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Abstract— The segmentation of retinal vessels in retinal
images is vital for automated diagnosis of retinal diseases.
This is a challenging task because it requires accurate
manual labeling of the vessels by expert clinicians and the
detection of tiny vessels is difficult due to limited samples,
low contrast, and noise. In this study, we explore the use of
preprocessing techniques such as contrast-limited adaptive
histogram equalization (CLAHE), grad-cam analysis and
min-max contrast stretching to improve the performance
of a study-group learning (SGL) segmentation model. We
evaluate the impact of these preprocessing techniques
on the accuracy, sensitivity, specificity, AUC, IoU, and
Dice scores using four publicly available datasets, DRIVE,
CHASE, HRF and IOSTAR. Our findings indicate that
the utilization of the Min- Max technique resulted in a
notable enhancement in the accuracy of both the DRIVE
and CHASE datasets, with an approximate increase of
3% and 2% respectively. Conversely, the impact of the
CLAHE method was discernible solely in the DRIVE
dataset, demonstrating an improvement in accuracy of
1%. In addition, our results demonstrated superior ac-
curacy performance for both the DRIVE and CHASE
datasets compared to the findings of the reviewed studies.
The GitHub repo for this project is available at Link.

Keywords— Study Group Learning, Vessel Segmentation,
Medical Imaging, CLAHE, Min Max Contrast Stretching,
Grad-Cam

I. INTRODUCTION

Any abnormality in the retina or ocular condition,
such as glaucoma or diabetic retinopathy, can impair a
person’s vision. Glaucoma is the second leading cause
of irreversible vision loss worldwide, after cataracts [1].
Approximately 12% of all cases of blindness worldwide
can be attributed to retinal abnormalities. The structure
of retinal blood vessels is critical for the diagnosis of
such abnormalities. The identification and localization
of retinal vessels enable the differentiation of the diverse
vasculature structure of the retina from the background
of the fundus image. This allows clinicians to interpret
potentially problematic retinal anatomical structures
such as abnormal lesions, macula, and optic disc [2-
4]. Even the color of the retina changes throughout life
and can be used as a biomarker for a variety of diseases,
including diabetes and stroke prediction [2—4].
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Deep learning is the state-of-the art in many computer
vision problems, including medical imaging [5, 6]. The
evolution of deep learning has led to the development
of automated models for more accurate and precise
segmentation of retinal blood vessels. These models
are instrumental in aiding the clinical application of
retinal blood segmentation. They are capable of initially
segmenting the vessels and then extracting features that
correlate with specific retinal abnormalities. Existing
literature suggests the implementation of Convolutional
Neural Networks (CNNs) based approaches, such as
Unet [7], and Fully Convolutional Neural Networks for
vessel segmentation [8]. Data augmentation techniques
have been shown to improve the segmentation results
of these models significantly [9].

Other studies have shown remarkable segmentation
results for retinal vessel segmentation using various
models such as RV-GAN, a new multi-scale generative
architecture, with 98.87% accuracy [10], DUNet, a
deformable network, with 97.22% [11] on STARE
dataset. Another study proposed the Contextual Multi-
Scale Multi-Level Network (CMM-Net) for segment-
ing retinal blood vessels giving the DICE score of
80.27% [1] which is a relatively successful model in
contrast to PSPNet and DeepLabv3 models on thin
vessels. The main logic of their research is to combine
global contextual features from multiple spatial scales
at each contracting convolutional network level in the
U-Net.

In another study, a residual convolution neural network
was proposed to segment vessel structure along with
stems and terminals [12]. It achieved an average ac-
curacy of 95.90% and 96.88% on DRIVE and STARE
datasets. The algorithm proved to be an efficient method
for detecting more detailed capillaries. To learn lo-
cal and global blood vessels, Graph Neural Network
was integrated with CNN architecture proposing Vessel
Graph Network (VGN) for modeling the graphical reti-
nal vessel structure. The model not only enhances the
connection between weak and strong vessels but also
covers up the false positive cases [13].
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In this paper, we employed the Study Group Learning
(SGL) model [14] as the base framework on four vessel
datasets: DRIVE, CHASE, IOSTAR and HRF [15]. It
should be noted that the available datasets are highly
imbalanced [16, 17], implying that the ratio of thick
and thin vessels is unavoidably high. As a result, the
available models inevitably focus on thick vessels rather
than thin vessels. To address this problem, our research
will include a comprehensive analysis of preprocessing
techniques to highlight thin vessels in order to learn
the discriminative features, while also making explicit
its explainable model structure [18]. GRAD-CAM is
used for the visualization of features and improve the
explainability of the model. Moreover, in this paper, we
have not included any augmentation, as we aimed to do
work on the real images, and just want to observe the
effects of preprocessing methods.

