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Abstract— This research focuses on utilizing convolutional
neural networks (CNNs) to identify biomarkers for major
depressive disorder (MDD) in children and adolescents,
compared to age-matched healthy individuals. We an-
alyzed resting-state, eyes-closed electroencephalography
(EEG) data, pre-processed and segmented by frequency
bands and regions of interest (ROI). Several resting-
state functional connectivity (rsFC) measurements were
computed using a multi-variate auto-regressive (MVAR)
model. The best-performing CNN model was further
analyzed to understand its decision-making process and to
identify relevant biomarkers. Our approach achieved an
F1-Score of 0.790 and a Matthews correlation coefficient
(MCC) of 0.745 using the full-frequency partial directed
coherence (ffPDC) rsFC measurement. Among the con-
nectivity metrics, partial directed coherence (PDC) out-
performed coherence, partial coherence, and the directed
transfer function (DTF). Additionally, the full-frequency
versions of PDC and DTF demonstrated better perfor-
mance compared to their standard and variant forms.
These results highlight the potential of CNN models and
EEG-derived biomarkers in advancing the understanding
and diagnosis of MDD in children and adolescents.

Keywords— Electroencephalography, Children, Adolescents,
Major Depressive Disorder, Resting-state Functional Con-
nectivity, MVARICA, CNN, Deep Learning.

I. INTRODUCTION

Early diagnosis of various forms of depression has
garnered significant attention from the scientific com-
munity, as more than 350 million people worldwide
suffer from this multifactorial psychiatric disorder. De-
pression is classified in the Diagnostic and Statisti-
cal Manual of Mental Disorders (DSM-5, 2013) into
several categories, including major depressive disor-
der (MDD), postpartum depression, disruptive mood
dysregulation disorder, persistent depressive disorder
(dysthymia), premenstrual dysphoric disorder, and de-
pressive disorder due to another medical condition. This
study focuses specifically on MDD, a more severe form
of depression that, unlike typical depressive episodes,
chronically and significantly impacts patients’ daily
functioning. As a unipolar and chronic disorder, MDD
necessitates prolonged clinical management and tailored
therapeutic approaches. Characterized by persistent low
mood, feelings of worthlessness, diminished interest,
cognitive impairment, vegetative symptoms, excessive
guilt, anhedonia, disrupted sleep, fatigue, and suicidal

ideation, MDD represents a complex and heterogeneous
psychiatric condition [1]. During the last two decades,
numerous algorithms have been used by researchers
to identify neuro-biomarkers of MDD to improve the
diagnostic models and tools as a single stand or in
combination with psychiatric evaluation of patients’
state which is focused on reported symptoms, events,
occurrences, and psychological assessments [2]. The
current research concentrates purely on the classification
of MDD and the comparison with healthy participants.
This aligns with our prior studies attempting to improve
classification-based models among children and adoles-
cents suffering from MDD [3–5]. Comprehending the
biomarkers associated with MDD holds great signif-
icance in diagnosing and treating this condition, and
medical specialists can use that as a complementary or
confirmatory method for their research and its future
applications for diagnostic purposes [3].

EEG is a non-invasive neuroimaging technique known
for its high temporal resolution, which has been exten-
sively employed to develop diagnostic tools for a wide
array of neurological, developmental, and psychologi-
cal disorders. Its ability to capture real-time electrical
activity in the brain makes EEG particularly valuable in
research aimed at understanding and diagnosing these
conditions [6–9]. It is possible to distinguish between
healthy brain activities and abnormal activities under
specific conditions (at rest, eye closed, eye open, etc.)
[10].

II. BACKGROUND

II-A. Resting-state Functional Connectivity in Major
Depressive Disorder

In recent years, studies focused on the analysis of
resting-state functional connectivity (rsFC) using EEG
to uncover how depression affects the brain network
in patients diagnosed with depression ([1]; [11]; [12];
[13]). rsFC represents an innovative approach in neu-
ropsychiatric research, offering a dynamic perspective
on the brain’s functional networks during rest periods.
Unlike traditional EEG analysis focusing on isolated
brain regions or specific event-related potentials, rsFC
investigates the temporal synchronization of neural ac-
tivity across various brain areas. This approach provides
valuable insights into the intrinsic connectivity networks
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that may be disrupted in MDD. By revealing patterns
of hypo- or hyper-connectivity within these networks,
rsFC enhances our understanding of the complex neural
underpinnings of MDD, aiding in identifying poten-
tial EEG biomarkers that differentiate individuals with
MDD from healthy controls. This method deepens our
comprehension of MDD pathophysiology and holds
promise for improving diagnostic accuracy and guiding
personalized treatment interventions.

