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Abstract— Over 70% Americans experience daily stress,
making real-time, accurate stress detection crucial for
timely intervention, and promoting physical and mental
well-being. In this study, we detect stress using machine
learning from publicly available wrist-worn sensor data.
We examined both population and individual levels, fo-
cusing on simple, computation friendly statistical features
for reduced processing to facilitate adoptions in real-life
mHealth applications. Our framework demonstrates that
stress detection achieves over 96% accuracy at both the
population and individual levels, with the Extreme Gra-
dient Boosting classifier achieving the highest predictive
accuracy. We found significant variability between indi-
viduals and achieved an average accuracy of 99.63% with
area under the curve (AUC) 99.23%, F1-score 99.00%,
precision, and recall 99.22%. This approach offers a
promising solution for real-life stress detection due to its
high accuracy and simplicity.

Keywords— Stress detection, Wrist-band sensors, Machine
learning, Personalization, LightGBM.

I. INTRODUCTION

Stress is a natural response, physiologically and psycho-
logically, to demanding or threatening situations. It is
primarily managed by a complex interplay of the auto-
nomic nervous system’s two branches—the sympathetic
nervous system (SNS) and the parasympathetic nervous
system (PNS). When under stress, SNS is activated
that supplies energy to the body by increasing heart
rate, blood pressure, and glucose levels [1]. In contrast,
the PNS aids in the body’s recovery once the per-
ceived threat subsides. Despite their distinct functions,
the seamless interaction between these two systems is
essential for effective bodily regulation.

While a certain amount of stress benefits cognitive
function and performance [2, 3], extended and fre-
quent exposure to stress is recognized to be harmful
for both mental and physical health. Psychologically,
chronic stress has been linked to anxiety, depression,
and cognitive impairments [4–8]. Physiologically, it
can cause cardiovascular diseases [9–13], weaken the
immune system [14, 15], and lead to conditions like
diabetes [16, 17] and gastrointestinal disorders [18, 19].
Moreover, the impulse to manage the discomfort of

persistent stress may lead to maladaptive coping mech-
anisms, which can exacerbate health problems [20].
Thus identifying the signal modalities that best capture
stress signatures, while still allowing for real-time,
user-friendly monitoring, is essential for accurate stress
detection and effective intervention.

In the past, stress detection primarily relied on biomark-
ers from electrocardiogram (ECG) and respiration,
which were measured with reasonable accuracy using
medical-grade instruments. Prior research has consis-
tently shown that changes in ECG derived heart rate
variability (HRV) are reliable indicators of stress [21–
23]. In addition, respiratory patterns, including rate and
depth of breathing, alongside HRV, have been linked to
stress and emotional states [24–26]. Subsequent studies
on stress detection began integrating additional physio-
logical signals to enhance detection accuracy and per-
formance. A recent study [27] demonstrated that highly
accurate personalized stress detection, with accuracy in
the upper 90s, is feasible by leveraging machine learn-
ing models using multi-modal signals from chest-worn
sensors. It also investigated different window sizes and
found 500 ms to produce the best results. Besides, a fair
amount of stress detection works exist that involve using
data from non-physiological sources with promising
results. For example, stress can be detected using facial
expressions captured using camera [28], from contex-
tual sources such as keyboard typing patterns [29–31],
location transitions [32, 33], and logs of smartphone
use [34, 35]. With the rise of social media platforms,
text-based stress detection has also gained momentum
[36–38]. These various methods achieve stress detection
accuracy ranging from the upper 80s to mid 90s per-
centage. However, for real-world mHealth applications,
these methods face several challenges, including but not
limited to high device costs, wearability issues, privacy
concerns, and intermittent monitoring. For example,
collection of ECG and respiration data often requires
cumbersome equipment and controlled settings, making
it impractical for continuous monitoring in everyday
environments. Additionally, many of these high-yield
lab models developed with micro window sizes are
often not scalable for real-world deployment due to
their resource-intensive nature. Micro windows require
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frequent processing of information, which may hamper
performance and cause faster battery drainage of the
host device. Hence, an optimal balance is needed be-
tween the choice of signal modalities and data process-
ing frequency. This balance ensures ease of wearability,
reliable system performance, and sustained use while
still preserving effective stress detection capabilities.