II. RESEARCH METHODOLOGY
II-A. Datasets

In this study, the proposed models being implemented
are based on SGL model on four datasets, namely
DRIVE, CHASE, HRF and IOSTAR. The detail of the
dataset is shown in Table 1. All datasets consist of raw
retinal images and vessel label mask for training as well
as testing.

II-B. Description of the SGL Model

The provided baseline model structure used for our
study is depicted in Fig. 1. The model uses a concate-
nated UNet architecture, which comprises an encoder
and a corresponding decoder. The encoder encodes the
input image features into a compact representation,
while the decoder reconstructs the segmentation map
from the encoded features. This architecture enables
accurate vessel segmentation by allowing the model to
gather both local and global context information. The
SGL model technique combines modules for segmen-
tation and enhancement to produce segmentation maps
while simultaneously learning how to improve retinal
images. In contrast to earlier methods, this model uses
the raw recorded images without any preprocessing
techniques to preserve all of the information that is
present in the retinal images.

In particular, a three-channel raw retinal image with

the symbol I serves as the model’s input. The goal
of processing this image is to increase its contrast and

Table 1. Dataset Information

Datasets Train Images Test Images
Drive 20 20
CHASE 20 8
HRF 15 30
IOSTAR 18 18
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highlight the vessel structures, producing an improved
image denoted as I,. The model also seeks to estimate
the segmentation map /., which represents the vessels
identified by qualified healthcare professionals and is
used as the ground truth source. It is important to
note that the enhanced image I, keeps the majority of
the image’s information, including retinal texturing and
vessels. When examining the segmentation outcomes
I., this feature helps doctors better comprehend and
interpret the performance of the learned model.

1I-C. Preprocessing Techniques

We have used two preprocessing techniques for retinal
image enhancement, CLAHE and MIN-MAX contrast
stretching.

II-C1. CLAHE

CLAHE is a widely used image enhancement technique
that aims to improve the local contrast in an image
while limiting the amplification of noise. It performs
this by dividing the image into small regions called
tiles and performing histogram equalization on each
tile independently. By locally redistributing the pixel
intensities within each tile, CLAHE enhances the local
contrast and brings out details that may be obscured by
low contrast or uneven illumination. In more detail, the
steps involved in the implementation of this method can
be listed below [19]:

e Initiates region size and clip limit with histogram
shape for each region. The clip limit of a histogram
is computed by following Eq. 1:

M o

B= (1 0ma—1), (M
where M is region size, N is grey-scale value-256
and « is clip factor that refers to addition of a
histogram between a range of 0-100.

e Cuts the histogram using value of clip limit.

e Then the highest value of clip limit referred as
excess is used for distributing to obtain new his-
togram that is further mapped over original image.

e The resulting image is generated via pixel interpo-
lation in neighbored regions.

II-C2. MIN MAX Contrast Stretching

A key preprocessing method used in image analysis
and enhancement to enhance an image’s contrast and
dynamic range is called min-max stretching, also known
as intensity normalization. The goal of this technique
is to increase the range of intensities and enhance
the ability to perceive details by taking into account
the minimum (lower) and maximum (higher) intensity
values that are present in the image.

In Min-Max stretching, the upper intensity value is
mapped to the highest representable value, frequently
255, in an 8-bit grayscale image, while the lower in-
tensity value is mapped to 0. The whole intensity range
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Figure 1. Illustration of the SGL framework [14]

is used effectively thanks to this linear translation. To
keep the transformation function monotonic and linear,
the intermediate intensity values must be appropriately
changed.

To calculate the new intensity values during Min-Max
stretching, a formula based on linear interpolation is
used. This formula is applied to each pixel in the image,
and it can be represented by the following Eq. 2.

