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Abstract—Transformers have significantly impacted 

machine learning, particularly in natural language 

processing and computer vision, due to their robust 

attention mechanisms and scalability. Although it is very 

successful and has the attention mechanism to explain it, it 

is still a black box in general. This lack of transparency is 

not conducive to applications, nor is it conducive to the 

development of more advanced models. We systematically 

analyze current methodologies for interpreting the 

attention patterns, hidden representations, and decision-

making processes within Transformers. Additionally, we 

investigate how these insights aid in refining Transformer 

architectures and inspire the creation of innovative models 

that extend beyond the conventional Transformer 

frameworks. Due to its expertise in long-term dependencies 

and data scalability, Transformer undoubtedly has great 

advantages in foundation language models, achieving 

multimodality, and processing discrete data, but it is 

inferior to Mamba in terms of efficiency, especially when 

processing continuous data. It is inferior to Diffusion Model 

when processing image data because it is not good at 

grasping the distribution of high-dimensional data and is 

relatively less suitable for image generation model. By 

integrating achievements in both explaining and advancing 

Transformer-like architectures, this paper serves as a 

valuable resource for researchers aiming to enhance the 

performance, transparency, and efficiency of Transformers 

in various applications and to develop models that surpass 

current Transformer paradigms.  

Keywords— Transformer, explainability, Interpretability, 

Mamba, Diffusion Model. 

I. INTRODUCTION 

Introduced by Vaswani et al. in 2017 [1], Transformers 

have become a cornerstone in the field of machine 

learning, revolutionizing various applications including 

natural language processing (NLP) [1], computer vision 

(CV) [2], time series (TS) [3], speech processing [4], 

bioinformatics [5], graph data [6], music generation [7], 

robotics [8], symbolic mathematics [9], recommend 

systems [10], 3D point cloud [11], financial forecasting 

[12] and so on. As shown in Figure 1, this is an 

approximation of different applications of Transformer 

based on our search. The key innovation behind 

Transformers lies in their attention mechanism, which 

allows them to find the long-term dependencies of input 

data in parallel mode. It is well suited for finding long-

term dependencies among large and complex sets of 

discrete data points. 

Despite their widespread adoption and success, the inner 

workings of Transformers remain largely opaque, often 

described as "black-box" models. This opacity presents 

significant challenges for researchers and practitioners 

who seek to understand, trust, and improve these models. 

As Transformers continue to be deployed in critical 

applications, from automated customer service to 

medical diagnosis, the need for transparency and 

interpretability becomes increasingly urgent 

[13][14][15][16]. 

Recent research has focused on elucidating the 

mechanisms behind Transformers, aiming to make their 

operations more interpretable [17]. Various methods 

have been developed to visualize and understand 

attention patterns, analyze hidden representations, and 

decode the decision-making processes within these 

models [18][19][16]. These efforts are not only vital for 

validating model outputs but also for guiding the design 

of more efficient and effective Transformer architectures 

[2][20]. 

This paper aims to provide a comprehensive overview of 

the recent progress in explaining Transformer models. 

We systematically examine the state-of-the-art 

methodologies for interpreting these models and 

highlight how these insights contribute to the refinement 

 

Figure 1. Transformer’s main applications. 
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of existing architectures and the creation of new ones. By 

synthesizing the achievements in both explaining and 

evolving Transformer architectures, this paper seeks to 

offer a valuable resource for researchers dedicated to 

enhancing the performance, transparency, and efficiency 

of these models in a wide array of applications. 

In the subsequent sections, we delve into the various 

approaches for interpreting Transformer models, discuss 

the advancements beyond traditional Transformer 

architectures, and explore the implications of these 

developments for the future of machine learning. 

Through this comprehensive survey, we hope to shed 

light on the intricate workings of Transformers and 

inspire further innovations in this dynamic and rapidly 

evolving field. Specifically, Section II describes the 

architecture and mechanism of Transformer and its 

comparison with RNN and CNN; Section III covers 

recent advances in understanding Transformer and 

developing its transcendent; Section IV summarizes the 

paper. 