Most recently, wrist-worn wearables have become quite
popular for their convenience and ability to integrate
seamlessly into daily life [39, 40]. These devices are
equipped with sensors that measure various signals–
Electrodermal Activity (EDA), also known as Galvanic
Skin Response (GSR), Blood Volume Pulse (BVP),
Acceleration (ACC), Heart Rate (HR), and Tempera-
ture. Their ability to collect data in real-time enables
observing an individual’s physiological responses in
their natural environment. Studies like [41–44] used
these useful attributes to produce decent stress infer-
ences in lab settings. However, there is still scope of
improvement, specially from a modeling framework
perspective. In this work, we developed lightweight ML
framework to detect stress at effective granularity with
reduced processing. We explored different genres of ML
classifiers and feature engineering to make unobtrusive,
continuous stress monitoring viable in field settings.

Our main contributions are as follows:

• Window size may affect the host device’s per-
formance due to frequency of data processing
and feature computation. We empirically iden-
tified an optimal, sufficiently large window size
for best stress detection accuracy.

• We explored population-level stress detection
using simple statistical features and found
that Extreme Gradient Boosting (XGBoost)
achieved the highest accuracy at 96.39%.

• We used Shapley values for feature explain-
ability to identify the nine most important fea-
tures out of all eighteen, which contribute most
significantly to the model’s predictions. The
population model’s performance improved to
97.53% when these nine features were only
used.

• Due to large variability between subjects in
stress reactivity, we investigated personalized
stress detection. All participants registered a
stress classification accuracy of 99% with one
exception of 93%. The XGBoost achieved the
best mean accuracy of 99.24% across subjects
with a standard deviation of 1.77%.

The remainder of the paper is structured as follows:
Section II covers the methodology, followed by the
results in Section III. Finally, Section IV concludes the
paper with a summary of the key findings.

II. MATERIALS & METHODS

Figure 1. The process of stress detection from wrist-worn
sensors.

II-A. Participants and Dataset Description

Stress detection has greatly progressed over the years
due to the availability of high-quality public datasets.
WESAD (Wearable Stress and Affect Detection) [45]
dataset offers a comprehensive collection of physiolog-
ical signals captured from both chest and wrist devices.
To evaluate the proposed stress detection method, we
have utilized this dataset, which includes data from
15 participants (12 males and 3 females). Participants
were equipped with a RepsiBAN Professional and an
Empatica E4 on chest and wrist respectively to capture
stress and non-stress responses. In this study, we fo-
cused on detecting stress using only wrist-based sensors
that recorded Blood Volume Pulse (BVP), Electroder-
mal Activity (EDA), and Skin Temperature (TEMP)
at sampling rates of 64, 4, and 4 Hz, respectively,
as wrist wearables are becoming more prevalent and
widely adopted.

II-B. Tasks Description

To evoke diverse and targeted emotional responses,
three primary sessions were conducted: Baseline, Stress,
and Amusement. For the baseline session, participants
spent about 20 minutes reading magazines maintaining
a neutral posture by either sitting or standing at a table.
The stress session, approximately 10 minutes long, was
split into two equal phases to administer the Trier
Social Stress Test [46]. In the first phase, participants
engaged in public speaking, discussing their strengths
and weaknesses before a panel. In the second phase,
they performed a mental arithmetic task, counting down
from 2023 to zero in increments of 17, restarting upon
any error. The amusement session involved participants
watching 11 humorous videos, totaling 6.5 minutes,
selected from a corpus [47] and the authors’ preferences.
To help participants relax, a meditation session was
held following both stress and amusement sessions.
Moreover, to ensure sufficient recovery from physiolog-
ical response, an additional 10 minutes rest period was
included right after the stress session. However, as rest is
part of recovery, we use 10 minutes of stress session as
stress labels and 26.5 (20+6.5) minutes of baselines and
amusement sessions as non-stress labels. To obtain sub-
jective appraisals of the conducted sessions, participants
were asked to provide self-reports, to assess validity
of the sessions from psycho-physiological standpoint,
which added further depth to the dataset.
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II-C. Feature Extraction

