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Abstract— Electrocardiogram (ECG) recordings, which 
graphically represent the electrical activity of the heart over 
time, are essential for diagnosing a variety of heart diseases 
by identifying abnormal patterns in the signal. In this work, 
we investigate the need for preprocessing ECG data using a 
ResNet18 deep learning model for the TNMG CODE 
Corpus. While traditional ECG interpretation often relies 
on preprocessed data and channels derived from linear 
combinations of the raw signal, we hypothesize that these 
techniques may be unnecessary or even detrimental in 
modern deep learning approaches. We systematically 
demonstrate that the ResNet18 model performance 
consistently decreases with the increase in the number of 
channels. We also conduct an ablation analysis, which 
reveals that derived ECG channels have minimal or 
detrimental effect. This study demonstrates the 
effectiveness of deep learning models in processing ECG 
data, supporting the hypothesis that model-based features 
are no longer needed when there is sufficient training data 
available. This decreases the effort required to develop 
machine learning systems for new domains, contributing to 
potential improvements in medical diagnostics. 

I.  INTRODUCTION 

Electrocardiograms (ECGs) are a fundamental tool in 

cardiology, allowing physicians to diagnose a wide range 

of cardiac abnormalities. Traditionally, cardiologists 

utilize preprocessed ECG data and derived channels, 

which are linear combinations of the raw signal, to aid in 

their diagnosis. However, with the rapid advancements in 

machine learning, automated analysis of medical data is 

becoming a reality. Deep learning models have shown a 

remarkable ability for extracting relevant features from 

complex data without explicit feature engineering. This 

suggests that these models may be able to effectively 

analyze raw ECG signals, potentially eliminating the 

need for preprocessing. This new approach could 

simplify the analysis pipeline and preserve subtle 

patterns in the data that might be lost during traditional 

preprocessing steps. 

The Residual Network architecture (ResNet18), 

introduced by He et al. [1], is a significant model in deep 

learning for image recognition tasks. Its main innovation 

is the use of residual blocks, which allow the network to 

learn residual functions with reference to layer inputs. 

This approach enables the training of much deeper 

networks by addressing the vanishing gradient problem. 

The ResNet18 model consists of 18 layers, including 

convolutional layers, batch normalization, ReLU 

activation functions, and skip connections that form the 

characteristic residual blocks. These skip connections 

allow the network to bypass one or more layers, 

providing a direct route for gradients to flow backwards 

through the network during training. While originally 

designed for image classification, ResNet's ability to 

capture hierarchical features makes it well-suited for 

complex pattern recognition tasks, including time series 

analysis, where identifying both local patterns and global 

trends is crucial. ResNet18 has been successfully applied 

to EEG analysis (reducing complexity and latency) [2], 

and image analysis [3], in additional to cardiology 

applications [4]. In this paper we do not argue that this is 

the best overall architecture. We simply use this approach 

as a well-established baseline. 

Most clinical ECG recordings are collected with a 10-

lead system. These channels are converted to eight signal 

channels as shown in Figure 1. Prior to the introduction 

of deep learning, these eight signal channels were 

converted to twelve leads using a well-known set of 

preprocessing techniques [5]. A typical system employs 

ten electrodes: six precordial leads (V1-V6) placed on the 

chest, and four limb leads places on the right arm (RA), 

left arm (LA), left leg (LL), and right leg (RL, used as a 

ground). From these, eight raw waveforms are recorded: 

the six precordial leads and two limb leads, DI and DII. 

DI is derived as the potential difference between LA and 

RA (LA – RA), while DII is the difference between LL 

and RA (LL – RA). The remaining four leads are derived 

from DI and DII as follows: 

𝐷𝐼𝐼𝐼 = 𝐷𝐼𝐼 − 𝐷𝐼  (1) 

𝑎𝑉𝑅 =
𝐷𝐼+𝐷𝐼𝐼

2
  (2) 

𝑎𝑉𝐿 =
𝐷𝐼−𝐷𝐼𝐼

2
  (3) 

𝑎𝑉𝐹 =
𝐷𝐼𝐼−𝐷𝐼

2
  (4) 

We hypothesize that extensive preprocessing of ECG 

data may not be beneficial for deep learning models and 

could potentially decrease their performance. 

