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Abstract— As one kind of Event-Related Potentials (ERPs), 
P300 plays an important role in studying neural activities 
and cognitive processes, and lays the foundation for P300 
speller – the Brain Computer Interface (BCI) working by 
detecting P300. However, due to P300’s high subject 
variability and low Signal Noise Ratio (SNR), it’s always a 
challenge to do P300 detection. Convolutional Neural 
Networks (CNNs) have been widely recognized as effective 
methods for P300 detection, leading to the development of 
increasingly complex CNN architectures for P300 detection 
in recent years. However, this paper takes a different 
approach by proposing the bantamweight CNN (BCNN), 
the simplest and fast-training CNN for P300 detection. 
BCNN comprises only one convolutional filter and a total of 
141 parameters. Surprisingly, it achieves state-of-the-art 
performance after just 2 epochs of training, making it an 
exceptionally lightweight and fast CNN for P300 detection. 
BCNN not only provides new ideas for CNN design, but also 
effectively address resource and time constrained situations. 
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I. INTRODUCTION 
The measurement known as ERP offers a valuable means 
of investigating the human brain and mind [1]. In 1929, 
Hans Berger made a discovery that the electrical activity 
of the human brain could be detected by placing 
electrodes on the scalp. This electrical activity is referred 
to as the electroencephalogram (EEG) and has proven to 
be quite beneficial. However, the EEG is a rough 
measurement that represents a mixture of various neural 
responses. Subsequently, researchers developed 
techniques to separate out the particular neural responses 
to an external stimulus. These techniques yield 
brainwave signals known as ERP, which are utilized for 
studying highly specific neural processes. 

The P300, an ERP component, is produced by the brain 
when it receives external sensory input such as sight or 
sound. The P300 response can be amplified through the 
use of an experimental paradigm known as the oddball 
paradigm. In this paradigm, both common and 
uncommon stimuli are presented. As depicted in Figure 
1, the EEG signal generated in response to the uncommon 
stimulus “Os” exhibits a significantly larger deviation in 
amplitude (occurring around 300ms after the stimulus) 
compared to the signals elicited by the common stimuli 
“Xs”. The disparity in amplitude deviation between EEG 
signals evoked by common and uncommon stimuli forms 

the basis of one popular Brain-Computer Interface - P300 
speller. The P300 speller is particularly valuable for 
individuals who lack the ability to speak or move their 
limbs, as it enables communication solely through brain 
activity, independent of limbs or mouth. When it comes 
to implementing the P300 speller, one of the crucial 
factors is detecting the P300 signal, which poses a 
significant challenge. As illustrated in Figure 1, the P300 
signal is extremely faint in the EEG, with an amplitude 
of only a few millivolts, making it highly vulnerable to 
noises and artifacts of a similar magnitude, such as eye 
blinks, eye movements, muscle movements, limb 
movements and tongue movements. Moreover, P300 has 
high subject variability. Different people have different 
P300, even the same person can have different P300 in 
different time periods, making the task of P300 detection 
consistently challenging. 

In recent years, CNN has demonstrated its effectiveness 
in detecting P300 signals and has garnered significant 
attention. Its ability to autonomously extract relevant 
features proves invaluable for establishing an automated 
P300 detection pipeline. Moreover, CNN exhibits 
promising performance in detecting P300 signals from 
individual trials [2]. However, CNN's performance in 
P300 detection still falls short of its remarkable 
achievements in image processing. Firstly, the 
generalizability of CNN is relatively low. A CNN model 
trained using data from one subject does not yield 
satisfactory results on another subject, and even fine-

 

Figure 1.  Example of ERP experiment using the oddball 
paradigm [1]. The subject viewed frequent Xs and infrequent 
Os on a computer monitor while the EEG was recorded from 
the active electrode Pz. Separate averages were computed for 
the X and O epochs. The amplitude of the bottom wave elicited 
by the uncommon stimuli Os, is obviously greater than the 
amplitude of the top wave elicited by the common stimuli Xs.    
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tuning fails to bridge this gap. Secondly, unlike image 
processing, simply increasing the depth or number of 
layers in the network does not significantly improve 
CNN's performance in P300 detection. The depth of the 
network and the abundance of parameters do not justify 
the performance obtained. The challenging factors of 
P300 data, including substantial subject variability and 
low SNR, pose significant obstacles for designing a CNN 
architecture.  