We experimented with different non-overlapping win-
dow sizes (e.g., 10 s, 20 s, and 30 s) to find the optimal
window for stress detection. For each window size,
we computed six features–mean, standard deviation,
skewness, kurtosis, minimum, and maximum from each
of the raw signals: BVP, EDA, and TEMP derived from
the wrist-worn device. Different sampling rates yielded
different data points; we synchronized and considered
unequal samples that fall on the same time window. We
computed 3× 6 = 18 features, which formed a feature
vector. We used these features as input to the classifiers.
We used ‘Baseline’, and ‘Amusement’ sessions for non-
stress labels, and ‘Stress’ session for stress label. The
aim was to ensure the window size was not too small,
such as 1 second, which would require frequent feature
computation, while still maintaining stress detection
performance in the upper 90thpercentile. This was fur-
ther supported by selecting computationally efficient
statistical features. The models learn the relationship
between predictors and corresponding labels during the
training phase, which they apply to predict stress vs.
non-stress during the testing phase. The data were z-
score normalized before submitting to the classifiers to
ensure all features were on a common scale range. The
process of stress detection from wrist-worn sensors is
illustrated in Figure 1.

II-D. Classifiers (KNN, DT, XGBoost, LightGBM, RF,
and SVM)

We explored various genres of classical ML classifiers
to detect stress vs. non-stress. The advantage of ML
models is that they perform reasonably well on small
datasets common in healthcare settings, comparable to
deep learning models. Hence, we experimented with
some popularly used ML models such as KNN, DT,
XGBoost, LightGBM, RF, and SVM to detect stress
and non-stress from data collected using the chest-worn
device. The ML models were trained in a supervised
setting using hand-engineered statistical features (e.g.,
mean, standard deviation, skewness, kurtosis, minimum,
and maximum). Once the model was trained, test data
was utilized to verify how the model would generalize.
This is an imbalance [stress (986) vs. non-stress (2293)
ratio = 1 : 2.30] dataset. We randomly split into a train-
test ratio of 80%-20% [48–50]. We reported the classi-
fication performance based on the test data that models
never have seen. Various performance metrics (accuracy,
F1-score, and area under the curve (AUC)) were calcu-
lated using standardized techniques [51] using models’
predictions and true class labels. We reported weighted
performance measure values. AUC reveals the extent
to which a model can distinguish between positive and
negative classes. An AUC near 1 indicates the model
has achieved excellent separability between the classes.
Conversely, an AUC close to 0 indicates the model
has largely failed to learn the underlying relationship

between features and corresponding classes. For an
imbalance classification, precision and recall play an
important role to understand the model’s robustness. If
the precision and recall are closer to 1, it means an
excellent model.

K-Nearest Neighbors (KNN) Algorithm:

KNN is a popular ML model commonly used for regres-
sion and classification tasks that utilize the information
of its closest neighbors. This is a simplest algorithm
to implement and useful in both supervised and un-
supervised approaches. A supervised learning scenario
occurs when a target is known along with its features;
whereas, for unsupervised learning the target labels are
unknown. KNN has several hyperparameters, optimal
values of which depending on the task reduce the bias
and variance of a model to make it generalizable. We
fixed the KNN hyper-parameters metric = minkowski,
n_neighbors = 2, weights = distance, p = 2.

Decision Tree (DT):

DT is a nonlinear supervised algorithm that can be used
for both regression and classification without requiring
explicit feature normalization. This approach builds a
tree-like structure by iteratively dividing the feature
space at every decision point into segments depending
on feature values. A major benefit of DT is that it does
not require extensive pre-processing to handle quantita-
tive and qualitative data. We set the hyper-parameters
criterion = entropy, splitter = best, max_depth = 50.

Extreme Gradient Boosting (XGBoost):

We used the XGBoost classifier with a base estimator
DT classifier [52]. The algorithm leverages regulariza-
tion techniques, tree pruning, and parallel computing to
enhance predictive accuracy and prevent overfitting. We
conducted a grid search approach to achieve the opti-
mal hyper-parameters with learning_rate : [0.05,0.10,
0.20, 0.30]; max_depth: [5, 10, 20, 30, 50, 100,
200]; min_child_weight : [1, 5, 10, 15, 20, 25, 50];
gamma : [0.1, 0.2, 0.3, 0.4, 05, 06 ]; colsample_bytree:
[0.3, 0.4 ,0.5, , 0.6, 0.7]. The grid search approach
showed the optimal parameters learning_rate = 0.20,
max_depth = 50, min_child_weight = 10, gamma = 0.2,
colsample_bytree = 0.5.