II. TRANSFORMER ARCHITECTURE AND MECHANISM 

The Transformer architecture has fundamentally changed 

the landscape of deep learning by employing self-

attention mechanisms, which significantly enhance the 

ability to model long-term dependencies in sequential 

data. This section details the key components and 

mechanisms that constitute the Transformer architecture 

and compare it to the other architectures, providing 

insights into its operation and effectiveness. 

A. Transformer Architecture 

The Transformer architecture is built around an encoder-

decoder structure, with both the encoder and decoder 

consisting of multiple identical layers. Each layer has two 

primary components: a multi-head self-attention module 

and a position-wise feed-forward network. The encoder 

processes the input sequence into continuous 

representations, while the decoder generates the output 

sequence by using the encoder’s representation and 

previously generated tokens. The decoder layers also 

have an additional sub-layer to handle encoder-decoder 

attention [1]. 

The Multi-Head Attention module allows the model to 

focus on different parts of the input sequence 

simultaneously by employing multiple attention heads. 

Each head performs scaled dot-product attention, which 

computes attention scores by taking the dot product of 

query (Q) and key (K) vectors, scaling by the square root 

of the dimension of the key vectors, and applying a 

softmax function. 

The Feed-Forward Network is a fully connected network 

applied to each position separately and identically. It 

consists of two linear transformations with a ReLU 

activation in between. 

The attention mechanism allows each position in the 

input sequence to attend to all positions, enabling the 

model to capture long-term dependencies without regard 

to the distance between positions [1][15]. The self-

attention mechanism operates as follows: Compute the 

dot products of the query with all keys; Scale the dot 

products by the square root of the key dimension; Apply 

the softmax function to obtain attention weights; Multiply 

the attention weights by the value vectors to obtain the 

weighted sum. Mathematically, the attention mechanism 

can be defined as below: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉             (1) 

where Q (queries), K (keys), and V (values) are matrices 

packed together, and dk is the dimension of the keys [1]. 

Since Transformers do not have a built-in mechanism for 

capturing the order of tokens, positional encodings are 

added to the input embeddings. These encodings allow 

the model to differentiate between the positions of tokens 

in a sequence and are crucial for processing sequential 

data. 

B. Comparison with other architectures 

The Transformer model's architecture and mechanisms 

 

Figure 2. The architecture of the Transformer model [1]. 
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have set new benchmarks in multiple machine learning 

tasks due to their ability to model long-term 

dependencies and parallelize training. By comparing it to 

the other architectures like RNN and CNN, we can know 

more of its characters, advantages and disadvantages, as 

shown in Table 1.  

Transformer is very different from RNN and CNN in 

structure and principle, so it has great differences and 

advantages. It perfectly replaces RNN in NLP and is the 

optimal solution. But when processing other continuous 

signals, especially when it is necessary to master the 

distribution of data, RNN still has certain advantages. At 

the same time, it performs much better than CNN in 

mastering long-term dependencies, but is still not as good 

as CNN in mastering local data distribution. CNN still 

shows advantages in mastering spatial features. This is 

why there are many studies trying to combine the 

advantages of them. Although Transformer is gaining 

more and more attentions, CNN/RNN have not been 

forgotten. CNN/RNN are simpler and computationally 

more efficient compared to Transformer. They do not 

require complex mechanisms like attention and are easier 

to implement and train on standard hardware [24]. They 

can be more efficient in handling specific types of data 

and tasks [25]. Recently, CNN/RNN have been used for 

building generative/foundation models. They are not 

only used to assist Transformer [26] [27] but also work 

alone in foundation models [28] [29] [30] [31] [32]. 

III. UNDERSTAND AND SURPASS TRANSFORMER 

Despite demonstrating significant practical efficacy and 

being partially explicable through the attention 

mechanism, the Transformer remains somewhat opaque. 