This paper explores the underlying principles of cutting-
edge CNN architectures utilized in P300 detection and 
introduces the bantamweight CNN (BCNN), a novel 
CNN architecture incorporating separable convolution, 
batch normalization and step learning rate schedule to 
tackle main issues of P300 data. By leveraging batch 
normalization to minimize variability and enhance 
generalizability, separable convolution with minimal 
parameters to extract features from noisy data and step 
learning rate to speed up convergence, BCNN aims to 
achieve a high detection rate while conserving 
computational resources and time. We conducted a 
comparative analysis between BCNN and other state-of-
the-art CNN architectures, evaluating their performance 
in terms of detection rate and complexity. 

The subsequent sections of this manuscript are organized 
as follows: In Section 2, a concise overview is provided 
on state-of-the-art CNN architectures for P300 detection. 
Section 3 offers a comprehensive explanation of the 
BCNN architecture. Section 4 details the experimental 
design and datasets. Section 5 encompasses the 
experimental results and discussions. Finally, Section 6 
concludes the manuscript. 

II. MAIN IDEAS OF CUTTING-EDGE CNN ARCHITETURES 
FOR P300 DETECTION 

While CNN underwent a similar development path in 
P300 detection as it did in image processing, there are 
significant divergences due to the unique qualities of 
P300 data. The dissimilarities encompass different 
factors such as feature extraction, complexity, effective 
convolution and batch normalization. 

A. Feature extraction 
Feature extraction is the basis and premise for P300 
detection. There are two key types of features: spatial 
features and temporal features. P300 exhibits low spatial 
resolution, and research has shown that only six channels 
(Fz, Cz, Pz, PO8, Oz, and PO7) are most relevant for 
detecting P300 [3]. On the other hand, P300 demonstrates 
a high temporal resolution accurate to million seconds. 
As shown in Table 1, almost all cutting-edge CNN 
architectures have both spatial and temporal filters, but 
the temporal filters account for more proportion in 
general. Additionally, some advanced convolutional 
methods like depth-wise convolution, have been 
introduced to extract P300 features more effectively. 

B. Complexity 
Although increasing the number of layers or filters often 
results in significant performance improvements in 
image processing, this trend does not seem to apply to 
P300 detection. On the contrary, substantial increments 
in network complexity only yield minor enhancements 
and occasionally even setbacks. As shown in Table 1, 
initially, a lot of filters and parameters were employed in 
CNN design for P300 detection, and the number reached 
the peak in 2015, then the number began to drop to only 
225 parameters in 2021. However, the performance is 
still the same level. Even architecture with only 1 or 2 
layers can still achieve state-of-the-art performance.  

C. Effective convolution  
Due to the marginal performance gains achieved by 
increasing network complexity, researchers shifted their 
focus towards finding more efficient convolution 
methods for P300 detection. Various convolution 
techniques, such as depth-wise convolution and 
separable convolution, which can take care of both 
spatial and temporal features, have been applied for 
feature extraction in P300. These advancements serve as 
the groundwork for the creation of efficient and 
simplified architectures [4].  

D. Batch normalization 
First of all, batch normalization plays a critical part in 

Table 1. Cutting-edge CNNs for P300 detection (S: spatial, T: temporal, Se: separable, D: depth-wise, F: filters, L: layers) [4]. 

Architecture No. 
Conv filters 

No. 
Conv layers 

No. Dense 
filters & layers 

No. Batch 
layers No. Params AUC value 

Dataset1, Dataset2 
Training epochs 

Dataset1, Dataset2 Time 

CNN1 10 S, 50 T 1 S, 1 T 102 F, 2 L 0 1,036,922 0.82±0.05, 0.78±0.04 97±33, 71±14 2010 
UCNN1 10 S, 50 T 1 S, 1 T 102 F, 2 L 0 1,036,922 0.84±0.06, 0.78±0.05 88±27, 76±24 2010 
CNN3 1 S, 50 T 1 S, 1 T 102 F, 2 L 0 1,031,009 0.78±0.11,0.73±0.08 111±37, 93±31 2010 