In this context, an earlier study by [14] found that
increased rsFC in the alpha frequency band is asso-
ciated with depressive symptoms, particularly in the
frontal, posterior, and left hemisphere regions. Addi-
tionally, heightened rsFC in theta activity was linked to
functional connections within the frontal brain regions.
Their findings indicated that the right frontal and left
posterior areas are the most affected in individuals with
depression compared to healthy controls. Similarly, a
study by [1] reported increased beta band connectivity
in the 12.5-18 Hz and 18.5-21 Hz ranges between the
default mode network and the fronto-parietal network.
Their results suggested that increased high-frequency
connectivity between these networks serves as a neural
marker associated with a more recurrent course of
illness. Despite numerous studies in this area, including
our previous research, there remains a lack of a reliable,
multidimensional, and optimized model for accurately
detecting abnormal biomarkers that distinguish MDD
from healthy individuals, particularly in children and
adolescents. Inconsistencies in the literature —such as
variations in analytical approaches, participant ages, and
sample sizes— have prompted us to explore the use of
rsFC combined with deep learning models to classify
both normal and abnormal neuro-biomarkers utilizing
the same EEG datasets from children and adolescents
diagnosed with MDD. Our findings of abnormal rsFC
in specific frequency bands contribute to a better under-
standing of the potential neurophysiological origins of
disrupted functional connectivity in MDD. Identifying
these abnormalities will enhance our comprehension
of the disorder and may inform future diagnostic and
clinical applications.

III. METRIAL AND METHODS

III-A. Dataset

This study involved 214 datasets of children and ado-
lescents aged 5 to 21, with 44 diagnosed with MDD
and 170 classified as healthy (labeled HBN). The data
was obtained from the publicly available Healthy Brain
Network (HBN) dataset [15]. Resting-state data under
closed eyes conditions were chosen for this study,
recorded at a sampling rate of 500 Hz and a bandpass
of 0.1 to 100 Hz using a 128-channel EEG HydroCel
Geodesic system by Electrical Geodesics Inc. However,
after excluding outer channels, only 109 channels were

retained. The EEG electrode distribution on the scalp is
depicted in figure 1.

III-B. Pre-processing

The data pre-processing was divided into two main
stages: EEG data pre-processing and the computation of
the connectivity model. The EEG pre-processing steps
closely followed the methodology described in [3], up to
the Independent Component Analysis (ICA) stage. The
EEG pre-processing starts with the prep pipeline [16],
which involves detecting bad channels and subsequently
interpolating them. A bandpass filter (1-70 Hz) was
applied, followed by a 60 Hz notch filter to remove
power line artifacts. The data was then resampled at 256
Hz and referenced using the average across channels.
ICA was applied to identify and remove bad artifacts
before further analysis. The EEG data was segmented
into non-overlapping chunks of 4000 samples (approx-
imately 15.6 seconds), and for each segment, a Multi-
Variate Auto-Regressive ICA (MVARICA) model [17]
was fitted.

The decision to use larger segmentation thresholds, as
opposed to the more conventional 2-4 second segments,
was driven by several key factors. First, longer segments
provide more data for fitting the connectivity model, im-
proving its robustness. Second, it allows for a better res-
olution and focus on lower frequency bands (1-30 Hz)
[18]. Another important consideration is the use of non-
overlapping segments. While overlapping segments may
capture transient patterns in connectivity measurements,
this effect is mitigated by extending the segment length.
The choice of non-overlapping segments is crucial for
training the CNN model because overlapping segments
can produce correlated or dependent connectivity mea-
surements [19, 20], which impairs the model’s ability to
generalize. This is especially problematic when the data
is imbalanced, as it can lead to overfitting. Additionally,
CNNs are designed to learn hierarchical features from
the data [21], and highly correlated inputs may hinder

Figure 1. Channel location of 128-channels in the HBN
dataset
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the model’s ability to identify distinct biomarkers, such
as those related to MDD.

