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Research Question:
• What are the preprocessing requirements for electrocardiogram (ECG) data 

when using deep learning models, and how does channel reduction impact 
model performance and diagnostic accuracy?

Methodology:
• ResNet18 model on TNMG CODE Corpus
• Systematic comparison of 8 vs. 12 channel ECG data
• Ablation analysis to determine channel importance

Findings:
• Derived ECG channels showed minimal or detrimental effect
• Model performance consistently decreased with more channels
• Deep learning models are effective using raw ECG data

Impact:
• Challenges traditional ECG preprocessing assumptions
• Reduces effort needed for machine learning (ML) system development
• Enables improved medical diagnostics

Abstract
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Traditional ECG Processing:
• Cardiologists rely on preprocessed ECG 

data and derived channels
• Current methods combine raw signals 

through linear combinations
• Preprocessing steps can mask or eliminate 

subtle diagnostic patterns

Introduction

Deep Learning Advantages:
• Neural networks excel at extracting complex

features autonomously
• Can process raw physiological signals 

without 
manual engineering

• Potential to identify patterns lost in traditional 
preprocessing

• Streamlines diagnostic pipeline while 
preserving signal integrity
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Standard 10-Lead ECG:
• 6 precordial leads (V1-V6) on chest
• 4 limb leads on arms and legs

(RA, LA, LL, RL-ground)
• Records 8 raw waveforms

(𝑽𝟏–𝑽𝟔, 𝑫𝑰	 = 	𝑳𝑨 − 𝑹𝑨, 𝑫𝑰𝑰	 = 	𝑳𝑳 − 𝑹𝑨)

Derived Channel Calculation:
𝑫𝑰𝑰𝑰 = 𝑫𝑰𝑰 − 𝑫𝑰
𝒂𝑽𝑹 = ⁄𝑫𝑰 + 𝑫𝑰𝑰 𝟐
𝒂𝑽𝑳 = ( ⁄𝑫𝑰 − 𝑫𝑰𝑰) 𝟐
𝒂𝑽𝑭 = (𝑫𝑰𝑰	 − 𝑫𝑰)/𝟐

ECG Lead Systems and Signal Processing
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A 12-Channel ECG
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Dataset Overview:

• Telehealth Network of Minas Gerais (TNMG)
• Clinical Outcomes in Digital Electrocardiography (CODE) group
• Comprehensive ECG collection (2010-2016)
• Coverage: 811 counties in Minas Gerais, Brazil
• Total records: 6,716,317 annotated ECGs
• Patient population: 1,558,749 unique individuals

Evaluation Dataset (“Golden Dataset“):

• 827 carefully selected ECG recordings
• Annotation protocol:
o Initial review by two independent cardiologists
o Disagreements resolved by third specialist consultation
o Consensus-based final annotations

• Labeled for six specific cardiac abnormalities
• Serves as high-quality benchmark for model evaluation

The TNMG CODE Corpus
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• First-degree Atrioventricular Block (1dAVb): A delay in the conduction of 
electrical impulses from the atria to the ventricles.

• Right bundle branch block (RBBB): A condition where the right side of the 
heart's electrical conduction system is impaired.

• Left bundle branch block (LBBB): A condition where the left side of the 
heart's electrical conduction system is impaired.

• Sinus bradycardia (SB): A slower-than-normal heart rhythm, defined as a 
heart rate below 60 beats per minute in adults.

• Atrial fibrillation (AF): An irregular heart rhythm, characterized by chaotic 
electrical activity.

• Sinus tachycardia (ST): A higher-than-normal heart rhythm, defined as a 
heart rate above 100 beats per minute in adults.

Annotations in TNMG



D. Alexandrov: The Impact of ECG Channel Reduction on Multi-Label Cardiac Diagnosis 8

Distribution Analysis:
• Binary feature vectors track presence/absence of 

six conditions (1dAVb, RBBB, LBBB, SB, AF, ST).
• The vast majority of records in both training and 

evaluation sets are healthy cases.
• Single disease occurrences represent less than 

10% of total dataset.
• Multiple disease combinations appear in very, 

very small fractions, yet this is what makes this 
problem challenging.

• The gold standard evaluation dataset particularly 
lacks representation of multiple disease cases.