UCNN3 1 S, 50 T 1 S, 1 T 102 F, 2 L 0 1,031,009 0.83±0.06, 0.76±0.07 114±42, 87±30 2010 
CNN-R 96 S, 256 T 1 S, 2 T 6146 F, 3 L 0 19,848,098 0.83±0.06, 0.79±0.04 61±2, 64±2 2015 

DeepConvNet 25 S, 375 T 1 S, 4 T 2 F, 1 L 4 139,877 0.84±0.06, 0.79±0.04 122±40, 106±24 2017 
ShallowConvNet 40 S, 40 T 1 S, 1 T 2 F, 1 L 1 12,082 0.82±0.07, 0.79±0.03 177±29, 157±33 2017 

BN3 16 S, 16 T 1 S, 1 T 1 F, 3 L 2 44,589 0.83±0.06, 0.78±0.04 113±21, 95±9 2018 
EEGNet 8 T, 16 Se 1 T, 1 D, 1 Se 2 F, 1 L 3 1,394 0.84±0.06, 0.80±0.03 200±3, 198±7 2018 
OCLNN 16 T 1 T 2 F, 1 L 0 1,842 0.83±0.06, 0.79±0.04 199±5, 161±26 2018 
FCNN None None 3 F, 2 L 0 2,477 0.83±0.06, 0.75±0.04 197±7, 132±12 2021 

SepConv1D 4 Se 1 Se 1 F, 1 L 0 225 0.84±0.06, 0.78±0.04 199±5, 183±24 2021 
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enhancing the generalizability of CNNs for P300 
detection by aligning the P300 data within a similar 
distribution, thereby reducing the high subject variability. 
Batch normalization’s advantage in dealing with high 
subject variability is increasingly acknowledged, evident 
in the design of BN3 [5] [6]. Furthermore, as shown in 
Figure 2, batch normalization can also smooth the loss 
landscape during optimization, facilitating training with 
larger learning rates [7]. Consequently, this capability 
can significantly accelerate the training process [8] [9]. 
This is very helpful for most state-of-the-art CNN 
architectures which always require hundreds of training 
epochs. 

In sum, advanced convolution like depth-wise or 
separable convolution showcases remarkable efficiency, 
achieving outstanding performance even with very few 
filters and layers. Additionally, batch normalization can 
not only deal with subject variability, but also has the 
potential to accelerate training. These findings inspired 
us to construct a CNN architecture that integrates 
separable convolution, batch normalization and larger 
learning rates, taking advantage of their benefits. 

III. METHONDS 
The BCNN is the simplest architecture based on an 
effective integration of separable convolution, batch 
normalization and the step learning rate schedule. It can 
achieve state-of-the-art performance with very few filters 
and training epochs. Its structure is detailed below.                       

A. Visulization of BCNN architecture 
Figure 3 depicts the visual layout of BCNN, centered 
around separable convolution and batch normalization 
techniques. By employing separable convolution, the 
architecture can effectively combine spatial and temporal

 
convolutions while minimizing the number of parameters 
involved. This feature proves advantageous in capturing 
essential spatial and temporal characteristics present in 
P300 data. Additionally, batch normalization acts as an 
efficient solution to tackle the considerable subject 
variability observed in P300 data. It can also aid in 
quicker convergence. The output layer comprises a 
solitary neuron that utilizes a sigmoid activation function.  

B. Visulization of BCNN architecture 
Table 2 presents a comprehensive summary of the BCNN 
architecture, outlining its specific components. The table 
also provides the following information: 

C: Represents the number of channels. 
T: Indicates the number of time points in each P300 wave. 
F: Refers to the number of filters in the layer. 
k: Denotes the size of the kernel. 
s: Represents the size of the stride. 
p: Indicates the padding size. 

C. Step learning rate schedule 
Since batch normalization smooths the loss landscape 
and enables large learning rate, we implement a step 
learning rate schedule for training. As shown in Figure 4, 
this is the step learning rate schedule we use for our 2-

 
Figure 2. Batch normalization can smooth the loss landscape, 
thereby enabling large learning rate [6]. 