II. TNMG CODE CORPUS 

The TNMG CODE Corpus (TNMG) [5] represents a 

major advancement in the field of cardiology, and is the 

corpus we focus on in this study. TNMG is a dataset of 

ECG records collected by the Telehealth Network of 

Minas Gerais (TNMG) between 2010 and 2016 in 811 

counties in the Brazilian state of Minas Gerais, organized 

by the Clinical Outcomes in Digital Electrocardiography 

(CODE) group. The dataset contains a total of 6,716,317 
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annotated records from 1,558,749 patients. 

The dataset includes a curated “golden dataset” of 827 

ECG recordings, which serves as a high-quality 

evaluation set. These recordings were independently 

annotated by two cardiologists. In cases of disagreement, 

a third specialist reviewed the annotations to establish a 

consensus. The data set was labeled for six abnormalities 

as shown in Table 1. 

In Table 2, we show a distribution in the number of 

records and percentage of feature vectors in both 

datasets, where presence or absence of each abnormality 

is marked as a binary vector in the same order as Table 1: 

1dAVb, RBBB, LBBB, SB, AF, ST. It is clear that the 

majority of both datasets consists of healthy records. 

Tokens with a single disease occur in single digit 

percentages. An even smaller fraction of tokens with 

multiple diseases appears in the corpus. Of equal concern 

is that tokens with multiple diseases are not well 

represented in the evaluation dataset, known as the gold 

standard dataset. 

The imbalance in this data has a profound impact on our 

ability to train high performance models, as we will show 

in Section IV. However, it is not our intention here to 

focus on techniques to deal with imbalance. Instead, we 

are following the process described in [5] so that our 

experiments can be directly compared. 

III. APPLICATION OF DEEP LEARNING 

A previous study by Ribeiro et al. demonstrated the 

effectiveness of deep neural networks for automatic 

classification of 12-lead ECGs [5]. Similar to our work, 

they developed a ResNet-18 model trained on over 

2 million ECG exams from the TNMG database. Their 

model was able to detect six types of ECG abnormalities 

with high accuracy, outperforming cardiology residents. 

For preprocessing, they resampled all ECGs to 400 Hz, 

zero-padded signals to 4096 samples per lead, used the 

derived channels, and applied z-score normalization. 

While their approach showed promising results, the 

impact of this preprocessing on model performance was 

not thoroughly investigated. 

 

Figure 1. Conversion of an ECG collected with 10 leads to 8 and 12-channel waveforms [4] 

 

Table 1. Annotations present in TNMG 

Label Description 

1dAVb First-degree atrioventricular block: A delay in the 

conduction of electrical impulses from the atria to 

the ventricles. 

RBBB Right bundle branch block: A condition where the 

right side of the heart’s electrical conduction system 

is impaired. 

LBBB Left bundle branch block: A condition where the left 

side of the heart’s electrical conduction system is 

impaired.  

SB Sinus bradycardia: A slower-than-normal heart 

rhythm, defined as a heart rate below 60 beats per 

minute in adults. 

AF Atrial fibrillation: An irregular heart rhythm, 

characterized by chaotic electrical activity. 

ST Sinus tachycardia: A higher-than-normal heart 

rhythm, defined as a heart rate above 100 beats per 

minute in adults. 

 

 
` 
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Newer studies by Pastika et al. [6] and von Bachmann et 

al. [7] have also adopted reduced lead configurations, 

utilizing 8-lead ECGs in their deep learning models for 

body mass index and electrolyte prediction, respectively. 

However, these studies did not extensively discuss the 

rationale for lead reduction. The choice of using raw 

leads stems from the fact that they are linear 

combinations of raw leads, making them redundant. 

Following Ribeiro et al. [5], we utilize a ResNet18 

architecture adapted for multi-label classification. To 

create input tensors for our model, we transform the time-

series ECG data into multi-channel 3D tensors. All 

signals are zero-padded to 4096 samples and undergo z-

score normalization to standardize the data. The 

normalized signals are then reshaped into tensors of 

shape (N, 1, 4096), where N represents the number of 

ECG channels. In this representation, each channel 

corresponds to a separate ECG lead, and the temporal 

samples span the width of the tensor. Although the tensor 

has three dimensions, the singleton height dimension (1) 

facilitates the processing of temporal data similarly to 

how CNNs handle spatial information in images. 

A typical block in our architecture is shown in Figure 2. 

