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Introduction and motivation

* What is stress?
 Why this study is important?

Our main contributions:

* \We empirically identified an optimal window size for best stress
detection accuracy.

 WWe conducted stress detection at population level and individual level
* WWe conducted feature engineering to identify the important

* All participants registered a stress classification accuracy of 99% with
one exception of 93%. The XGBoost achieved the best mean accuracy
of 99.24% across subjects with a standard deviation of 1.77%



Methods & Materials
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Figure 1. The process of stress detection from wrist-worn
SCNSOTS.

Participants & Data Description
= 15 participants (12 males and 3 females) aged 18 to 44 years)
= All participants were English speakers, and none reported any neurological disease history.
= Sampling rate of 64, 4, and 4 Hz, respectively.
= (Gave written consent for data release to the public.
= Participants wore a RepsiBAN Professional on the chest and an Empatica E4 on wrist
= Window sizes (e.g., 10s, 20s,....... and 30 s)



Methods & materials

Classifiers:

> KNN

> Decision Tree

> XGBoost

> LightGBM

» Random Forest

> SVM
Hyperparameter optimization:
* Grid search approach
e Five-fold cross-validation

 Select the best model parameters

Feature Selection:
« Shapley Additive Explanations (SHAP)



Methods & materials

Performance metrics formulas:

Accuracy: (TN+TP)/(TN+TP+FN+FP)
Precision: TP/(TP+FP)
Recall: TP/(TP+FN)

F1 score: Harmonic mean of precision and recall
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Fig.6: Confusion matrix [3].




Results & discussion

POPULATION LEVEL ANALYSIS

Table 1. Population level stress detection performance meltrics
(%) for KINN, DT, XGBoost, LigghtGBM, RF, and SVM
classifiers.

Classifiers Average window window window
nams mea size size size
sure{ %) SIrEss SIMESS SITess
(10 s) (20 s) (30 s)
KNN Accuracy R349 R2.03 R348
ALIC TROR T9.10 T&.51
Precision T4.48 65.21 T1.92
Recall 6919 T71.42 6721
Fl-score T1.74 618 6949
DT Accuracy 91.15 RO_R2 RO_BE
ALIC 001 RO.13 BO.T9
Precision R5.58 BO_R9 B5.23
Recall R7T.20 8571 TEOHE
Fl-score RO3R R2.T75 RBl.64
KGBoost Accuracy 0639 92 53 9311
ALIC 95 82 91.15 o021
Precision 9345 8409 91.07
Recall 9526 RE.09 B3.60
Fl-score o4 58 B6.04 RT17
LighGBM Accuracy Q6. 18 9263 93.57
ALIC 95 57 o2 32 o2
Precision o4 28 £1.91 94 33
Recall 93 83 91.66 B1.96
Fl-score O 06 BO.51 R7T.71
RF Accuracy 603 9386 95 87
ALIC 95 58 92 75 93 12
Precision 9342 BO.30 %14
Recall 94 51 o047 BGEE
Fl-score 9386 RE37 9217
SVM Accuracy RE 34 Bi6.50 RE.13
ALIC B5.06 LER B4.01
Precision 8137 T1.17 R333
Recall TEGT TEST T3.77
Fl-score R0.00 T5.00 TR 26
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Figure 2. Detection of stress with 10 s time windows using KNN,
DT, XGBoost, LightGBM, RF, and SVM classifiers.
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INDIVIDUAL SUBJECT LEVEL ANALYSIS

Table 2. Subject level stress detection accuracy for top 3

Results & discussion

classifiers.

Subject XGBoost (%) LightGBM( %) RF(%)
S2 92.85 9270 92.80
S3 99.70 99.88 99.62
S4 099,75 99,88 99,93
S5 99.69 99.77 99.88
S6 99.77 99.88 99.55
S7 99.81 99.85 99.83
S8 99.77 99.66 99.78
S9 00 4% 99.60 99.75
S10 99.73 99.19 99.43
S11 00,88 98.33 99.73
S13 09.69 99.49 99,78
S14 99.58 99.82 99.63
S15 09.51 99.89 99.70
S16 99.73 99.72 99.77
S17 9971 99.81 99.90

Average 09.24 99.16 99.21
Std 1.77 1.83 1.79
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Figure 3: Best classification accuracy with individual
subject.



Results & discussion
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» We used SHAP over the XGBoost classifier to explain EDA std - —w
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Figure 4: Density scatter plot of SHAP values obtained from
XGBoost classifier. A higher value indicates the most importance



Conclusion

»We developed an efficient ML framework for stress detection from wrist sensor data.
Our analysis shows that stress detection is more accurate (at population level
96.39%) based on 10s non-overlapping windows and individual subject level 99.24
% with Std. 1.77.

» Our feature selection analysis indicates that the model can predict most robustly from
nine features only:.

»Our work has a limitation: we could not determine why one subject showed
approximately 5% lower performance than others. Further analysis is needed to
Investigate this.
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Thank you!
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Questions?
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