 

Table 2. BCNN architecture.  
Block Layer # Filters Size # Parameters Output Activation Options 
1 Input  T × C     

 BatchNorm  T × C 2×C (T, C)   

 ZeroPadding    (T+2×p, C)  Padding = p 

 
Separable 
Convolution F Kernel = k 

Stride = s k×C+F×C+F (1+(T+2×p-k)/s, F)   

 Activation    (1+(T+2×p-k)/s, F) Tanh  

 Flatten    (1+(T+2×p-k)/s)   

Classifier Dense 1  1+F×(1+(T+2×p-k)/s) (1) sigmoid  
 

 
Figure 3. Visualization of BCNN architecture.  
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epoch training for the 1-filter BCNN. Initially, the 
learning rate is set to be a high value throughout the first 
epoch, then decays for the second epoch.  

IV. EXPERIMENTAL DESIGN AND ANALYSIS 
This section covers the details of implementing BCNN, 
including the datasets, implementation details, results 
and analysis. 

A. Datasets 
We used two benchmark datasets. Dataset1 is “P300 
Akimpech database” [10] and Dataset2 is “BNCI 
Horizon 2020” [11].  

Dataset1 was collected from 22 healthy students. It was 
recorded with ten EEG channels: Fz, C4, Cz, C3, P4, Pz, 
P3, PO8, Oz, and PO7, following the international 10-20 
system. The right earlobe served as the reference 
location, while the right mastoid was used as the ground 
location. For our analysis, we specifically focused on six 
channels (Fz, Cz, Pz, PO8, Oz, and PO7) based on 
previous studies that suggested their efficacy in P300 
detection. The EEG signal was digitized at a sampling 
rate of 256 Hz and underwent real-time processing. Each 
stimulus was highlighted for 62.5 ms, with a 125 ms 
interval between successive stimuli.  

Dataset2 was acquired by Riccio et al. from 8 subjects 
with Amyotrophic Lateral Sclerosis. It was recorded with 
8 EEG channels (Fz, Cz, Pz, Oz, P4, P3, PO8, PO7) per 
the international 10–10 system. Channels referenced to 
right earlobe, grounded to left mastoid. Signal was 
digitized at 256 Hz and band-pass filtered (0.1–30 Hz). 
Each stimulus was highlighted for 125 ms, with a 125 ms 
interval between successive stimuli.  

B. Implementation 
The experiments were conducted on a single PC running 
Windows Enterprise N. The PC was equipped with an 
Intel(R) Core (TM) i7-8850H CPU operating at 2.60 
GHz and 2.59 GHz, along with 16.0 GB of RAM. The 
implementation of the architectures utilized Keras with 
Tensorflow 2.10.1 as the backend. 
For the implementation of BCNN, the specific 
configuration parameters are as follows: the number of 
time points ‘T’ is set to 206, the number of channels ‘C’ 
is set to 6 or 8, the padding size ‘p’ is set to 4, the number 

of filters ‘F’ used is 1, the kernel size ‘k’ is 16, and the 
stride size ‘s’ is 8. 

For cross-subject P300 detection, we employed a training 
model that utilized data from a subset of subjects to 
predict the response of a different subject. This involved 
a leave-two-out cross-validation method, where one 
subject was designated for testing, another for validation, 
and the remaining subjects for training. This process was 
repeated for each subject, resulting in a number of folds. 
In each fold, the Area Under the Curve (AUC) of the 
Receiver Operating Characteristic (ROC) was calculated 
over the test set, resulting in a number of AUC values. To 
obtain a representative value, we calculated the mean of 
these AUC values. The implementation we used is 
completely identical to the calculation method of the 
AUC values in Table 1, which were derived using the 
datasets introduced above. By utilizing the same datasets 
and calculation method, we enable a fair comparison with 
previous approaches. 

C. Results and analysis 
In this analysis, we evaluate the performance including 
AUC values, number of parameters and saliency maps of 
4-filter SepConv1D, 1-filter SepConv1D, and 1-filter 
BCNN on both Dataset1 and Dataset2. 

AUC values on Dataset1. We have computed cross-
subject AUC values for each of the three architectures on 
Dataset1 which contains 22 test subjects, labeled from 0 
to 21. This amounts to a total of 110 AUC values, plus 
the mean AUC value for each architecture, resulting in a 
grand total of 115 AUC values, as shown in Table 3. In 
the case of training only 2 epochs, BCNN achieves 0.83 
mean AUC value which is higher than two thirds state-

Table 3. AUC values on Dataset1. 