This opacity arises from various factors: the intricate 

complexity of its layers and parameters, the nonlinear 

and intertwined nature of its operations, the high-

dimensional representations it employs, the dynamic 

nature of its training process, and its reliance on learned 

Table 1: Comparison of Transformer, RNN and CNN. 

Architecture 
Transformer 

[1][2][4] 

RNN 
[21][22][30][31] 

CNN 
[23][26][27][32] 

Basic structure 

Self-attention layers, feed-

forward neural networks, 

positional encoding 

Sequential processing with 

recurrent connections for 

temporal data 

Convolutional layers for 

spatial data processing 

Parallelization 

Highly parallelizable, 

processes entire sequences 

parallelly 

Sequential processing, making 

it less parallelizable 

Highly parallelizable, 

processes multiple parts of 

the data simultaneously 

Long-term 

dependencies 

Efficiently captures long-term 

dependencies through self-

attention 

Struggles with long-term 

dependencies due to vanishing 

gradient problem 

Effective in capturing local 

features but less suited for 

long-term dependencies 

Training 

efficiency 

Efficient, especially on large 

datasets, thanks to parallel 

processing 

Slower training due to 

sequential nature 

Faster training due to 

parallel processing and 

efficient use of local 

patterns 

Data type 

Primarily sequential data (text, 

time series, speech), but 

adaptable for images and 

multimodal data 

Sequential data (text, speech, 

time series) 

Primarily spatial data 

(images, videos), but 

adaptable to text and 

sequential data 

Advantages 

Can handle long-term 

dependencies efficiently, 

Highly parallelizable, 

Scales well with large datasets 

Maintains sequence order, 

Good for temporal data, 

Suitable for tasks like language 

modeling 

Excellent for spatial feature, 

Parallelizable and efficient, 

Effective in recognizing 

patterns in images 

Disadvantages 

Resources consuming, 

Can be data-intensive, 

May need large datasets for 

effective training 

Struggles with long-term 

dependencies, 

Slower training, 

Vanishing/exploding gradients 

Limited in handling long-

term dependencies, 

Not as efficient for 

sequential data 
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rather than explicit rules. Consequently, achieving 

precise control, adjustment, transplanting and 

enhancement of the Transformer poses considerable 

challenges.  

There have been many efforts to explain transformers. 

According to the characteristics of these efforts, we 

divide them into three categories: primary stage, 

intermediate stage and advanced stage. Also, we will 

review some existed architectures similar to or beyond 

Transformer. 

A. Primary stage. 

The biggest feature of this stage is to use existing 

explanation AI (XAI) techniques to explain Transformer. 

There have been some literature reviews on this [33] [34] 

[35] [36]. These methods mainly include following: 

Activation-Based Methods. Activation-based methods 

help in understanding the internal workings of 

Transformers by analyzing neuron activations. These 

methods identify which neurons are activated by specific 

input features, providing insights into how the model 

processes information [37][38]. 

Gradient-Based Methods. Gradient-based techniques, 

such as Integrated Gradients and Layer-wise Relevance 

Propagation (LRP), attribute the model's predictions to 

its input features by computing gradients. Voita et al. 

demonstrated that specific attention heads in 

Transformers are crucial for capturing syntactic and 

long-term dependencies, which is revealed through 

gradient-based attribution [39]. Additionally, Jain and 

Wallace discussed the limitations of attention as a sole 

explanation, highlighting the need for gradient-based 

methods to provide more reliable interpretations [40]. 

Pruning Techniques. Pruning techniques involve 

removing parts of the model, such as specific attention 

heads, to analyze their impact on performance. This helps 

identify the importance of different components within 

the Transformer. Voita et al. used pruning to show that 

certain attention heads can be removed without 

significantly affecting the model's performance, 

suggesting that only a subset of the heads are essential for 

specific tasks [39]. This approach helps in simplifying 

the model and improving interpretability. 

Perturbation-Based Methods. Perturbation-based 

methods explain model predictions by altering input 

features and observing the changes in output. Techniques 

like LIME (Local Interpretable Model-agnostic 

Explanations) perturb input features to determine their 

importance in the model's decision-making process [4]. 

