addition of white noise.
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Figure 3. Stroke Probability Map

Table 1. Performance comparison with the 1D CNN-LSTM word classifier and previous models

Word Classification(%) Parameter SizeAccuracy Precision Recall
Boost CNN-word 92.04[7] 88.51[7] 91.98[7] 1.6M[7]

SNN 91.6[8] 158K[8]
1D CNN-LSTM 95.52 96.09 95.52 192K

3.3 METRICS

The classification task is evaluated by accuracy, precision, and recall[10]. The labeling task is evaluated by
the Levenshtein ratio. The ratio ranges from 0 to 1, with a higher value indicating greater similarity between
two sequences.

4 RESULTS AND DISCUSSION

Table 1 displays the results of our 1D CNN-LSTM word classification model, averaged over each trial. This
model performs exceptionally well despite its small parameter size. Our approach treats EOG data as a 1D
sequence, which is more suitable than using a 2D CNN or SNN. EOG data is rich in time-domain features,
and the 1D model excels in extracting these signal features. Additionally, the pre-trained stroke classification
model achieves an impressive accuracy of 86% on the stroke EOG signal.

Table 2 shows the results of the stroke sequence labeler. With the help of the 3-gram model, the Levenshtein
ratio improves to 0.973. Out of the 70 characters that appear in the 150 words, 91.43% of the characters
consist of no more than 3 strokes. Therefore, the best 3-gram model considers more than one previous
character, which helps improve the performance the most.

Compared to the two models, the stroke sequence labeler incorporates a larger number of filters. This
suggests that labeling a sequence is a more complex task, requiring more features to represent EOG.

Table 2. Performance summary of the 1D CNN-LSTM stroke labeler

Levenshtein ratio
1-gram 2-gram 3-gram 4-gram

1D CNN-LSTM 0.9719 0.9719 0.973 0.9659
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5 CONCLUSIONS AND FUTURE WORK

We introduced a parallel-branch 1D CNN-LSTM structure that excels in both word classification and stroke
sequence labeling tasks while maintaining a small model parameter size. Its impressive performance in
stroke sequence labeling suggests potential for online communication without the limitations of language
corpora, which could be used for individuals facing some diseases or in a VR environment.

However, this study has limitations due to the restricted data size and input speed. Future work may in-
clude expanding the corpus to different languages using basic EOG strokes and enhancing writing speed.
Furthermore, the development of user-friendly EOG hardware is an exciting avenue to reduce eye burden.
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Abstract 
• The dataset used is recorded Electrooculography(EOG) 

signal when eye-writing Japanese strokes and words.

• A paralleled-branch 1D CNN-LSTM structure is 
presented to translate the EOG signal.

• The model structure can work both as a word classifier 
and a stroke sequence labeler with a few parameter 
modifications.

• Superior performance can be attained in comparison to 
prior works on this dataset with a smaller parameter size.

Introduction
• Human-computer interface (HCI) has the potential to 

revolutionize communication accessibility for people 
with limited mobility to communicate effectively.

• Eye movement can be inferred through 
electrooculography (EOG) signals, which detects the 
potential difference created by the positive charge of 
the cornea and the negative charge of the retina.

• Eye writing system uses EOG as the input signals 
facilitate the recognition purposes for patients who are 
familiar with handwriting

• Fang et al.[1] proposed an HMM model with n-gram to 
predict 70 Japanese Katakana characters with EOG.

• 2D CNN and SNN were utilized for word classification 
bases on EOG signal[2][3].

• We proposed a paralleled-branch 1D CNN-LSTM 
structure that archives an 95.52% accuracy on the word 
classification task and a 0.973 Levenshtein ratio on 
stroke sequence labeling task.

Dataset
• The dataset is a Japanese eye-writing database of EOG 

signals from 6 health participants with a sample rate of 
1.0 KHz [1].

• Japanese words are made of characters, and characters 
are made of strokes.  

                         

• The dataset contains vertical and horizontal channels 
EOG data for 12 basic strokes, comprising 720 samples 
recorded 10 times by each participant, and EOG data for 
150 words, with 4500 samples recorded 5 times by each 
participant. The EOG signal exmaple is shown in figure 1.

• The continuous data includes 150 Japanese words from 
the Corpus of Spontaneous Japanese. The words are 
averagely 2.8-Katakana-character long, each repeatedly 
recorded 3 to 8 times by each participant. 

Data Prepocessing
• For stroke classification task, we removed silent 

segments at the beginning of the stroke EOG signal, 
resampled data to 100 data points, and normalized the 
data.

• For the word classification task and stroke prediction 
task, we resampled the word EOG signal to 1024 data 
points and normalized the data.