Test 
subject 

SepConv1D 
4 filters  
2 epochs 

SepConv1D 
1 filter 

2 epochs 

BCNN 
1 filter 

2 epochs 

SepConv1D 
4 filters  

33 epochs 

BCNN 
3 filters 

33 epochs 
0 0.80 0.77 0.85 0.86 0.87 
1 0.86 0.65 0.86 0.87 0.86 
2 0.87 0.83 0.87 0.87 0.88 
3 0.69 0.71 0.73 0.73 0.73 
4 0.63 0.69 0.71 0.7 0.73 
5 0.84 0.84 0.89 0.89 0.89 
6 0.72 0.64 0.78 0.78 0.79 
7 0.74 0.70 0.78 0.77 0.80 
8 0.85 0.80 0.86 0.86 0.88 
9 0.83 0.80 0.85 0.83 0.85 

10 0.81 0.77 0.77 0.77 0.82 
11 0.78 0.67 0.77 0.78 0.79 
12 0.80 0.77 0.84 0.83 0.83 
13 0.84 0.65 0.85 0.84 0.87 
14 0.80 0.74 0.82 0.79 0.83 
15 0.86 0.79 0.83 0.84 0.84 
16 0.67 0.64 0.73 0.71 0.74 
17 0.88 0.81 0.90 0.9 0.91 
18 0.91 0.88 0.89 0.9 0.91 
19 0.85 0.87 0.88 0.87 0.88 
20 0.87 0.77 0.90 0.89 0.90 
21 0.78 0.71 0.82 0.82 0.83 

Mean 0.80±0.07 0.75±0.07 0.83±0.06 0.82±0.06 0.84±0.06 
 

 
Figure 4. The step learning rate schedule. 
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of-the-art architectures. The second-highest mean AUC 
value is 0.80 from the 4-filter SepConv1D architecture. 
The lowest mean AUC value is 0.75 from the 1-filter 
SepConv1D. Furthermore, after training 33 epochs, 
BCNN achieves 0.84 mean AUC value, the best 
performance until now while the 4-filter SepConv1D 
achieves 0.82. It is worth noting that, the 4-filter 
SepConv1D can also achieve 0.84, but needs as many as 
199 epochs of training. This comparation shows the 
advantage of the integration of separable convolution, 
batch normalization and step schedule. 

Number of parameters on Dataset1. We also recorded the 
number of parameters for each architecture. This 
encompasses trainable parameters, non-trainable 
parameters, and their cumulative sum. As shown in Table 
4, the 4-filter SepConv1D has a higher parameter count 
compared to 1-filter SepConv1D and BCNN. Conversely, 
1-filter SepConv1D and BCNN possess a similar number 
of parameters, with a negligible disparity, showing the 
advantage of cost-effectiveness. 

Saliency maps on Dataset1. In order to look into what 
happened in BCNN, we implemented the average 
saliency maps of different CNNs on the same average 
P300 trial. Figure 5 is the average saliency maps of three 
CNNs on the average P300 trial of subject 0 of Dataset1, 
Brown color (positive) and blue color (negative) denotes 
two different directions to weight the P300 features. As 
shown in Figure 5, the first row is a visualization of the 
average P300 trial in which a peak around 350 ms is very 
clear. The 4-filter SepConv1D and 1-filter SepConv1D 
have similar saliency map in general, but the 1-filter 
SepConv1D suffers more from the noise before 200 ms, 
and BCNN suffers the least among all. All three CNNs 
have high saliency after 300 ms and BCNN is the highest.     

AUC values on Dataset2. Dataset2 contains 8 test 
subjects, labeled from 0 to 7, which means a total of 24 
AUC values, plus the average AUC value for each 
architecture, resulting in a grand total of 27 AUC values. 
As shown in Table 5, after training 2 epochs, the 1-filter 
BCNN can achieve 0.78 which is higher than two thirds 
state-of-the-art architectures. It is worth noting that, the 
best performance of the 4-filter SepConv1D is also 0.78, 
but needs as many as 183 epochs of training. This result 
shows the advantage of BCNN in cost-effectiveness, 
indicating the effective integration of separable 
convolution, batch normalization and the step schedule.  

