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Abstract— A key task in clinical EEG interpretation is to
classify a recording or session as normal or abnormal.
In machine learning approaches to this task, recordings
are typically divided into shorter windows for practical
reasons, and these windows inherit the label of their
parent recording. We hypothesised that window labels
derived in this manner can be misleading – for ex-
ample, windows without evident abnormalities can be
labelled ‘abnormal’ – disrupting the learning process
and degrading performance. We explored two separa-
ble approaches to mitigate this problem: increasing the
window length and introducing a second-stage model to
arbitrate between the window-specific predictions within
a recording. Evaluating these methods on the Temple
University Hospital Abnormal EEG Corpus, we signif-
icantly improved state-of-the-art average accuracy from
89.8 percent to 93.3 percent. This result defies previous es-
timates of the upper limit for performance on this dataset
and represents a major step towards clinical translation
of machine learning approaches to this problem. Our
study includes electroencephalography (EEG) datasets col-
lected from https://isip.piconepress.com/projects/tuh\_eeg/.
Our code is shared on https://github.com/zhuyixuan1997/
EEGScopeAndArbitration.

Keywords— electroencephalogram, abnormality detection,
deep learning.

I. INTRODUCTION

I-A. Background

Electroencephalography (EEG) recordings are used for
the diagnosis and monitoring of a wide range of neuro-
logical conditions. Classification of EEG recordings as
normal or abnormal is an essential task in their clinical
interpretation. Substantial research has been conducted
on the application of machine learning to this task [1–9].

Recent work in this field largely makes use of the
Temple University Hospital Abnormal EEG Corpus
(TUAB) [10] for training and evaluation. TUAB is a
labelled subset of the Temple University Hospital EEG
Corpus (TUEG) [11].

Since the presentation of the Deep4 convolutional neural
network in 2017 [1] there have been only modest
improvements in the accuracy of machine learning
approaches to this problem, as measured on TUAB:
from 85.4 percent (Deep4) up to 89.8 percent [6] – see
Table 1 for further detail. Gemein et al. [5] proposed
that there may be an upper limit of around 90 percent
accuracy in this task, based on known values of inter-

rater agreement between human experts in conventional
clinical practice.

A notable but little-discussed difference between con-
ventional clinical practice and virtually all deep learn-
ing approaches is that in clinical practice, the label
of normal/abnormal is applied to a full EEG session
(i.e. a single clinical visit). In clinical practice, ex-
perts judge whether the patient exhibits abnormal brain
activity based on all the recordings in the session,
effectively resulting in a single label for that session.
In most recent machine learning approaches, a typical
full recording cannot be directly input into the model
due to computational constraints – a large input vector
length necessitates a large number of parameters in the
model. Instead, the recording is divided into smaller
windows, with the added advantage of increasing the
total number of examples available for training. For
training purposes, each window inherits the label of
its recording, while evaluation is typically performed
on a per-recording basis by aggregating per-window
outputs from the classifier. We refer to this downstream
aggregation as ‘arbitration’.

Western et al. [13] noted that this inheritance of win-
dow/recording labels from broader session labels was
potentially confounding to the machine learning pro-
cess. For example, a session may be labelled as ‘ab-
normal’ based on several temporally isolated abnormal
graphoelements. Many windows in this session may
be completely free of abnormal activity, yet they will
carry ‘abnormal’ labels in the training process. These
labels are arguably false, depending on whether they
are considered to apply to the signal within the window
or to the wider session from which it is taken.