Methodology
Overall of the Model
• The proposed word classifier and stroke sequence 

labeler both utilize the same 1D CNN-LSTM deep-
learning model structure, as depicted in figure 2. 

• The model structure consists of 2 branches: the pre-
trained branch and the EOG feature extraction branch.

The Pre-trained Branch
• This branch calculates the stroke probability map. 

• The input word EOG signal is initially segmented using a 
moving window with sizes of 128, 200, and 400. Each 
window moves equally to generate 16 segments, which 
are used to compute 12-stroke probability separately, as 
shown in figure 3. 

• The pre-trained stroke classification model is a 2-layer 
multi-layer perceptron that has been trained with EOG 
stroke data.

The EOG Features Extractor Branch
• The EOG feature extraction branch consists of 4 1D-

convolution layers that take the original word EOG signal 
as input, maintaining the order of EOG features in the 
time domain. 

• The channels are maxpooled to 16 to match the size of 
the stroke probability map. 

• The stroke probability map and EOG features are 
concatenated in the time domain. 

• The concatenation layer is followed by a BiLSTM layer 
for the classification task and an LSTM layer for the 
labeling task, as shown in Figure 2(a) and Figure 2(b).

The Stroke Based n-gram model
• The stroke-based n-gram model was applied after the 

stroke sequence labeler. 

• The model predicts items based on the context of the 
preceding n strokes, assigning probability scores to each 
class according to the language corpus distribution. 

• The probability                                  is maximized with a 
greedy search.

Experimental Setup
• 5-fold cross-validation was employed for the stroke 

classification model. 

• The word classifier and stroke sequence labeler 
underwent evaluation using a leave-one-trial-out strategy 
repeated 3 times. 

• We trained models for 500 epochs with an Adam 
optimizer, a 128 batch size, and a decreasing learning 
rate. 

• We determined the models' parameters and some 
hyperparameters by the average performance in the 
validation set. 

• Data augmentation included the addition of white noise.

Metrics
• Classification Task:                                                             

• Stroke Sequence Prediction task:

• Levenshtein distance is the minimum amount of 
insertions, deletions, and substitutions to change one 
sequence into the other.

Results and Discussion
Stroke Classification Model
• The 2-layer MLP stroke classification model, which is 

used to generate the stroke probability map, obtains an 
accuracy of 86% on the stroke EOG signal.

Word Classification Model
• Table 1 shows the result of our 1D CNN-LSTM word 

classification model on average for each trial. 

• Our model performs exceptionally well despite its small 
parameter size.

• Our approach treats EOG data as a 1D sequence, which 
is more suitable than using a 2D CNN or SNN. EOG data 
is rich in time-domain features, and the 1D model excels 
in extracting these signal features.

Stroke Sequence Labeling Model
• Table 2 shows the results of the stroke sequence labeler.

• The labeler achieves 0.9719 Levenshtein ratio without 
considering previous strokes.

• With the help of the 3-gram model, the Levenshtein ratio 
improves to 0.973. 

• Out of the 70 characters that appear in the 150 words, 
91.43% of the characters consist of no more than 3 
strokes.

• The best 3-gram model considers more than one previous 
character, which helps improve the performance the most.

Conclusions and Future Work
• We introduced a parallel-branch 1D CNN-LSTM structure 

that excels in both word classification and stroke 
sequence labeling tasks while maintaining a small model 
parameter size. 

• The impressive performance in stroke sequence labeling 
suggests potential for online communication without the 
limitations of language corpora, which could be used for 
individuals facing some diseases or in a VR environment.

• This study also has limitations due to the restricted data 
size and input speed. 

• Future work may include expanding the corpus to 
different languages using basic EOG strokes and 
enhancing writing speed. 

• The development of user-friendly EOG hardware is also 
an exciting avenue to reduce eye burden.
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Figure 1. EOG Signal
Notes: Color red - vertical channel; Color blue - horizontal channel

Table 1. Performance comparison with the 1D CNN-LSTM word classifier and 
previous models

Table 2. Performance summary of the 1D CNN-LSTM stroke labeler
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Word Classification(%)
Accuracy Precision Recall Parameter Size

Boost CNN-word92.04 [2] 88.51 [2] 91.98 [2] 1.6M [2]
SNN 91.6 [3] 158K [3]
1D CNN-LSTM 95.52 96.09 95.52 192K

Stroke Sequence Prediction(Levenshtein ratio)
1-gram 2-gram 3-gram 4-gram

1D CNN-LSTM 0.9719 0.9719 0.973 0.9659
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Figure 2. Model Structure
Notes: Color grey - pre-trained stroke class probability generator; 

Color blue - EOG feature extractor;
Color orange - word classification part; 

Color green - stroke sequence labeling part.
Cov - 1D-convolution layer; MP - maxpooling layer; Fc - fully connected layer.