Xinput - Xmin

Xy = 255 x 2)

max—Xmin

The intermediate intensity values are linearly scaled
and modified to fit inside the specified dynamic range
by using Eq. 2. By doing this, it is guaranteed that
the image’s overall contrast will be improved while
maintaining the relative connections between intensities.

III. RESULTS AND DISCUSSIONS

In this section, we provide the outcomes of our im-
plementation and discussion of our study on the impact
of preprocessing techniques on retinal blood vessel seg-
mentation using the SGL scheme. This section provides
a detailed analysis of the experimental results obtained
by applying various preprocessing techniques on retinal
images using deep learning models for segmentation
on publicly available datasets, namely HRF, DRIVE,
CHASE and IOSTAR. The section also includes a
thorough discussion of the results, highlighting the
effectiveness of different preprocessing techniques in
improving the accuracy and efficiency of retinal blood
vessel segmentation. Additionally, we compare our re-
sults with the state-of-the-art approaches and highlight
the advantages of our proposed approach. Initially, in
order to assess the impact of preprocessing techniques,
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namely CLAHE and Min-Max stretching, each dataset
was subjected to these techniques. The resulting datasets
were then evaluated using an SGL model under three
conditions: without any preprocessing, with preprocess-
ing using CLAHE, and with preprocessing using Min-
Max stretching. The purpose of this evaluation was to
compare the performance of the segmentation model
under different preprocessing scenarios.

III-A. Performance evaluation of CLAHE and Min-Max
Strecthing

In this section, we evaluate the impact of the im-
plemented preprocessing techniques on retinal blood
vessel segmentation using an SGL scheme. We employ
commonly used evaluation metrics, including accuracy,
sensitivity, specificity, AUC, background IoU, Vessel
IoU, and dice score, to ensure a fair comparison be-
tween the employed models. The experimental results
demonstrating the effect of preprocessing techniques are
provided in Table 3. The performance of preprocessing
techniques is highly dependent on the histogram of the
image, which influences its effectiveness. Consequently,
the effects of the CLAHE and Min-Max stretching
techniques were not generalized across all datasets used
in our study. Specifically, the impact of the Min-Max
technique was not significant on the HRF and IOSTAR
datasets. However, we observed that the Min-Max tech-
nique increased the accuracy of the DRIVE and CHASE
datasets by approximately 3% and 2%, respectively. On
the other hand, the CLAHE method’s effect was only
observable on the DRIVE dataset, where it improved
the accuracy by 1%.

Overall, the effectiveness of the preprocessing tech-

niques is highly dependent on the dataset used, as it is
closely tied to the image quality. Therefore, it is crucial
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to optimize the preprocessing techniques specifically for
the images employed in the segmentation task. This
optimization process has proven to be valuable, as it
enhances the accuracy of the segmentation models.
The results indicate that tailoring the preprocessing
techniques to the characteristics of the dataset and
image quality can yield substantial improvements in
segmentation accuracy. This finding emphasizes the im-
portance of considering dataset-specific preprocessing
optimizations in retinal blood vessel segmentation tasks.
By doing so, researchers and practitioners can achieve
more accurate and reliable results, which are crucial
in the field of medical image analysis. In overall, the
results and analysis presented in this section highlight
the significant impact of preprocessing techniques on
retinal blood vessel segmentation task, particularly for
the segmentation of the thin vessels where the accuracy
is mostly sacrificed.

III-B. GRAD-CAM analysis on the performance of
retinal thin vessels

In this study, the performance of the Gradcam method
was evaluated using several performance metrics on four
different datasets: HRF, DRIVE, CHASE, and IOSTAR.
The Grad-cam results for each dataset are depicted in
Fig. 2. The results in Table 2 demonstrated that the
Gradcam method achieved noteworthy accuracy on all
datasets, with a range of 0.821 to 0.974. The sensitivity
scores ranged from 0.66 to 0.916 indicating that the
Gradcam method is effective in detecting positive cases
in all four datasets. The specificity scores were also
high, ranging from 0.984 to 0.994, indicating that the
Gradcam method is able to accurately identify nega-
tive cases as well. In terms of vessel IoU, the HRF
dataset achieved the highest score of 0.891, followed
by the DRIVE dataset with 0.72. The CHASE and
IOSTAR datasets had lower scores of 0.531 and 0.875,
respectively. Finally, the dice scores, which are an-
other measure of segmentation accuracy, ranged from
0.796 to 0.891, with the highest score achieved on
the DRIVE dataset. Lastly, the results suggest that the
Gradcam method is effective in accurately segmenting
blood vessels in retinal fundus images. The method
can be particularly useful for detecting and diagnosing
retinal diseases, such as diabetic retinopathy and age-
related macular degeneration. However, further studies
are needed to evaluate the performance of the Gradcam
method on larger and more diverse datasets. The aim of
including grad-cam analysis in our study to also sepa-