In this study, we introduce and evaluate two method-
ologies to tackle the aforementioned issue: extending

Table 1. Summary of state-of-the-art performance metrics for
different models applied to abnormal EEG classification

Model Accuracy Sensitivity Specificity
1D-CNN (T5-O1 channel)[12] 79.3 % 71.4 % 86.0 %
1D-CNN (F4-C4 channel)[12] 74.4 % 55.6 % 90.7 %

Deep4 [1] 85.4 % 75.1 % 94.1 %
TCN [5] 86.2 %

ChronoNet [9] 86.6 %
Alexnet[2] 87.3 % 78.6 % 94.7 %

VGG-16 [2] 86.6 % 77.8 % 94.0 %
Fusion Alexnet[8] 89.1 % 80.2 % 96.7 %

[6] 89.8 % 81.3 % 96.9 %
Proposed 93.3 % 92.0 % 92.9 %
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the window length, thereby mitigating the impact of
misleading window labels, and optimizing the arbitra-
tion step through machine learning. This research carries
three distinct advantages:

• It substantially mitigates the issue of misleading
labels.

• It improves the state-of-the-art performance on
the TUAB dataset by 3.5% accuracy as com-
pared to [6]. Additionally, this is achieved with-
out altering the decision threshold, effectively
addressing the issue of low sensitivity prevalent
in previous models.

• These methodologies bear minimal cost and
are largely compatible with most existing mod-
els and algorithms, providing a complementary
role in the broader context of the field.

Figure 1. Generic diagram of a typical deep learning approach
to clinical EEG classification, as used e.g. by [1]

II. METHOD

II-A. Data

TUEG [11] is a rich archive of over 30,000 clinical
EEG recordings collected at Temple University Hospital
(TUH) from 2002 – present, using the standard 10-
20 system of electrode placement. TUAB [10] is a
subset of 2993 recordings from TUEG that have been
labelled as normal/abnormal and divided into training
and evaluation sets. The training set contains 1371
normal sessions and 1346 abnormal sessions. The test
set contains 150 normal sessions and 126 abnormal
sessions. Also, only one file from each session was
included in this corpus. All our current results are
trained and tested on TUAB. Due to computational cost,
all experiments related to window length are carried

out on TUAB, including one-stage models, two-stage
models and window length. TUAB has already been
marked, so we use the original label and its original
test-training split. To compare the results with other
studies, we followed the pre-processing method in the
Deep4 article, which TCN [5] and Fusion Alexnet [8]
also used.

II-B. First-Stage Model

A recent study by [5] demonstrated that the Temporal
Convolutional Network (TCN) and Deep4 architectures
offer near-state-of-the-art performance on TUAB, so
we experimented with both of these as the first-stage
model. Both are composed of blocks with convolutional
and pooling layers. However, TCN replaces common
convolution with dilated convolution and introduces a
residual structure in the temporal block [14]. To achieve
baseline performance consistent with past studies, we
use the hyperparameters from [1] for Deep4 and from
[5] for TCN.

To explore whether our proposals are applicable to first-
stage architectures other than convolutional networks,
we also implemented a Vision Transformer (ViT) [15].
For simplicity, the majority of our experiments focussed
on Deep4 only. We use Deep4 with the 60s, 180s, 300s,
400s, and 600s windows to perform reproducibility
experiments on TUAB. For each Window length, five
experiments were performed to avoid the influence of
chance factors.

II-C. Second-Stage Models for Arbitration

As shown in Figure 1, the purpose of the arbitration
stage is to combine the per-window class probabilities
into a single classification of the EEG session. Previous
work does not discuss arbitration, although some form
of arbitration is inevitable where models are for trained
on windows and evaluated on a per-recording basis
(e.g. [1, 5]). When looking through the code of Deep4
[1], we found that they used the ‘Mean’ method to
integrate the results of windows. In some studies based
on time-frequency images, they use a method, such as
the Fourier transform[8], to freely choose the size of the
image, thus eliminating the need for windowing.

Hence we employ ‘Mean’ as a baseline arbitration
model. As alternatives, we explore several implementa-
tions of multi-layer perceptrons as the arbitration model.
These are distinguished from each other by the pre-
processing of the input data (per-window scores) and
the specific architecture used. The input pre-processing
methods considered are as follows:

Raw: As shown in Figure 2, this approach inputs all
the results in each recording directly(‘Raw’). Since
the number of windows in each recording is different,
padding 0 at the end is required for less than 20
windows data. The value of 20 is chosen here to reflect
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the approach of [1, 5], which used 1-minute windows
and a maximum of 20 minutes per recording.

