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Our main contributions:

• We empirically identified an optimal window size for best stress 
detection accuracy.

• We conducted stress detection at population level and individual level

• We conducted feature engineering to identify the important

• All participants registered a stress classification accuracy of 99% with 
one exception of 93%. The XGBoost achieved the best mean accuracy 
of 99.24% across subjects with a standard deviation of 1.77%

Introduction and motivation

• What is stress?
• Why this study is important?



Methods & Materials

Participants & Data Description

▪ 15 participants (12 males and 3 females) aged 18 to 44 years)

▪ All participants were English speakers, and none reported any neurological disease history. 

▪ Sampling rate of 64, 4, and 4 Hz, respectively. 

▪ Gave written consent for data release to the public. 

▪ Participants wore a RepsiBAN Professional on the chest and an Empatica E4 on wrist

▪ Window sizes (e.g., 10 s, 20 s,…….and 30 s) 



Methods & materials

• Grid search approach 

• Five-fold cross-validation

• Select the best model parameters

Classifiers:

➢KNN
➢Decision Tree
➢XGBoost
➢ LightGBM
➢Random Forest
➢ SVM

Hyperparameter optimization:

Feature Selection:
• Shapley Additive Explanations (SHAP) 



Methods & materials

• Accuracy: (TN+TP)/(TN+TP+FN+FP)

• Precision: TP/(TP+FP)

• Recall: TP/(TP+FN)

• F1 score: Harmonic mean of precision and recall

Performance metrics formulas:

Fig.6: Confusion matrix [3].



Results & discussion

Figure 2. Detection of stress with 10 s time windows using KNN, 
DT, XGBoost, LightGBM, RF, and SVM classifiers.

POPULATION LEVEL ANALYSIS



 

Figure 3: Best classification accuracy with individual 

subject.

Results & discussion
INDIVIDUAL SUBJECT LEVEL ANALYSIS



Results & discussion

Figure 4: Density scatter plot of SHAP values obtained from 

XGBoost classifier. A higher value indicates the most importance

➢ We used SHAP over the XGBoost classifier to explain 
feature importance

➢ XGBoost demonstrated an improved accuracy of 
97.53%, AUC of 97.20%, F1-score of 96.23%, precision 
96.19%, and recall 96.02%. 



Conclusion

➢We developed an efficient ML framework for stress detection from wrist sensor data. 
Our analysis shows that stress detection is more accurate (at population level 
96.39%) based on 10s non-overlapping windows and individual subject level 99.24 
% with Std. 1.77. 

➢Our feature selection analysis indicates that the model can predict most robustly from 
nine features only. 

➢Our work has a limitation: we could not determine why one subject showed 
approximately 5% lower performance than others. Further analysis is needed to 
investigate this. 
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Thank you!



Questions?
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