Serrano and Smith used perturbation to show that 

removing high-attention words does not always impact 

model predictions significantly, raising questions about 

the reliability of attention-based explanations alone [42]. 

One disadvantage of the primary stage is post-doc. post-

hoc interpretability refers to methods applied after the 

model has been trained to explain its predictions. This 

approach is often criticized for potentially providing 

misleading explanations since the explanations are not 

inherently tied to the model’s decision-making process.  

B. Intermediate stage. 

The biggest feature of this stage is to use the attention 

mechanism to explain Transformer. Attention-based 

methods have become central to understanding and 

explaining the behavior of Transformer models. 

Attention-based methods mainly include following: 

Visualization of Attention Weights. One of the primary 

methods to interpret Transformers is by visualizing 

attention weights. These visualizations help understand 

how the model focuses on different parts of the input 

during processing. For instance, tools like BertViz [42] 

provide interactive visualizations of attention heads in 

BERT models, revealing patterns in how attention is 

distributed across different layers and heads. 

Attribution Methods. Attention attribution methods, 

such as Layer-wise Relevance Propagation (LRP) and 

Integrated Gradients, aim to attribute the model’s 

predictions to its input features. Voita et al. [39] analyzed 

attention heads in Transformers and found that specific 

heads are responsible for syntactic functions, while 

others capture long-term dependencies. Such attributions 

offer insights into the internal workings of the model and 

help identify the roles of different attention heads. 

Self-Explanation Models. Another approach involves 

self-explaining models where the model itself generates 

explanations for its predictions. This is achieved by 

adding interpretability constraints during training. Jain 

and Wallace [40] argued that while attention provides 

some interpretability, it does not always correlate with 

feature importance, suggesting the need for more robust 

self-explaining mechanisms. 

Use of Probing Tasks. Probing tasks are designed to 

investigate what linguistic information is captured by 

different layers and attention heads in Transformers. 

Hewitt and Manning [43] used structural probes to show 

that Transformers encode syntactic tree structures in their 

representations, providing a deeper understanding of the 

model’s linguistic capabilities. 

Despite their usefulness, attention-based explanations 

have faced criticism for their lack of consistency and 

reliability. Serrano and Smith [16] demonstrated that 

removing high-attention words does not always 

significantly impact the model’s predictions, questioning 

the direct interpretability of attention weights. 

Consequently, alternative methods like SHAP (SHapley 

Additive exPlanations) and LIME (Local Interpretable 
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Model-agnostic Explanations) have been proposed to 

complement attention-based explanations [41]. 

C. Advanced stage. 

This stage emphasizes on white-box Transformer and, 

mathematical interpretability.  

Recent research has introduced the Coding Rate 

Transformer (CRATE), a white-box transformer 

architecture designed for efficient data compression and 

sparsification. CRATE models utilize a Sparse Rate 

Reduction (SRR) objective, which transforms input data 

into structured and compact representations. This method 

involves an alternating optimization procedure that 

incrementally improves data representations by 

compressing and sparsifying them at each layer [44][45]. 

CRATE consider Transformer as a model to compress 

and transform distributions iteratively. Specifically, the 

attention module is used to transform the distribution 

while the forward-feedback module is used to compress 

the distribution [45]. There are several key features in 

CRATE.  

Sparse Rate Reduction. CRATE employs SRR to 

measure the quality of learned representations. This 

involves minimizing the number of bits required to 

encode data while promoting sparsity, leading to more 

compact and interpretable features [45]. 

Iterative Optimization: Each layer of the CRATE model 

performs a step of the optimization algorithm, akin to 

proximal gradient descent, to improve data compression 

and sparsification. This method ensures that each layer 

contributes to refining the data representation [45]. 

Mathematical Interpretability. Unlike traditional 

black-box models, CRATE provides a clear 

mathematical framework, making each layer's function 

and the overall model architecture interpretable. This 

transparency helps in understanding how the model 

processes and transforms data [45]. 