Histogram: Being intended as a flexible approach to
handling variations in recording length, a histogram (2)
was calculated from the per-window scores. The range
of potential per-window abnormality scores (0-1) was
divided into ten equal-width bins. As shown in Figure
2, the input to our model is represented as a histogram
vector, where each element of the vector corresponds to
the height of a histogram bin. This histogram captures
the distribution of anomaly scores, which range from 0
to 1, across all windows in a recording. For instance,
if we have a vector of length 10, we segment the 0-1
range into ten equal intervals, such as 0-0.1, 0.1-0.2, and
so on. Each entry in the vector then reflects the count
of windows that fall within its corresponding interval.
As an example, for a recording with window anomaly
scores of 0.8, 0.7, 0.3, and 0.3, the resulting histogram
vector would be [0, 0, 0, 2, 0, 0, 0, 1, 1, 0].

Hybrid: Additionally, we considered a hybrid of the
‘Raw’ and ‘Histogram’ methods. As shown in Figure
3, in this approach, the ‘Raw’ and ‘Histogram’ input
forms are concatenated.

The architecture of the arbitration models we propose is
a fully-connected layer followed by a softmax layer. We
experimented with multi-layer perceptrons of different
depths (from 1 layer to 4 layers), the hidden layers of
different lengths (from 5 to 20), convolutional layers
instead of fully connected layers, activation functions
(RELU, ELU, GELU), but these parameters were found
not to significantly influence performance.

For each arbitration model architecture and hyperparam-
eter setting, we conduct five experiments on the results
of each first-stage model experiment. So, when we con-
sider the two-stage model as a whole, we run 5×5= 25
experiments for each architecture and hyperparameter
setting.

II-D. Evaluation Method

We focus on accuracy as the most commonly used
metric in the preceding reference studies we com-
pare against. Our analysis of sensitivity and specificity
provides more detailed insight. We have considered
alternatives such as F1 score and ROC. F1 is valuable
for unbalanced dataset but provides no additional insight
for a well-balanced dataset such as we have used. We
did not incorporate the AUC and ROC primarily due to
space constraints.

III. RESULTS

III-A. Performance of Our Two-Stage Model

As shown in Figure 4 and 5, all our proposed machine
learning arbitration methods outperform the baseline

methods (No arbitration’ and Mean’), regardless of
window length. The highest average accuracy (25 ex-
periments) for the whole two-stage model achieved by
any approach was 93.3%, while the highest average
accuracy for a single instance of the first-stage model (5
experiments) was 96.2%, both achieved by the ‘Hybrid’
approach with a window length of 600 s.

When employing a batch size of 64 for the second-stage
model (without forcibly increasing the batch size to
enhance computation speed), the time cost for a single
training session is approximately 2.3 seconds. This
provides an insight into the efficiency of our method
in terms of computational demands.

In addition, from Figure 5, we can find that the arbi-
tration stage and increased window length both greatly
improve the sensitivity of the model with relatively little
compromise in specificity.

III-B. Effect of Window Length

As shown in Figure 5, both the performance of the
one-stage model (‘No arbitration’) and the two-stage
approaches gets better as the window length increases,

Figure 2. ‘Raw’ and ‘Histogram’ pre-processing for the arbi-
tration model. Each small square in ‘Raw’ is the output of the
first-stage model (probability of ‘abnormal’) for one window.
In this example there are 16 windows in the recording. In
the general case, since we use the data between 1 and 21
minutes in a recording at most, a recording contains at most
20 windows with a length of 1 minute. When there are fewer
than 20, we pad zero at the end. Then we count the ‘Raw’
into a histogram of ten equal bins across the range 0-10.
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Figure 3. ‘Hybrid’ pre-processing for the arbitration model.