Impact on Model Development:
• Severe imbalance creates training challenges 

(e.g. risk of model bias towards healthy cases)
• Harder to detect multiple concurrent conditions
• Limited examples of multiple diseases affects a 

model's ability to learn disease interactions

Dataset Imbalance
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Foundational Study:
• Ribeiro et al. [5]:

q Modified ResNet model trained on 2M+ ECG exams using a 12-lead ECG
q Preprocessing steps:
○ 400 Hz resampling
○ Zero-padding to 4096 samples
○ Derived channel inclusion
○ Z-score normalization

q Results outperformed cardiology residents
q Did not investigate preprocessing impact

Recent Lead Reduction Studies:
• Pastika et al. [6]:

q 8-lead ECGs for body mass index prediction
q Demonstrated viability of reduced leads

• von Bachmann et al. [7]:
q 8-lead approach for electrolyte prediction
q Limited exploration of lead reduction rationale
q Noted redundancy in derived channels

Relevant Prior Art
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Data Preprocessing:
• Time-series ECG data converted to 3D tensors
• Zero-padding to 𝟒, 𝟎𝟗𝟔 samples
• Z-score normalization for standardization
• Final tensor shape: (𝑵, 𝟏, 𝟒𝟎𝟗𝟔)

q 𝑵 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝑪𝑮 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 (𝟖 𝒐𝒓 𝟏𝟐)
q Singleton dimension for temporal processing

Model Modifications:
• Adapted ResNet18 for multi-label classification
• Modified first layer for 8/12 channel input
• Final layer outputs 6 condition probabilities
• Sigmoid activation for multi-label output

Training Parameters:
• Adam optimizer
• Learning rate: 𝟎. 𝟎𝟎𝟏
• Binary Cross-Entropy loss:

𝑩𝑪𝑬 𝒚, ŷ = 	−
𝟏
𝒏C
𝒊"𝟎

𝒏%𝟏

𝒚𝒊 𝒍𝒐𝒈 ŷ𝒊 + 𝟏 − 𝒚𝒊 𝒍𝒐𝒈 𝟏 − ŷ𝒊

where:
𝐧 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒂𝒔𝒔𝒆𝒔
𝒚𝒊 = 𝒕𝒓𝒖𝒆 𝒍𝒂𝒃𝒆𝒍
H𝒚𝒊 = 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚

ResNet18 Model Implementation
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Training Parameters:
• Epochs: 10, batch size: 32
• Monitored: training/validation losses, 

accuracy, F1 scores
• Evaluated both raw and minimally preprocessed signals

Performance Metrics:
• Multi-label classification requires 

comprehensive metrics
• Primary metrics: Micro and Macro F1 scores

Micro F1 Score:
𝑀𝑖𝑐𝑟𝑜	𝐹1 = 2	 ∗ '()*+,+-.	∗1)*233

'()*+,+-.41)*233
,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 5'
5'46'

,

𝑅𝑒𝑐𝑎𝑙𝑙 = 5'
5'467

 .

• Counts true positives (TP), 
false positives (FP), false negatives (FN)

• Weights frequent classes more heavily

Macro F1 Score:
• Calculates F1 independently for each class • Averages scores across classes
• Gives equal weight regardless of class frequency • Better for imbalanced datasets

Training Process and Performance Metrics



D. Alexandrov: The Impact of ECG Channel Reduction on Multi-Label Cardiac Diagnosis 12

Dataset Configurations:
• Four training set sizes: 2K, 20K, 200K, 2,000K
• Each tested with 8 and 12 channels
• 12-channel preprocessing: 400 Hz resampling, 2x amplitude scaling

Development Set Structure:
• Fixed 5,000 records for all experiments
• Balanced distribution:
○ 4,000 records: single conditions and healthy cases
○ 750 records: two conditions
○ 249 records: three conditions
○ 1 record: four conditions

Evaluation Method:
• Separate ResNet18 model for each experiment
• Performance tested on golden dataset
• Development set monitored for overfitting
• Class balance maintained where possible
• Larger datasets required more healthy records

Experimental Design
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Channel Performance:
• 8-channel models consistently

outperformed 12-channel models
• Performance gap largest in smaller datasets
• Difference decreased with larger training sets

Dataset Size Impact (2,000K Records):
• Significant performance decline in 

both configurations
• Root cause: Class imbalance issues
• Higher proportion of healthy records skewed predictions
• Model bias toward majority class
• Reduced accuracy for rare condition combinations

Development vs. Evaluation Performance:
• 2,000K models:
○ Poor performance on balanced development set
○ Better performance on evaluation set
○ Explained by similar healthy record distribution in training and evaluation

• Highlights critical importance of dataset composition
• Demonstrates impact of class balance on model reliability