The overall architecture is illustrated in Figure 3. The 

first convolutional layer of our model was modified to 

take either eight or twelve channels as input. The final 

layer was adapted to output probabilities for each of the 

six cardiac conditions by utilizing a sigmoid activation 

function. We employ the Adam optimization 

algorithm [8] with a learning rate of 0.001. Due to the 

multi-label nature of our task, we use Binary Cross-

Entropy loss [9] as the objective function: 

Table 2. Distribution of classes in TNMG CODE 

Feature 

Vector 

Train Gold (Eval) 

# % # % 

000000 6,014,462 89.55000 681 82.34583 

010000 145,208 2.16202 28 3.38573 

000001 131,820 1.96268 35 4.23216 

000010 100,865 1.50179 11 1.33011 

000100 94,500 1.40702 15 1.81378 

001000 86,487 1.28771 20 2.41838 

100000 75,924 1.13044 25 3.02297 

010010 11,910 0.17733 1 0.12092 

110000 11,168 0.16628 0 0.00000 

101000 7,580 0.11286 3 0.36276 

001010 7,019 0.10451 0 0.00000 

010100 5,713 0.08506 0 0.00000 

100100 4,215 0.06276 0 0.00000 

010001 3,408 0.05074 1 0.12092 

001001 3,066 0.04565 0 0.00000 

000011 2,860 0.04258 0 0.00000 

100010 1,871 0.02786 1 0.12092 

001100 1,625 0.02419 1 0.12092 

011000 1,621 0.02414 4 0.48368 

110100 1,165 0.01735 0 0.00000 

100001 560 0.00834 1 0.12092 

110010 515 0.00767 0 0.00000 

000110 506 0.00753 0 0.00000 

101100 331 0.00493 0 0.00000 

011100 329 0.00490 0 0.00000 

010011 292 0.00435 0 0.00000 

101010 248 0.00369 0 0.00000 

111000 220 0.00328 0 0.00000 

011010 189 0.00281 0 0.00000 

001011 143 0.00213 0 0.00000 

100110 88 0.00131 0 0.00000 

010110 82 0.00122 0 0.00000 

110110 64 0.00095 0 0.00000 

111100 56 0.00083 0 0.00000 

011001 45 0.00067 0 0.00000 

110001 43 0.00064 0 0.00000 

100011 36 0.00054 0 0.00000 

111010 19 0.00028 0 0.00000 

101001 16 0.00024 0 0.00000 

001110 14 0.00021 0 0.00000 

000101 10 0.00015 0 0.00000 

011011 5 0.00007 0 0.00000 

010101 5 0.00007 0 0.00000 

011110 5 0.00007 0 0.00000 

111011 4 0.00006 0 0.00000 

111110 3 0.00004 0 0.00000 

110011 1 0.00001 0 0.00000 

101110 1 0.00001 0 0.00000 

 

 
` 

 

Figure 2. A typical block in the ResNet-18 architecture 

 

Figure 3. The composite ResNet18 architecture uses four 

internal layers similar to those shown in Figure 2, in addition 

to input and output layers. 
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𝐵𝐶𝐸(𝑦, ŷ) =  −
1

𝑛
∑[𝑦𝑖 𝑙𝑜𝑔(ŷ𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − ŷ𝑖)] (5) 

where n is the number of classes, yi is the true label, and 

ŷi is the predicted probability for class i. 

In all experiments, the training process iterated over 10 

epochs with a batch size of 32. We monitored training 

and validation losses, along with accuracy, micro-

averaged F1score, and macro-averaged F1 score to assess 

the model performance. This approach allows us to 

evaluate the effectiveness of our model in processing 

both raw and minimally preprocessed ECG signals. 

Given that our problem is a multi-label classification 

task, we employ micro and macro F1 scores [10] as a key 

metric for evaluating model performance. These metrics 

provide a comprehensive assessment of the overall 

model’s ability to identify several cardiac conditions at 

once. The micro F1 score calculates metrics by counting 

the true positives, false negatives and false positives 

across all classes. It is computed as the harmonic mean 

of precision and recall: 

𝑀𝑖𝑐𝑟𝑜 𝐹1 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                                 (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                 (8) 

where TP, FP, and FN represent true positives, false 

positives, and false negatives, respectively. 

In contrast, the macro F1 score calculates the F1 score for 

each class independently and then averages these scores. 

Micro F1 tends to give more weight to frequent classes, 

while macro F1 gives equal weight to all classes, 

regardless of their frequency in the dataset. 