(a) 60 s window length

(b) 600 s window length

Figure 4. Performance of different arbitration models using
window lengths of (a) 60 s and (b) 600 s. Points with the
same marker shape come from the same instance of the first-
stage model. The dashed lines represent the mean for each
arbitration method.

although the performance is not strictly monotonically
increasing; all models have the worst performance at 60
s and the best performance at 600 s. For the effect on
sensitivity and specificity, we can see similar effects to
the two-stage model.

III-C. The Search for the Arbitration Model Architec-
ture

As shown in Table 2, we examined the effect of hidden
layer depth and length on the performance of the
arbitration model. The results show that they have no
significant impact on the model performance, although

(a) accuracy

(b) sensitivity

(c) specificity

Figure 5. Effect of window length on (a) accuracy, (b) sen-
sitivity, and (c) specificity. Note that the accuracy of the
‘no_arbitration’ approach is calculated across all windows
(4340 ≤ N ≤ 57482, depending on window length), whereas
the accuracy of the arbitration models is calculated across all
recordings (N = 2993).

when the model depth is greater than or equal to three,
the model is hard to train. (When the model parameters
are initialised in a high loss position, the model will
be difficult to train, that is, maintaining a high loss,
although when it is initially in a relatively low loss
position, the model can reach the same performance as
the shallower architectures.). We also experimented with
varying the activation function (RELU [16], ELU[17],
GELU[18]), but the results show that they did not
affect the model performance substantially. Therefore,
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we finally chose to use a simple fully-connected layer
and a SoftMax layer to form our model to pursue the
optimisation of computational efficiency.

IV. DISCUSSION

IV-A. Window Length (Scope)

As noted in Section I-A, it can be argued that EEG
window labels inherited from the full recording/session
label are often misleading. The smaller the window, the
less it represents the wider recording. In particular, a
single transient abnormal event may be sufficient for
a recording to be labelled as ‘abnormal’ even when
the majority of the windows contain no discernible
abnormality. Hence we hypothesised that increasing the
window length would improve training (of the first stage
model) by making the window labels more accurate.

Figure 5 shows that the performance of the one-stage
model (‘no_arbitration’) roughly increases with increas-
ing window length, which confirms that hypothesis.
For a window length of 600 s, the accuracy increases
by about 5 percentage points compared with the 60 s
window. The performance of the two-stage models show
similar trends.

IV-B. The Second-Stage Model (Arbitration)

As seen in Figures 4 and 5, all our proposed variants
of the arbitration model improve accuracy substantially
compared with the one-stage model (‘No arbitration’)
and baseline arbitration model (‘Mean’). ‘Mean’ offers
minor improvement over ‘No arbitration’: less than
two percentage points. As a simple non-parametric
algorithm, ‘Mean’ can mitigate occasional anomalous
outputs but cannot learn more complex or finely tuned
decisions. All neural network arbitration models outper-
formed the baseline methods, confirming our hypothe-
sis.

As illustrated in Figure 5, it is evident that with the em-
ployment of a substantial temporal window (specifically,
one that is greater than or equal to 180 seconds in dura-
tion), the Hybrid model consistently outperforms both
the Histogram and Raw models in terms of Accuracy.
The intrinsic advantage of the hybrid model over the
histogram model essentially mirrors the advantage of
the raw approach over the histogram approach. During
the process of converting raw data into a histogram,

Table 2. The effect of hidden layer depth and length on the
performance (Accuracy) of the arbitration model

Hidden layer depth
Hidden layer length

5 10 15 20
0 0.9330 0.9330 0.9330 0.9330
1 0.9333 0.9342 0.9334 0.9339
2 0.9176 0.9334 0.9328 0.9325
3 0.6686 0.6732 0.6102 0.7045

all positional information is lost. A hybrid approach is
shown to be superior in preserving such crucial details.