Light Gradient Boosting Machine (LightGBM):

LightGBM is built on a gradient-boosting algorithm.
This framework can handle large-scale datasets and
offers the following benefits: high performance, de-
creased memory utilization, faster training speed, and
support for parallel learning. Financial analysis, natu-
ral language processing, computer vision, and health-
care classification are just a few industries that em-
ploy it [53]. In our analysis, we set the hyper-
parameters colsample_bytree = 0.7, learning_rate =
0.3, max_depth = 100 , min_childweight = 0.5,
n_estimators = 200, verbose =−1.
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Random Forest (RF):

RF is a robust ensemble learning algorithm that has
gained significant attention in ML. In our work, we
also used a parameter-optimized RF classifier [54]. Op-
timized values of parameters n_estimators, max_depth
determine the performance of a RF classifier [54].
During training, we conducted a grid search to optimize
the hyper-parameters. We considered hyper-parameter
values- n_estimators with the range from 25 to 500 in
increments of 25; max_depth = [5, 10, 20, 30, 40, 50];
min_samples_split = [2, 5, 10, 20], to determine the
maximum accuracy. We found that n_estimators = 225,
max_depth = 10, min_samples_split = 5 provides us
the best parameter settings for RF for this dataset that
achieved the best classification accuracy.

Support vector machine (SVM):

SVM is another ML algorithm widely used in classifica-
tion and regression tasks for its robust performance. An
important aspect that drives its robustness is the use of
kernel tricks. Other tunable hyper-parameters (e.g., C,
γ) also have an impact on the performance [55]. Fixing
the kernel responsible for a good performance is task-
dependent. Hence, a grid search approach was used to
determine the suitable kernel, C, and γ values for the
classifier to achieve maximum separation between stress
and non-stress classes from the training data to perform
well on the test data. A five-fold cross-validation [56]
was used with kernels = ‘RBF’, where (C, γ) was fine-
tuned in the range of C = [2−1 to 220], γ = [2−2 to
26]. SVM used the features along with class labels to
learn the support vectors. The hyperplanes fixed with
the largest margin (i.e., the maximum distance between
the two classes) were utilized to predict test data. We
selected the best model (C = 10,kernel = rb f ,degree =
3,gamma = 0.1) using these experiments to apply it to
the unseen test data.

III. RESULTS

We conducted stress detection from wrist sensors using
different window-size data at both levels (e.g., popula-
tion and individual). We used parameter-optimized ML
classifiers and compared the results across classifiers
and window sizes.

III-A. Detection of Stress at the Population Level

First, we detected stress versus non-stress at the popu-
lation level with window sizes of 10 s, 20 s, and 30 s.
Classifiers’ performance for the population level stress
detection is presented in Figure 2 and Table 1. The
KNN classifier yielded the lowest classification accu-
racy across all window sizes (82.49% for 10 s, 82.03%
for 20 s, and 83.48% for 30 s). XGBoost, LightGBM,
and Random Forest (RF) classifiers demonstrated higher
accuracy across all the windows compared to KNN, DT
and SVM. Interestingly, the XGBoost classifier achieved
the best performance with a 10 s window, demonstrating

an accuracy of 96.39%, AUC 95.82%, F1-score 94.58%,
precision 93.45%, and recall 95.26%. However, when
the window size was increased to 20 s, accuracy and
F1-score dropped by 4% and 9%, respectively. A similar
decline in performance was observed with the 30 s
window.

This suggests that the 10 s window captures the stimuli
intensity most effectively. The 10 s data maintains
the optimal balance between capturing meaningful pat-
terns and reducing noise. Our result corroborates that
a smaller window like 10 s, provides finer granular-
ity, capturing short-term fluctuations in stress levels
[44, 57].

For better insights into the model’s performance, we ap-
plied Shapley Additive Explanations (SHAP) [58] over
the XGBoost classifier to explain feature importance.
The top-ranked 9 features (half of the total 18 features)
are shown in Figure 4. Based on these top-ranked 9 fea-
tures, XGBoost demonstrated an improved accuracy of
97.53%, AUC of 97.20%, F1-score of 96.23%, precision
96.19%, and recall 96.02%. Despite 50% reduction in
number of features, the classification accuracy improved
by 1.18%. This improvement is likely because including
a larger number of features, especially less relevant
ones, can lead to overfitting. As a result, the model using
all the 18 features was less generalized and performed
slightly worse.

Figure 2. Stress detection with 10 s windows using KNN, DT,
XGBoost, LightGBM, RF, and SVM classfiers.

III-B. Stress Detection at the individual level.