Competitive Performance. Despite being simpler than 

conventional transformers like ViT, BERT, and GPT-2, 

CRATE has shown competitive performance across 

various tasks, including image classification, 

unsupervised masked completion, and self-supervised 

feature learning. It achieves similar accuracy with fewer 

parameters, demonstrating its efficiency [45]. 

Scalability and Flexibility. CRATE has proven 

effective on large-scale real-world datasets, both 

supervised and unsupervised, and in various applications 

such as image and text data. This versatility highlights its 

potential as a robust foundation model in diverse AI tasks 

[45]. 

CRATE represents a significant advancement in the 

development of white-box transformers, combining 

efficiency, interpretability, and competitive performance. 

Its focus on data compression and sparsification, coupled 

with a robust mathematical foundation, positions it as a 

promising alternative to traditional transformer models in 

various AI applications. 

D. Similar advanced architectures 

As the understanding of Transformer increases, 

researchers are also trying to develop other advanced 

models similar to Transformer, such as Mamba, 

Diffusion model and Diffusion Transformer.  

Mamba. Mamba is a State Space Model (SSM) 

developed to enhance the efficiency of Transformer. 

Mamba optimized Transformer’s self-attention 

mechanism to a near-linear computational complexity. 

Mamba can model long-sequence dependencies like 

Transformer but with near-linear computational cost, 

leading to significantly higher speed and efficiency. 

Mamba does not utilize the same attention mechanism 

with Transformer. Its core concept is based on 

compressing continuous signals using orthogonal 

polynomials [46], with the "state space" referring to the 

space constructed from dimensions corresponding to the 

orthogonal polynomial bases. This gives Mamba an 

advantage in modeling continuous data, as all orthogonal 

polynomial bases are continuous [47] [48] [49]. 

Since 2024, there has been increasing interest in using 

Mamba for time series analysis. Researchers have 

published approximately four papers on this topic, 

including "Is Mamba Effective for Time Series 

Forecasting?" [50], "TimeMachine: A Time Series is 

Worth 4 Mambas for Long-term Forecasting" [51], 

"MambaStock: Selective State Space Model for Stock 

Prediction" [52], and "SiMBA: Simplified Mamba-Based 

Architecture for Vision and Multivariate Time Series" 

[53]. These studies consistently demonstrate that Mamba 

outperforms previous models in both accuracy and 

efficiency for time series analysis. 

Diffusion model (DM). As a generative model, DM 

creates high-quality data samples by reversing a diffusion 

process. They start with noise and iteratively denoise the 

data through a sequence of steps. Each step refines the 

data by conditioning on the previous one, making the 

process gradual and controlled [54]. 

From the perspective of generative model, DM shows 

great advantage over Transformer in transforming and 

compressing distribution, capturing fine details [55], 

training stability [56], handling complex data distribution 

[56], computational cost [1] and data reliance [57]. DM 

offers significant advantages over Transformers in 

generating images, primarily due to their iterative 

refinement process, ability to capture fine details, 

training stability, and effectiveness in handling complex 
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data distributions. These strengths make DM a superior 

choice for high-quality and detailed image generation. 

As shown in Table 2, Mamba not only has the advantages 

of Transformer but is more efficient and has a more 

obvious advantage in processing continuous data. DM is 

an excellent generative model, especially when facing 

high-dimensional data such as images, it surpasses other 

models in both efficiency and accuracy. This is because 

DM has an unparalleled advantage in grasping the 

distribution of images. This is why people try to combine 

Transformer with DM to give birth to Diffusion 

Transformer. 