Results
Train 
Size

No. Chans Train Dev Eval

2K 8 0.8810 0.7024 0.5029
2K 12 0.8690 0.7050 0.2127

20K 8 0.8870 0.8288 0.7022
20K 12 0.8812 0.8366 0.5509

200K 8 0.9310 0.8461 0.8421
200K 12 0.9286 0.8545 0.7956

2,000K 8 0.8809 0.7787 0.8649
2,000K 12 0.8787 0.7708 0.8522
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Variance Experiments:
• Tested 8-channel data with 2K, 20K, 200K datasets
• 5 independent training runs per size
• Different random seeds for each run
• Evaluated data shuffling and model 

initialization impact

Statistical Significance (95% Confidence):
• 2K dataset: F1 difference > 0.0174 significant
• 20K dataset: F1 difference > 0.0054 significant
• 200K dataset: F1 difference > 0.0017 significant
• Standard deviation decreases with larger datasets

Key Implications:
• Deep learning systems are highly sensitive 

to randomization
• Reproducibility remains a significant challenge
• 8-channel performance statistically 

equivalent to 12-channel
• Suggests deep learning can replace traditional signal processing
• Model learns necessary feature extraction independently

Variance Experiments
Data Train Dev Eval

2K 8 Channels (1) 0.8898 0.7235 0.4596

2K 8 Channels (2) 0.8747 0.7047 0.4569

2K 8 Channels (3) 0.8766 0.7074 0.5111

2K 8 Channels (4) 0.8892 0.7163 0.4426

2K 8 Channels (5) 0.8720 0.6876 0.5251

StDev 0.0084 0.01356 0.03655

20K 8 Channels (1) 0.8887 0.8187 0.7335

20K 8 Channels (2) 0.8852 0.8132 0.7214

20K 8 Channels (3) 0.8880 0.8229 0.6897

20K 8 Channels (4) 0.8884 0.8241 0.6729

20K 8 Channels (5) 0.8882 0.8243 0.6905

StDev 0.0014 0.0047 0.0249

200K 8 Channels (1) 0.9312 0.8534 0.8251

200K 8 Channels (2) 0.9298 0.8523 0.8278

200K 8 Channels (3) 0.9307 0.8510 0.7831

200K 8 Channels (4) 0.9318 0.8451 0.8278

200K 8 Channels (5) 0.9298 0.8481 0.7752

StDev 0.0009 0.0034 0.0263
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Ablation Process:
• Systematically evaluates each channel's importance
• Tests model performance when channels are “damaged”
• Reveals which features are truly essential

Methodology:
1. Start with fully trained model
2. For each channel:

○ Randomly scramble channel's data
○ Keep other channels intact
○ Measure performance drop
○ Repeat 250 times for reliability and average the results

3. Calculate importance:
○ Higher performance drop = More important channel
○ Negative impact = Channel potentially harmful
○ Near-zero impact = Redundant channel

Ablation Analysis
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Ablation Analysis Results
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Variance Inflation Factor (VIF) Analysis:
• Conducted on 20,000 balanced ECG recordings
• Measures how much variables overlap/correlate
• Higher VIF = More redundant information
• Standard threshold: VIF > 5.0 indicates high redundancy

How VIF Works:
• Regresses each variable against all others
• Measures increase in variance due to correlations
• 𝑽𝑰𝑭	 = 	𝟏/(𝟏 − 𝑹²) where 𝑹² is from regression
• Example: VIF of 4 means 4x more variance due to correlation

Results:
• Limb Leads (DI, DII):
o Very high VIF: 11.64 - 22.38
o Shows severe redundancy

• Derived Channels (DIII, aVR, aVL, aVF):
o High VIF: 12.69 - 21.48
o Confirms redundant information

• Precordial Leads (V1-V6):
o Low VIF: 2.60 - 3.63 (well below 5.0 threshold)
o Indicates unique, independent signals

Variance Inflation Factor (VIF) Analysis



D. Alexandrov: The Impact of ECG Channel Reduction on Multi-Label Cardiac Diagnosis 18

Key Findings:
• ECG preprocessing may be unnecessary for deep learning
• Raw signal models outperform preprocessed ones
• Derived channels show minimal or negative impact
• Deep learning can extract features without manual engineering
• Simpler approach yields more robust results

Research Impact:
• Challenges traditional ECG analysis assumptions
• Demonstrates deep learning's pattern extraction capability
• Suggests streamlined diagnostic pipeline
• Potential for more accurate cardiac diagnosis
• Reduces complexity in model development

Future Work:
• Additional 8-channel experiments planned
• Compare raw vs. preprocessed 8-channel signals
• Isolate preprocessing effects on primary leads
• Evaluate impact without derived channels
• Focus on raw signal processing optimization

Conclusions and Future Work
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