Personalized Stress Detection using a Lightweight Machine Learning Framework With Convenient Wrist-Worn Sensors

M. Hasan, M. Saha, M. Mahmud S. Baral, and K. Poudel

The 2024 IEEE Signal Processing in Medicine and Biology Symposium, Temple University, Philadelphia, Pennsylvania, 19122, USA

Outline

- Introduction and motivation
- Methods & materials
- Results & discussion
- Conclusion

Introduction and motivation

- What is stress?
- Why this study is important?

Our main contributions:

- We empirically identified an optimal window size for best stress detection accuracy.
- We conducted stress detection at population level and individual level
- We conducted feature engineering to identify the important
- All participants registered a stress classification accuracy of 99% with one exception of 93%. The XGBoost achieved the best mean accuracy of 99.24% across subjects with a standard deviation of 1.77%

Methods & Materials

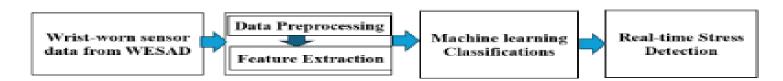


Figure 1. The process of stress detection from wrist-worn sensors.

Participants & Data Description

- 15 participants (12 males and 3 females) aged 18 to 44 years)
- All participants were English speakers, and none reported any neurological disease history.
- Sampling rate of 64, 4, and 4 Hz, respectively.
- Gave written consent for data release to the public.
- Participants wore a RepsiBAN Professional on the chest and an **Empatica E4 on wrist**
- Window sizes (e.g., 10 s, 20 s,.....and 30 s)

Methods & materials

Classifiers:

- ≻ KNN
- Decision Tree
- ➤ XGBoost
- ≻ LightGBM
- Random Forest
- ≻ SVM

Hyperparameter optimization:

- Grid search approach
- Five-fold cross-validation
- Select the best model parameters

Feature Selection:

• Shapley Additive Explanations (SHAP)

Methods & materials

Performance metrics formulas:

- Accuracy: (TN+TP)/(TN+TP+FN+FP)
- Precision: TP/(TP+FP)
- Recall: TP/(TP+FN)
- F1 score: Harmonic mean of precision and recall

		Predicted	
		Negative (N) -	Positive (P) +
Actual	Negative -	True Negative (TN)	False Positive (FP) Type I Error
	Positive +	False Negative (FN) Type II Error	True Positive (TP)

Fig.6: Confusion matrix [3].

Results & discussion

POPULATION LEVEL ANALYSIS

Table 1. Population level stress detection performance metrics (%) for KNN, DT, XGBoost, LigghtGBM, RF, and SVM classifiers.

Classifiers	Average	window	window	window
name	mea-	size	size	size
	sure(%)	stress	stress	stress
		(10 s)	(20 s)	(30 s)
KNN	Accuracy	83.49	82.03	83.48
	AUC	78.98	79.10	78.51
	Precision	74.48	65.21	71.92
	Recall	69.19	71.42	67.21
	F1-score	71.74	68.18	69.49
DT	Accuracy	91.15	89.82	89.88
	AUC	90.01	89.13	86.79
	Precision	85.58	80.89	85.23
	Recall	87.20	85.71	78.68
	F1-score	86.38	82.75	81.64
XGBoost	Accuracy	96.39	92.53	93.11
	AUC	95.82	91.15	90.21
	Precision	93.45	84.09	91.07
	Recall	95.26	88.09	83.60
	F1-score	94.58	86.04	87.17
LighGBM	Accuracy	96.18	92.63	93.57
	AUC	95.57	92.32	90.02
	Precision	94.28	81.91	94.33
	Recall	93.83	91.66	81.96
	F1-score	94.06	86.51	87.71
RF	Accuracy	96.03	93.86	95.87
	AUC	95.58	92.75	93.12
	Precision	93.42	86.36	98.14
	Recall	94.31	90.47	86.88
	F1-score	93.86	88.37	92.17
SVM	Accuracy	88.34	86.50	88.13
	AUC	85.06	83.91	84.01
	Precision	81.37	71.17	83.33
	Recall	78.67	78.57	73.77
	F1-score	80.00	75.00	78.26