We separately conducted stress detection at the subject
level. This analysis followed a similar approach to the
population-level but was applied within subject-level
data. Since population-level analysis identified 10 s non-
overlapping window as the optimal size, we used the
same window size for individual-level stress detection
with the same classifiers. The best three classifiers’
accuracy is reported in Table 2. The average accuracy
over the three best classifiers at subject-level is shown
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Figure 3. Highest classification accuracy with individual sub-
ject stress detection with 10 s window data. X-axis label ‘S’
indicates subject, and the number indicates data collection
serial number of the subject; S1 and S12 were excluded
because there were malfunctions during data collection.

Table 1. Population level stress detection performance metrics
(%) for KNN, DT, XGBoost, LigghtGBM, RF, and SVM
classifiers.

Classifiers
name

Average
mea-
sure(%)

window
size
stress
(10 s)

window
size
stress
(20 s)

window
size
stress
(30 s)

KNN Accuracy 83.49 82.03 83.48
AUC 78.98 79.10 78.51
Precision 74.48 65.21 71.92
Recall 69.19 71.42 67.21
F1-score 71.74 68.18 69.49

DT Accuracy 91.15 89.82 89.88
AUC 90.01 89.13 86.79
Precision 85.58 80.89 85.23
Recall 87.20 85.71 78.68
F1-score 86.38 82.75 81.64

XGBoost Accuracy 96.39 92.53 93.11
AUC 95.82 91.15 90.21
Precision 93.45 84.09 91.07
Recall 95.26 88.09 83.60
F1-score 94.58 86.04 87.17

LighGBM Accuracy 96.18 92.63 93.57
AUC 95.57 92.32 90.02
Precision 94.28 81.91 94.33
Recall 93.83 91.66 81.96
F1-score 94.06 86.51 87.71

RF Accuracy 96.03 93.86 95.87
AUC 95.58 92.75 93.12
Precision 93.42 86.36 98.14
Recall 94.31 90.47 86.88
F1-score 93.86 88.37 92.17

SVM Accuracy 88.34 86.50 88.13
AUC 85.06 83.91 84.01
Precision 81.37 71.17 83.33
Recall 78.67 78.57 73.77
F1-score 80.00 75.00 78.26

in Figure 3. Performance was quite similar across the
classifiers, with mean accuracies ranging from 99.24%
to 99.16%. Stress detection for most subjects achieved
99.98% accuracy, 99.96% precision, and 99.96% recall
across all classifiers. One subject, however, had a lower
accuracy of 92.85%, likely due to noisier data. Still,
XGboost classifier stood out with the highest mean
accuracy of 99.24% and a standard deviation of 1.77%.

Table 2. Subject level stress detection accuracy for top 3
classifiers.

Subject XGBoost (%) LightGBM(%) RF(%)
S2 92.85 92.70 92.80
S3 99.70 99.88 99.62
S4 99.75 99.88 99.93
S5 99.69 99.77 99.88
S6 99.77 99.88 99.55
S7 99.81 99.85 99.83
S8 99.77 99.66 99.78
S9 99.48 99.60 99.75
S10 99.73 99.19 99.43
S11 99.88 98.33 99.73
S13 99.69 99.49 99.78
S14 99.58 99.82 99.63
S15 99.51 99.89 99.70
S16 99.73 99.72 99.77
S17 99.71 99.81 99.90

Average 99.24 99.16 99.21
Std 1.77 1.83 1.79

Figure 4. Density scatter plot of SHAP values obtained from
XGBoost classifier. A higher value indicates the most impor-
tance featutre.

We also evaluated stress detection using the top 9-
ranked features identified at the population level. Most
subjects achieved almost perfect accuracy ( 100%), with
the majority showing 99.98% accuracy, AUC 99.56%,
F1-score 99.48%, precision and recall 99.52%. Only
three subjects had slightly lower accuracies, ranging
from 96% to 98%.

IV. CONCLUSIONS

We developed an efficient ML framework for stress
detection from wrist-sensor data. Our analysis shows
that stress detection is more accurate based on 10 s
non-overlapping windows across different classifiers.
Notably, the XGBoost classifier achieved the highest
classification accuracy at both the population and in-
dividual levels. Our feature selection analysis indicates
that the model can predict most robustly from nine fea-
tures only. However, since this analysis is based on a lab
setting, performance in real-world environments may
be less accurate. Our work has a limitation: we could
not determine why one subject showed approximately
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5% lower performance than others. Further analysis is
needed to investigate this.
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