IV. EXPERIMENTATION 

We conducted eight experiments to systematically 

evaluate the impact of ECG channel reduction and 

dataset size on deep learning performance. We used four 

different training dataset sizes: 2K (2,000), 20K (20,000), 

200K (200,000), and 2,000K (2,000,000) records, each 

tested with both 8-channel and 12-channel ECG 

configurations. For the 12-channel sets, we applied 

minimal preprocessing consisting of resampling to 400 

Hz and 2x scaling of the signal amplitude. To address 

class imbalance, we chose the distribution for each 

training set that balances the frequency of occurrence of 

the class labels to the extent possible. However, as the 

dataset size increased, we had to include a higher 

proportion of healthy records due to their prevalence in 

the corpus. 

In each experiment, we trained a separate ResNet18 

model and evaluated its performance on the golden test 

set. We also utilized a fixed development set of 5,000 

records in all experiments to monitor training process and 

prevent overfitting. The development set was balanced to 

represent a variety of combinations of cardiac conditions: 

approximately 4,000 examples were evenly split between 

single-condition cases and healthy records, 750 evenly 

split examples with two conditions, 249 examples 

containing three conditions, and one rare example with 

four concurrent conditions. The results for each 

experiment are shown in Table 3. 

Our results reveal a consistent pattern across all dataset 

sizes: the models trained on 8-channel ECG data 

outperformed those trained on 12-channel data. The 

performance difference was more pronounced in the 

smaller datasets and gradually diminished as the training 

dataset size increased. 

We observed a significant decline in performance in both 

8- and 12-channel models in experiments with 2,000K 

records. We attribute this decrease to the inherent class 

imbalance in the larger dataset. As we expanded to a 

much higher number of records, the proportion of healthy 

ECG examples increased significantly. Although it 

reflects the prevalence of these records in the general 

population, this imbalance led to a bias in the model’s 

predictions, favoring the majority class at the expense of 

less common combinations of cardiac conditions.  

Another observation is that models trained on 2,000K 

records performed poorly on the balanced development 

set but showed a noticeably higher performance on the 

evaluation set. This discrepancy is likely caused by the 

higher proportion of healthy records in the evaluation set, 

which more closely mirrors the distribution in the 

training data. These observations are an example of the 

importance of considering dataset composition and 

carefully balancing class distributions within datasets. 

To assess the stability and reproducibility of our findings, 

we conducted several experiments to estimate the 

variance of the F1 scores on 8-channel data. For each of 

the three dataset sizes (2K, 20K and 200K) we performed 

five independent training runs. Each run utilized a 

different random seed for data shuffling and model 

initialization. The results are shown in Table 4. As 

Table 3. Micro F1 scores as a function of the training set size 

Train Size No. Chans Train Dev Eval 

2K 8 0.8810 0.7024 0.5029 

2K 12 0.8690 0.7050 0.2127 

20K 8 0.8870 0.8288 0.7022 

20K 12 0.8812 0.8366 0.5509 

200K 8 0.9310 0.8461 0.8421 

200K 12 0.9286 0.8545 0.7956 

2,000K 8 0.8809 0.7787 0.8649 

2,000K 12 0.8787 0.7708 0.8522 
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expected, there is a significant reduction in the standard 

deviation as the training set size increases.  

This translates to an improvement in the statistical 

significance of these scores. For a sample size of 2K at 

95% confidence, a difference in the F1 score of 0.0174 is 

statistically significant on the training data. For sample 

sizes of 20K and 200K, differences greater than 0.0054 

and 0.0017, respectively, are significant. Hence, we see 

that the differences due to randomization in Table 4 are 

statistically significant, underscoring how sensitive these 

deep learning systems are to randomization (which 

makes reproducibility a challenge). 

Nevertheless, the key point here is that performance for 

the 8-channel system is not statistically different from the 

12-channel system, indicating that the deep learning 

system is able to implement whatever signal processing 

is necessary to extract meaningful information. 

V. ABLATION ANALYSIS AND MULTICOLLINEARITY 

As a further investigation of the impact of additional 

ECG channels on model performance, we conducted an 

ablation analysis [11] to determine channel importance. 

We systematically randomized each channel’s data and 

measured the resulting change in the model’s micro F1 

score. The ablation process was performed for 250 

randomized iterations for each channel to ensure 

consistent results. The importance of each channel was 

quantified as the average decrease in micro F1 score 

when that channel was randomized. 