III-C. Resting-state Functional Connectivity

The connectivity model’s hyperparameters were first
optimized. To achieve this, the segmented EEG data was
further divided into one-second epochs, resulting in 15
epochs per segment. Model order parameter, which is
the amount of data in the past (lags) used to predict
the current value in the time series data, was optimized
by minimizing the mean squared generalization error
using leave-one-out cross-validation (LOOCV) on the
epoched data. The optimization search for the model
order was in the range of 1 to 20. Additionally, the
delta ridge penalty parameter was optimized using the
bisection search method [22]. It is important to note that
this optimization process was conducted independently
for each EEG chunk, assuming that the EEG signal is
non-stationary. Once optimized, the MVARICA model
was fitted to the original EEG segments [17]. From
the fitted model, various connectivity measures were
computed [23]. These measures included coherence,
partial coherence, PDC, ffPDC, PDC factor, generalized
PDC (gPDC), DTF, full frequency DTF (ffDTF), direct
DTF (dDTF), and generalized DTF (gDTF), all of which
were computed between all channels in both directions.

• Coherence measures the statistical dependency
between signals, while partial coherence as-
sesses the linear time-invariant relationship be-
tween two signals.

• PDC identifies whether two signals are signifi-
cantly correlated, incorporating Granger causal-
ity to reveal directional influences between
channels or brain regions.

• ffPDC normalizes across all frequency bands,
unlike standard PDC, which is normalized per
frequency band. gPDC is a scale-invariant ver-
sion of PDC, making it resistant to static gain
effects [24].

• PDC Factor focuses on direct channel interac-
tions, excluding indirect effects.

• DTF estimates information flow from one chan-
nel to another, accounting for both amplitude
and phase shifts.

• ffDTF, dDTF and gDTF mirror in their relation-
ship to DTF, the relationship between ffPDC,
PDC Factor, and gPDC to PDC, respectively.

All connectivity measures were calculated with a fre-
quency resolution of 2500 samples, spanning the range
from 0 Hz to half the sampling rate (0-128 Hz). The
results were then divided into the following frequency

bands: Delta (1-4 Hz), Theta (4-8 Hz), Alpha (8-12
Hz), Beta (12-30 Hz), and Gamma (30-70 Hz). Each
connectivity measure was used to create an image, as
shown in Figure 2, where rows and columns correspond
to different EEG channels. The intersection of each
row and column represents the connectivity measure
between those channels. Channels were organized ac-
cording to specific regions of interest (FL, FR, TL, TR,
OL, OR, Center), and their respective rows and columns
were duplicated to represent the different frequency
bands, as illustrated in Figure 2.

The arrangement of images at the frequency level was
designed to group frequency bands identified in our
previous work as significant in MDD [3], grouped into
the upper-left corner, making it easier for the CNN to
spatially detect any MDD-specific biomarkers. At the
ROI level, the order of ROIs was based on their spatial
proximity in the brain, ensuring that the CNN could
leverage this anatomical organization to better identify
relevant patterns linked to MDD. This structured ap-
proach helps the model focus on both functionally and
spatially significant regions.

III-D. Architecture of CNN

The CNN model’s architecture is built upon the VGG16
network, with the top layers replaced by a global
average pooling layer. This was succeeded by two fully
connected layers, each containing 512 neurons activated
by ReLU. Subsequently, a dropout layer of 0.2 was
inserted, followed by another dense layer comprising
512 neurons activated by ReLU, further followed by a
decision-making layer with 1 neuron activated by Sig-
moid. The AdaBelief optimizer was employed [25], with
binary cross-entropy serving as the loss function. The
evaluation metrics employed were F1 score, Specificity,
Cohen Kappa, and MCC.

III-E. ROI analysis

Seven regions of interest (ROI) are identified, illustrated
in figure 3. To discern discrepancies in MDD and HBN
across different frequency bands, Class Activation Map
(CAM) [26] was deployed. CAM is a method used to

Figure 2. Example of input data of Partial Coherence con-
nectivity measurement for the CNN model, Where ROI C is
Center.
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interpret CNNs by generating a heatmap, which uses
the weight of the last convolutional layer weighted by
the importance of the class in the last prediction layer.

IV. EXPERIMENTAL RESULTS

IV-A. Setup

The training dataset was segmented, resulting in an
expanded dataset of up to 5840 samples (MDD + HBN)
for each connectivity measurement, with the RGB chan-
nels duplicated, except in the cases of coherence and
partial coherence, where one channel was chosen for the
imaginary values and two channels for the real values.
The training method was 5 K-fold cross-validation train-
ing. The fold split was based on subjects. Five different
models were trained for each fold. The training was
set to 100 epochs with early stopping triggered when
the F1-Score hit 0.8, batch size was set to 90, and
the learning rate was set to 0.000004. Before initiating
training, weights were added to each class to account
for the class imbalance. The weights were calculated in
each fold according to equation [1].