Number of parameters on Dataset2. Table 6 illustrates the 
number of parameters required for the 4-filter Sep-

Conv1D, 1-filter SepConv1D, and BCNN on Dataset2. 
Similar with Dataset1, the 4-filter SepConv1D has more 
parameters than either 1-filter SepConv1D or BCNN. 
Conversely, 1-filter SepConv1D and BCNN possess a 
similar number of parameters, with a negligible disparity.  

Saliency maps on Dataset2. Figure 6 is the average 
saliency maps of three CNNs on the average P300 trial of 
subject 0 of Dataset2. As shown in Figure 6, the first row 
is a visualization of the average P300 trial, and there 
seems no obvious peak after 300 ms like Figure 6 perhaps 
due to the situation of the subjects. As for the saliency, 
similar with Dataset1, BCNN has the highest saliency 
among all (especially around 300 ms and 700 ms). The 
4-filter SepConv1D and 1-filter SepConv1D have similar 
saliency map, but the 1-filter SepConv1D suffers more

 

Table 4. Number of parameters on Dataset1.  

Parameters SepConv1D 
(4 filters) 

SepConv1D 
(1 filter) 

BCNN 
(1 filter) 

Trainable 225 141 153 
Non-trainable 0 0 12 

Total 225 141 165 
 

Table 5. AUC values on Dataset2.  

Test subject 
SepConv1D 

4 filters 
2 epochs 

SepConv1D 
1 filter 

2 epochs 

BCNN 
1 filter 

2 epochs 
0 0.65 0.50 0.77 
1 0.68 0.64 0.74 
2 0.63 0.68 0.82 
3 0.57 0.62 0.70 
4 0.49 0.51 0.80 
5 0.54 0.53 0.82 
6 0.75 0.55 0.78 
7 0.71 0.55 0.81 

Mean 0.63±0.09 0.57±0.07 0.78±0.04 
 

Figure 5. The average saliency maps of three CNNs (4-filter 
SepConv1D, 1-filter SepConv1D and BCNN) on the average 
P300 trial of subject 0 in Dataset1. 
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from the noise (before 200 ms) while the 4-filter 
SepConv1D has higher saliency (around 700 ms).  

V. SUMMARY 
In this paper, we presented BCNN for P300 detection. 
BCNN incorporates separable convolution, batch 
normalization and step schedule as its fundamental 
design elements. Through a comparative analysis with 4-
filter SepConv1D and 1-filter SepConv1D in cross-
subject P300 detection, BCNN showcases exceptional 
performance, despite having significantly fewer 
parameters and requiring the fewest training epochs. This 
remarkable achievement establishes BCNN as the 
bantamweight CNN solution for P300 detection. 

BCNN is specifically designed to leverage the benefits of 
separable convolution, batch normalization and large 
learning rate. Separable convolution, renowned for its 
efficacy in P300 detection, efficiently captures features 
from P300 signals while employing significantly fewer 

parameters compared to alternative architectures. Batch 
normalization effectively tackles the challenge of "high 
subject variability" by normalizing the data from each 
subject, promotes smoother loss landscapes, and enables 
the utilization of large learning rate schedules, thereby 
speeding up training. Despite only undergoing two 
epochs of training, BCNN achieves a detection rate 
comparable to that of the 4-filter SepConv1D 
architecture which requires about 199 epochs to reach 
similar performance. Moreover, BCNN's parameter 
count is impressively low, with only 141 trainable 
parameters on Dataset1 and 179 parameters on Dataset2. 
This characteristic renders BCNN highly suitable for 
situations where both high detection rates and limited 
computational resources or time constraints are present. 

Several potential avenues can be explored to further 
enhance BCNN’s performance, including investigating 
the optimal positioning of batch normalization layers, 
determining the appropriate number of batch 
normalizations to utilize, and making better use of the 
other interpretable-AI tools for assistance. 
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SepConv1D, 1-filter SepConv1D and BCNN) on the average 
P300 trial of subject 0 in Dataset2. 
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