Figure 4 presents the results of three experiments using 

2K, 20K, 200K and 2,000K records. The x-axis 

represents the 12 ECG channels, while the y-axis 

represents the change in micro F1 score. A positive score 

indicates a feature is important, while a negative score 

indicates a feature is redundant. Our analysis 

demonstrated that the precordial leads (V1-V6) tend to 

have the higher importance scores, while the derived 

Table 4. Micro F1 scores as a function of the random seed 

Data Train Dev Eval 

2K 8 Channels (1) 0.8898 0.7235 0.4596 

2K 8 Channels (2) 0.8747 0.7047 0.4569 

2K 8 Channels (3) 0.8766 0.7074 0.5111 

2K 8 Channels (4) 0.8892 0.7163 0.4426 

2K 8 Channels (5) 0.8720 0.6876 0.5251 

StDev 0.0084 0.01356 0.03655 

20K 8 Channels (1) 0.8887 0.8187 0.7335 

20K 8 Channels (2) 0.8852 0.8132 0.7214 

20K 8 Channels (3) 0.8880 0.8229 0.6897 

20K 8 Channels (4) 0.8884 0.8241 0.6729 

20K 8 Channels (5) 0.8882 0.8243 0.6905 

StDev 0.0014 0.0047 0.0249 

200K 8 Channels (1) 0.9312 0.8534 0.8251 

200K 8 Channels (2) 0.9298 0.8523 0.8278 

200K 8 Channels (3) 0.9307 0.8510 0.7831 

200K 8 Channels (4) 0.9318 0.8451 0.8278 

200K 8 Channels (5) 0.9298 0.8481 0.7752 

StDev 0.0009 0.0034 0.0263 

 

 

 

 

 

Figure 4. Results of the ablation analysis 
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channels (DIII, aVR, aVL, and aVF) showed lower 

scores and sometimes negative values, indicating their 

redundancy. Channels DI and DII showed mixed results, 

either being as important as some precordial leads or 

relatively insignificant. 

Following our ablation analysis, it is important to 

consider the issue of multicollinearity in our ECG data. 

Multicollinearity [12] occurs when there is an 

approximately linear relationship between two or more 

independent variables in a regression model. While it is 

typically discussed in the context of regression models, it 

can also affect classification models, including our deep 

learning model for ECG classification. 

To further validate our findings regarding channel 

redundancy, we employed Variance Inflation Factor 

(VIF) analysis on a balanced subset of 20,000 ECG 

recordings. VIF quantifies the severity of 

multicollinearity in regression analysis by measuring 

how much the variance of a coefficient estimate is 

increased due to collinearity with other variables. Our 

analysis revealed substantial redundancy among limb 

leads and their derived channels, with DI and DII 

showing high VIF scores of 11.64 and 22.38 respectively. 

The derived channels (DIII, aVR, aVL, and aVF) 

similarly exhibited high VIF scores ranging from 12.69 

to 21.48, indicating severe multicollinearity. In contrast, 

all precordial leads (V1-V6) demonstrated low VIF 

scores between 2.60 and 3.63, well below the standard 

multicollinearity threshold of 5.0. These results provide 

strong statistical evidence that limb leads and their 

derivatives contain redundant information, while 

precordial leads contribute unique and independent 

signal characteristics. 

In our study, by using only the eight independent leads 

and omitting the derived leads, we performed a form of 

variable selection that addresses the issue of 

multicollinearity in ECG data. Our findings in model 

training, ablation analysis, and VIF scores support the 

hypothesis, indicating that derived ECG channels 

introduce multicollinearity and do not provide any 

additional predictive power. 

VI. CONCLUSIONS AND FUTURE WORK 

Our study provides evidence supporting our hypothesis 

that extensive preprocessing of ECG data may not be 

beneficial for deep learning in cardiac diagnosis. Across 

various dataset sizes, models trained on raw signal 

outperformed those using derived channels and minor 

preprocessing. The ablation analysis further revealed that 

derived channels have little or slightly negative impact 

on model performance. 

These findings highlight the capability of deep learning 

algorithms to extract meaningful patterns from complex 

physiological data without relying on handcrafted 

features. This suggests a potential for simpler, more 

direct approach for data input that may yield more 

accurate and robust models. 

In future studies, we plan to further refine our approach 

by conducting additional experiments with 8-channel 

ECG data. We will focus on comparing the performance 

of models trained on raw 8-channel signals against those 

trained on extensively preprocessed 8-channel data, 

excluding the derived channels entirely and isolating the 

effects of preprocessing on the primary ECG leads. 
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