W j =
nsamples

nclasses.n jsamples
(1)

Wj is the weight of class j, nsamples is the total number of
samples used for training, nclasses is the total number of
classes, and n jsamples is the number of training samples
belonging to class j. Additionally, the training of the
CNN was done in Python 3.10.12, MNE 1.4.2, scot
0.2.1, Tensorflow 2.12.0, Keras 2.12.0, dask 2022.12.1,
scipy 1.10.1, and numpy 1.22.4.

IV-B. Results

Training results are shown in table 1. The best perfor-
mance was achieved by ffPDC, with an F1-Score of
0.790, MCC of 0.745, and Cohen’s Kappa of 0.732.
This was followed by ffDTF, which had an F1-Score of
0.746, MCC of 0.687, and Cohen’s Kappa of 0.673.
Among different PDC and DTF measurements, only
the full-frequency versions significantly improved test
scores, while other versions showed comparable results.
On the other hand, the CNN model failed to learn effec-

Figure 3. Region Of Interest (ROI)

tively with Coherence and Partial Coherence. Notably,
using only the real values for these metrics was more
effective than including the imaginary values.

Table 1. CNN testing score in each connectivity measurement

Connectivity
Measurement

F1
Scores Sensitivity Specificity MCC Cohen

Kappa
COH 0.525 0.675 0.790 0.399 0.379
Real COH 0.531 0.645 0.811 0.408 0.396
PC 0.584 0.698 0.767 0.477 0.445
Real PC 0.617 0.798 0.866 0.522 0.510
PDC 0.713 0.772 0.912 0.646 0.639
PDC Factor 0.690 0.701 0.924 0.619 0.614
ffPDC 0.790 0.901 0.914 0.745 0.732
gPDC 0.689 0.842 0.853 0.617 0.596
DTF 0.700 0.772 0.897 0.631 0.620
ffDTF 0.746 0.863 0.890 0.687 0.673
dDTF 0.715 0.751 0.917 0.649 0.641
gDTF 0.715 0.846 0.877 0.650 0.633

Analyzing the CAM heatmap of ffPDC in figure 4,
which achieved the highest test score, shows that the
model places similar attention on Delta, Theta, and
Beta frequency bands. The main focus is on ffPDC
interactions from FL to (FL, FR, TL, TR) and from
(TR, OL, OR, Center) to FL and from (TR, OL, OR) to
Center. In the frequency band containing all frequencies,
the emphasis is on interactions from Center to (FL, FR,
TL, TR) and from OR to (FL, FR, TL) and from OL to
(FL, FR) and from TR to FL. Notably, the alpha band
receives little attention, with the strongest interactions
from the Center to (FL, FR, TL, TR). In the gamma
band, significant focus is on interactions from (TR, OL,
OR, Center) to Center.

Figure 4. CAM heatmaps for ffPDC on both HBN and MDD
datasets

IV-C. Discussion

In our research, we implemented a CNN model to
identify MDD biomarkers using several connectivity
measurements computed from the MVARICA model.
The model achieved its best performance with the
ffPDC measurement, yielding an F1-Score of 0.790,
Specificity of 0.914, MCC of 0.745, and a Cohen’s
Kappa of 0.732. When comparing PDC and DTF, PDC
outperformed DTF in this study. Neither method is
inherently superior, but specific factors in our context
contributed to PDC’s better performance, particularly
the availability of training data for the MVARICA
model. Volume conduction, which affects DTF more
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prominently than PDC, is likely a contributing issue
delimited data does not exacerbate volume conduction,
it reduces the MVARICA model’s ability to correct for
it [27]. Similarly, with less data, the accuracy of the
MVARICA model decreases, and PDC is more robust
in such cases, making it degrade less than DTF [28].

Based on our findings, we recommend focusing on PDC
and PDC-related measurements when working with
machine learning models and the MVARICA model,
as they handle data scarcity better. Notably, ffPDC
and ffDTF performed better than other PDC and DTF
variants. This may be due to normalizing over the entire
frequency band, which preserves the relative relation-
ships between the electrodes and allows the CNN model
to detect meaningful differences more effectively. The
results of the classification in our study showcase an
improvement in the classification score of MDD using
rsFC, compared to previous work [3], which used time-
series EEG. Our study demonstrates the results of train-
ing the network on a relatively large dataset, focusing
on robustness and the model’s ability to generalize,
emphasized through the training method and the metrics
used. Our work deals with an imbalanced dataset and
maintains high sensitivity. We also performed a di-
rect comparison on varying connectivity measurements,
showcasing the best performing measurement, within
the context of MVAR models. Our findings demonstrate
that machine learning applied to resting-state EEG FC
patterns can objectively identify markers of MDD in
children and adolescents with high accuracy, consistent
with similar research conducted in adults, as shown in
table 2.