Comparing panels in Figure 5 indicates that the im-
provements in accuracy (both for increased window
length and the proposed arbitration models) are un-
derpinned by improved sensitivity with relatively little
compromise, if any, in specificity. This supports our
supposition that, when many small windows inherit an
abnormal label from their parent recording, many of
the resulting labels are misleading; the window many
contain no evident abnormalities, leading to increased
‘false negative’ results.

As discussed in the Appendix, we experimented with
applying the arbitration models to alternative first case
architectures. Similar benefits were observed when us-
ing a Vision Transformer (ViT), but not when using a
Temporal Convolutional Network (TCN).

Figure 4 and 5 show that machine learning arbitration
models outperform the baseline methods across all
window lengths in our experiments, although the effect
is less pronounced at a window length of 60 s.

Although evidence of arbitration stages can be found
in the codebase of previous studies such as that of
[1], the concept and the selection of the model are
not discussed, suggesting they were not considered to
be important. We have proved that using a machine
learning arbitration method can substantially exceed the
baseline performance of the same model.

In some other approaches, such as that of [8], arbitration
of classifier outputs is not applicable because a single
model fuses features across all windows to achieve a
single classifier output for the recording. This approach
has sound justification, but the increased complexity
of the first stage model poses a challenge for optimi-
sation. The results we present using relatively simple
architectures demonstrate substantially greater accuracy.
This may simply reflect the ease of achieving relatively
thorough optimisation for our approach. Alternatively,
the arbitration approach may present some distinct ad-
vantage in terms of robustness to transient non-clinical
anomalies, which might dominate the decision in an
architecture with upstream fusion of features across
windows. Confirmation of an explanation for the perfor-
mance differences between these methods would require
a more extensive case-by-case comparison.

IV-C. Label Quality and Performance Ceilings of
Machine-Learning-Based Models on EEG binary
Classification Problems

Gemein et al. [5] suggested that EEG pathology de-
coding accuracies observed [1, 9, 19] at approximately
86% were approaching the theoretical optimum im-
posed by label noise. This suggestion was based on
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the observation that inter-rater agreement in the bi-
nary classification of EEGs into pathological and non-
pathological has been reported as 86–88% [20, 21],
although these scores were based on EEG ratings of
only two neurologists. In a more recent, broader study,
Beuchat et al. [22] found interrater agreement to be even
lower, 82−86%. However, our study demonstrated that
the performance of machine learning-based models in
EEG binary classification could be much greater than
86%. Although different raters may give different labels
to the same EEG signal, a machine learning model can
learn to replicate the judgement of one rater (or team of
raters, as used in the curation of TUAB [10]). Now that
machine learning approaches can, in some sense, match
human expert performance in this task, future work
should include the curation of datasets that combine a
diverse range of human expert judgements and/or data
on clinical outcomes to optimise label accuracy.

IV-D. Future Work

In this study, we explored a limited range of arbitration
model architectures to demonstrate the importance of
arbitration in windowed EEG classifiers. In immediate
future work, we will explore a wider range of arbitration
models, such as random forests. Arguably, the inputs
to the arbitration model can be thought of as tabular
data. Random forests are frequently found to outperform
neural networks on tabular data.

It is likely that our pre-processing of the first-stage
outputs can also be optimised further. We will explore
the use of overlapping windows to increase the resolu-
tion of information available to the arbitration model.
Further enhancement may be achieved by optimising
the binning of the ‘Histogram’ pre-processing. Rather
than using a simple linear spacing of windows, it may
be more effective to use narrower bins in ranges with
a higher density of samples and wider bins (coarser
resolution) elsewhere.

We will also extend the application of arbitration to
cases in which the classification task spans multiple
recordings from a single clinical visit, using the wider
TUEG dataset in combination with automated labelling
based on the text reports [13].