IV. SUMMARY 

 Transformers have revolutionized machine learning, 

particularly in natural language processing and computer 

vision, due to their powerful attention mechanisms and 

scalability. However, the complexity of Transformer 

architectures poses challenges in understanding their 

internal workings. This review paper provides a 

comprehensive survey of recent advancements aimed at 

Table 2: Comparison between Transformer and its surpassers 

Architecture 
Transformer 
[42][43][44][45] 

Mamba  
[46][47][48][53] 

Diffusion Model 
[54][55][57]  

Diffusion Transformer 
[58] 

Basic Structure 

Self-attention layers, 

feed-forward neural 

networks, positional 

encoding 

Combines self-attention 

mechanisms with 

hierarchical design, 

focusing on efficiency 

Sequential process of 

adding and removing 

noise to generate data 

Integrates diffusion 

processes with self-

attention mechanisms for 

sequential data 

Mechanism 
Self-attention to capture 

dependencies across 

entire sequences 

Efficient attention 

mechanisms, designed to 

optimize speed and 

resource usage 

Stepwise diffusion, 

starting from noise to 

create or denoise 

samples 

Combines diffusion 

(probabilistic modeling) 

with attention for efficient 

data generation 

Parallelization 
Highly parallelizable, 

processes entire 

sequences at once 

Designed for better 

parallel processing and 

scalability 

Not inherently 

parallel; sequential 

processing for 

diffusion steps 

Combines parallelizable 

elements of Transformers 

with sequential steps of 

diffusion 

Applications 
NLP, Computer Vision, 

Time Series, 

Multimodal tasks 

Optimized for fast 

processing of large-scale 

data 

Image and data 

generation, noise 

removal, generative 

tasks 

Advanced generative tasks, 

combining benefits of 

Transformers and Diffusion 

Models 

Long-term 

Dependencies 

Efficiently captures 

long-term dependencies 

via self-attention 

Improved handling of 

long-term dependencies 

Effective for 

structured data but 

not designed for 

dependencies 

Captures dependencies 

while maintaining 

generative quality through 

diffusion 

Advantages 

Can handle long-term 

dependencies 

efficiently, 

Highly parallelizable, 

Scales well with large 

datasets, 

Optimized for speed and 

resource efficiency, 

Scalable for large tasks, 

Reduced computational 

cost 

Effective for 

generating high-

quality data, 

Excellent at capturing 

fine-grained details 

Combines strengths of both 

Transformer and Diffusion 

models, 

Maintains generative power 

with efficient sequence 

processing 

Disadvantages 

Requires significant 

computational 

resources, 

Can be data-intensive, 

May need large datasets 

for effective training 

Newer model with less 

extensive testing across 

diverse tasks, 

May need fine-tuning for 

specific use cases 

Sequential nature 

slows down training 

and sampling, 

Resource-intensive 

for high-quality 

output 

Combines complexity of 

both Transformers and 

Diffusion, making it more 

resource-intensive 

Excels In 

NLP (e.g., GPT, 

BERT), 

Computer Vision (e.g., 

Vision Transformer), 

Time Series (e.g., 

Informer) 

Optimized for large-scale 

data processing, 

Applications requiring 

fast attention 

computation, 

Potential use in NLP and 

large data tasks 

Image Generation 

(e.g., DALL·E 2) 

Speech Synthesis, 

Data Denoising, 

Generative Art 

Complex generative tasks, 

Data generation across 

multiple domains (e.g., 

multimodal tasks), 

Advanced language 

modeling combined with 

generation 
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demystifying the "black-box" nature of Transformers. 

We systematically analyze methodologies for 

interpreting attention patterns, hidden representations, 

and decision-making processes within Transformers, 

including visualization techniques, attribution methods, 

and probing tasks. 

Additionally, we explore recent progress in developing 

Transformer-like models based on similar or very 

different mechanisms and architectures, which offer 

competitive performance and simpler interpretability 

compared to Transformers. These models leverage the 

strengths of their respective architectures, such as the 

efficiency of convolutions and the temporal modeling 

capabilities of RNNs, to achieve state-of-the-art results in 

various tasks. 

By integrating achievements in explaining and advancing 

Transformer architectures, this paper serves as a valuable 

resource for researchers. It aims to enhance the 

performance, transparency, and efficiency of 

Transformers in various applications and to inspire the 

development of innovative models that extend beyond 

the conventional Transformer frameworks. 
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