Previous studies on MDD classification using EEG
with rsFC and machine learning models have shown
varying degrees of success, as illustrated in Table 2. For
instance, the study [29] utilized a larger and balanced
dataset comprising 400 participants (200 healthy and
200 with MDD). They tested several models, including
Support Vector Machine (SVM), K-Nearest Neighbor
(K-NN), Conformal Kernel (CK), and CK-SVM. This
study incorporated coherence along with other features
like Power Spectrum Density (PSD). The best test
scores achieved were 0.840 for accuracy, 0.880 for
sensitivity, and 0.800 for specificity. Comparing the F1-
score of our work with the accuracy in study [29] is
challenging, particularly due to differences in dataset
balance. Nevertheless, our work achieved a higher sen-
sitivity (0.901) and specificity (0.914). The elevated
sensitivity is especially advantageous for clinical appli-
cations, as it ensures that more true positive cases are
correctly identified. This is particularly important when
the dataset is unbalanced towards negative (healthy)
cases.

Other studies, as in [30–33], have reported a wide
range of results. However, our study has utilized a

larger dataset, which generally improves the models’
robustness and ability to generalize [34]. Study [31]
used a Specific-General Functional Graph Convolutional
Network (SGFGCN) model, and study [33] employed
a CNN-based model. Both studies achieved significant
test scores (>0.95) and used 10-fold cross-validation
and sample-based data splitting. On the other hand, our
study uses subject-based data splitting, which tends to
be more robust and has a better generalization ability,
which is why sample-based splitting tends to achieve
higher test scores [35]. In study [30], multiple mod-
els were tested, including Random Forest (RF), SVM,
KNN, and Artificial Neural Network (ANN). The best-
performing model was RF, with a test score of 0.893
for accuracy and an f1-score of 0.917. These results
were achieved after training the models on specific
parameters extracted from a connectivity network and
only including biomarkers detected in a prior statistical
analysis on the network. For a proper comparison be-
tween our work and study [30], we would need to retrain
the network on the important biomarkers identified in
Figure 4, which could be included in future work.

Reflecting adult studies, our analysis of larger MDD
and HBN datasets showed encouraging accuracy levels,
highlighting the potential of FC patterns as a diagnos-
tic tool for MDD in the age range we focused on.
Given that MDD is fundamentally a network connec-
tivity disorder, models leveraging rsFC are expected to
outperform others, as suggested by the recent rise in
the use of coherence measures for classification model
development.

Table 2. Comprehensive comparison of existing state-of-the-
art methods using FC for MDD classification. NC: Normal
Control

Study Subject Channel Method Accuracy

[29] 200 MDD
and 200 NC 64 electrodes

Multi-
model
with rsFC

0.840

[30] 24 MDD and
24 NC 128 electrodes

Multi-
model
with rsFC

0.893

[31] 49 MDD and
49 NC

19-64
electrodes

CNN
with rsFC 0.972

[32] 24 MDD and
25 NC 32 electrodes RF with

rsFC 0.600

[33] 24 MDD and
29 NC 128 electrodes SGFGCN

with rsFC 0.972

Our
work

44 MDD and
170 NC 128 electrodes CNN

with rsFC

0.790
(f1-
score)

For future studies, we suggest testing these models
on larger, more balanced datasets to gain a clearer
understanding of the optimal connectivity measurements
for CNN-based classification. Additionally, exploring
different segmentation thresholds for the EEG data
could provide insights into their effects on both the
CNN and MVARICA models. Lastly, we recommend
experimenting with alternative MVAR models that are

979-8-3503-4125-6/23/$31.00 ©2024 IEEE IEEE SPMB 2024 December 7, 2024



A. Jahanian Najafabadi, et al.: Resting-state Functional Connectivity... Page 6 of 7

better suited to handling limited data, as suggested by
[27].

V. CONCLUSIONS

We conclude that CNN models, combined with con-
nectivity measurements, are effective in detecting MDD
biomarkers in children and adolescents, achieving
strong classification results with the ffPDC measure-
ment. This classification approach holds promising po-
tential for clinical applications, but further research
is needed with greater sample size and depending on
various depressive conditions to interpret the identified
biomarkers within a broader, non-technical context.
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