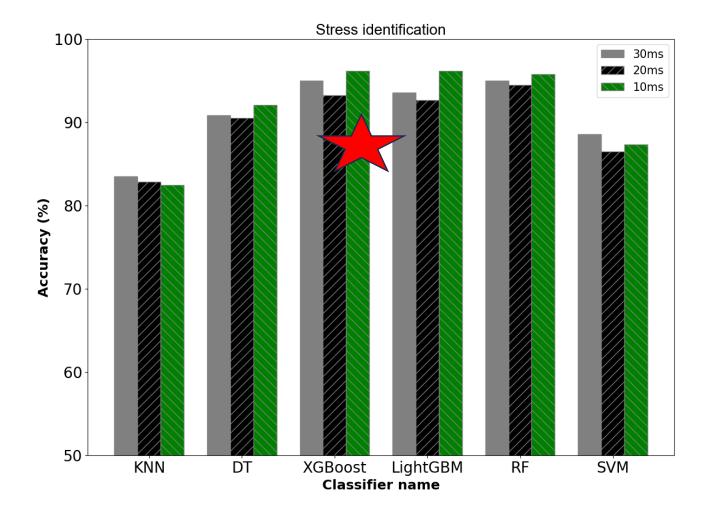
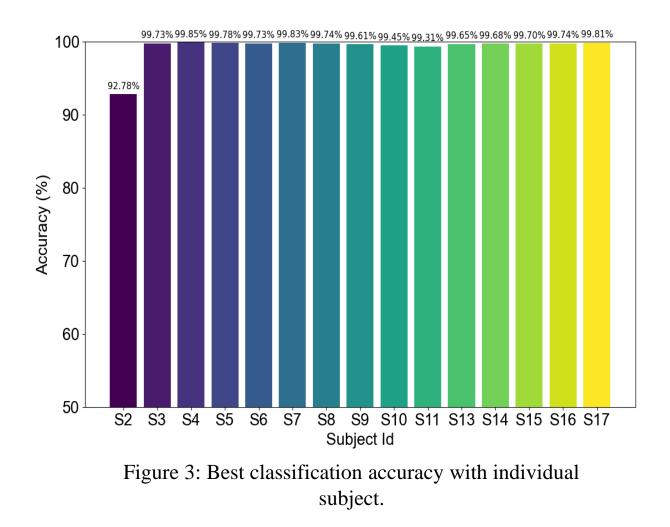
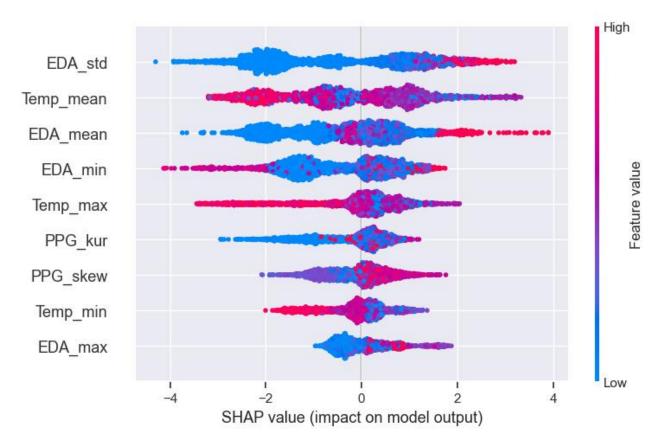


Figure 2. Detection of stress with 10 s time windows using KNN, DT, XGBoost, LightGBM, RF, and SVM classifiers.



Results & discussion

INDIVIDUAL SUBJECT LEVEL ANALYSIS


Table 2. Subject level stress detection accuracy for top 3 classifiers.

Subject	XGBoost (%)	LightGBM(%)	RF(%)
S2	92.85	92.70	92.80
S3	99.70	99.88	99.62
S4	99.75	99.88	99.93
S5	99.69	99.77	99.88
S 6	99.77	99.88	99.55
S7	99.81	99.85	99.83
S8	99.77	99.66	99.78
S9	99.48	99.60	99.75
S10	99.73	99.19	99.43
S11	99.88	98.33	99.73
S13	99.69	99.49	99.78
S14	99.58	99.82	99.63
S15	99.51	99.89	99.70
S16	99.73	99.72	99.77
S17	99.71	99.81	99.90
Average -	99.24	99.16	99.21
Std	1.77	1.83	1.79

Results & discussion

- We used SHAP over the XGBoost classifier to explain feature importance
- XGBoost demonstrated an improved accuracy of 97.53%, AUC of 97.20%, F1-score of 96.23%, precision 96.19%, and recall 96.02%.

Figure 4: Density scatter plot of SHAP values obtained from XGBoost classifier. A higher value indicates the most importance

Conclusion

- We developed an efficient ML framework for stress detection from wrist sensor data. Our analysis shows that stress detection is more accurate (at population level 96.39%) based on 10s non-overlapping windows and individual subject level 99.24 % with Std. 1.77.
- ➢Our feature selection analysis indicates that the model can predict most robustly from nine features only.
- ➢Our work has a limitation: we could not determine why one subject showed approximately 5% lower performance than others. Further analysis is needed to investigate this.

Acknowledgments

• This work was supported by the Computational Data Science program and the Department of Computer Science at the Middle Tennessee State University, Murfreesboro, Tennessee, USA.

References

[1] B. S. McEwen, "Allostasis and allostatic load: implications for neuropsychopharmacology," *Stress and the Brain*, pp. 2–18, 2013.

[2] R. M. Sapolsky, Why zebras don't get ulcers: The acclaimed guide to

stress, stress-related diseases, and coping. Holt paperbacks, 2004.

[3] M. F. Dallman, "Stress-induced obesity and the emotional nervous

system," Trends in Endocrinology & Metabolism, vol. 21, no. 3, pp. 159–165, 2010.

[4] M. R. Salleh, "Life event, stress and illness," The Malaysian journal of

medical sciences: MJMS, vol. 15, no. 4, p. 9, 2008.

[5] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. Van Laerhoven, "Introducing wesad, a multimodal dataset for wearable stress and affect detection," in *Proceedings of the 20th ACM international conference on multimodal interaction*, 2018, pp. 400–408

Thank you!

Questions?