In addition to efforts to improve the arbitration stage,
we will continue to explore alternative first-stage ar-
chitectures. Figure 4a, 6a, and 6b indicate the degree
of improvement achieved by arbitration varies signifi-
cantly between different first-stage architectures. It is
possible that the best first-stage architecture for use
with arbitration is not the same as the best single-stage
architecture (for per-window classification, i.e. ‘No ar-
bitration’). Furthermore, as we move on from TUAB to
the larger TUEG dataset, we may find that data-hungry
architectures such as transformers may outperform those

that have achieved previous state-of-the-art results on
TUAB.

The arbitration principle is likely to be transferable to
other time-series applications where a holistic classifica-
tion is to be applied to a windowed signal. For example,
in ECG arrhythmia detection, end-to-end training of
architectures with densely connected output layers is
common [23], but we are not aware of other cases
where this final classification layer is trained sepa-
rately. Our results suggest that this approach is an
effective way to increase the input scope of the system
with minimal added computational expense. For cardiac
electrophysiology, enabling the application of machine
learning classifiers to holistic analysis of long-term
Holter recordings could be important for the detection
of subtle abnormalities that cannot be discerned from
shorter signals.

V. CONCLUSIONS

Our proposed approach, combining increased window
length and a machine learning arbitration stage, sub-
stantially improved upon previous state-of-the-art per-
formance in clinical EEG classification. The results
support our premise that the inheritance of window
labels from recording labels compromised the sensitivity
of previous state-of-the-art solutions. Given the impor-
tance of sensitivity for promising applications such as
routine screening or accelerating the workflow of human
EEG interpreters, this improvement presented here is
an important step towards the broader translation of
machine learning EEG classifiers into clinical practice.
The principles may also be transferable to other time-
series classification problems.

ACKNOWLEDGEMENTS

This work was supported by a PhD studentship funded
by Southmead Hospital Charity and the University of
the West of England.

REFERENCES

[1] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer,
M. Glasstetter, K. Eggensperger, M. Tangermann, F. Hutter,
W. Burgard, and T. Ball, “Deep learning with convolutional
neural networks for eeg decoding and visualization,” Human
brain mapping, vol. 38, no. 11, pp. 5391–5420, 2017.

[2] S. U. Amin, M. S. Hossain, G. Muhammad, M. Alhussein,
and M. A. Rahman, “Cognitive smart healthcare for pathology
detection and monitoring,” IEEE Access, vol. 7, pp. 10 745–
10 753, 2019.

[3] H. Banville, O. Chehab, A. Hyvärinen, D.-A. Engemann, and
A. Gramfort, “Uncovering the structure of clinical eeg signals
with self-supervised learning,” Journal of Neural Engineering,
vol. 18, no. 4, p. 046020, 2021.

[4] H. Banville, S. U. Wood, C. Aimone, D.-A. Engemann, and
A. Gramfort, “Robust learning from corrupted eeg with dynamic
spatial filtering,” NeuroImage, vol. 251, p. 118994, 2022.

[5] L. A. Gemein, R. T. Schirrmeister, P. Chrabąszcz, D. Wilson,
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APPENDIX

Results on Alternative First-Stage Architectures

As shown in Figure 6, we also explored the effect
of the arbitration models on two alternative first-stage
architectures: a temporal convolutional networks (TCN)
[5, 14] and vision transformer (ViT) [15]. Full details
of the implementation and hyperparameter tuning are
beyond the scope of this paper, but the implementations
are available in our code repository. We present the
results briefly here to demonstrate the extent to which
our method is transferrable to other first-stage models.

For TCN, the performance of the proposed arbitration
models is not substantially different from the baseline
(‘Mean’). For ViT, our proposed arbitration models can
provide about two percentage points of performance
improvement. Based on the present evidence, the pro-
posed methods appear to offer a safe improvement in
the sense that no cases were observed in which accuracy
was substantially worsened. We will test the effect of
the arbitration models on a wider selection of first-stage
models as well as longer window lengths in future work.

(a) TCN

(b) ViT

Figure 6. Performance of different arbitration methods using
(a) TCN and (b) ViT as the first-stage architecture with a
window length of 60 s.
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