Table 2. Performance Comparision

Performance Metrics HRF Drive CHASE IOSTAR
Accuracy 0.974 0.887 0.821 0.927
Sensitivity 0.916 0.66 0.907 0.852
Specificity 0.994 0.984 0.992 0.992
Vesselou 0.891 0.72 0.531 0.875
Dice 0.891 0.796 0.873 0.821
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Table 3. Comparison of SGL model on four public datasets

D. t Metrics SGL CLAHE | Min-Max
Accuracy 0.9698 | 0.8802 0.9620
Sensitivity 0.8566 | 0.7625 0.9154
HRF Specificity 0.9787 | 0.9441 0.9680
AUC 0.9880 | 0.9812 0.9964
Background_IoU | 0.9677 | 0.8521 0.9604
Vessel_IoU 0.6797 | 0.5741 0.6094
Dice 0.8079 | 0.7187 0.7225
Accuracy 0.9659 0.9702 0.9987
Sensitivity 0.8817 | 0.7927 0.6488
DRIVE Specificity 0.9738 | 0.9952 0.9996
AUC 0.9883 | 0.9682 0.9991
Background_IoU 0.9632 0.9685 0.9987
Vessel_IoU 0.6862 | 0.7215 0.5001
Dice 0.8134 | 0.8188 0.6412
Accuracy 09716 | 0.9716 0.9908
Sensitivity 0.9056 | 0.9056 0.8819
CHASE Specificity 0.9761 | 0.9761 0.9979
AUC 0.9906 | 0.9906 0.9986
Background_IoU | 0.9699 | 0.9699 0.9905
Vessel_IoU 0.6681 0.6681 0.3352
Dice 0.8003 | 0.8003 0.4572
Accuracy 0.9705 0.8517 0.9621
Sensitivity 0.8899 | 0.8253 0.7293
IOSTAR Specificity 0.9794 | 0.9536 0.9871
AUC 0.9873 | 0.9748 0.9986
Background_IoU 0.9675 0.8175 0.9607
Vessel_loU 0.7523 | 0.5796 0.4937
Dice 0.8535 | 0.7192 0.6347

rately evaluate the grad-cam results’ effect on segmen-
tation accuracy while demonstrating the explainability
structure of the SGL model.

III-C. Comparison of our work with literature

Table 4 presents a comparative analysis of various
studies that have evaluated the performance of deep
learning models for the task of retinal vessel segmen-
tation. The evaluation metrics used in these studies
include precision, sensitivity, specificity, accuracy, and
area under the curve (AUC). Our comparative analysis
includes a variety of datasets employed in various
studies. As depicted in Table 4, the highest accuracy
for HRF dataset was achieved by Wu et al. [20] with

DRIVE

CHASE

IOSTAR

Figure 2. GRAD-CAM analysis results on HRF, CHASE,

DRIVE and IOSTAR datasets
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Table 4. Comparison of U-net like models proposed in the literature

Page 5 of 6

Reference Database Precision Sensitivity Specificity Accuracy AUC
[20] DRIVE NA 0.8289 0.9838 0.9697 0.9837
CHASE NA 0.8365 0.9839 0.9744 0.9867
IOSTAR NA 0.8255 0.9830 0.9706 0.9865
HRF NA 0.8114 0.9823 0.9687 0.9842
[11] DRIVE 0.8529 0.7963 0.9800 0.9566 0.9802
CHASE 0.7630 0.8155 0.9752 0.9610 0.9804
HRF 0.8593 0.7464 0.9874 0.9651 0.9831
[21] DRIVE NA 0.83 0.984 0.968 0.978
[22] DRIVE NA 0.7614 0.9837 0.9604 0.9846
CHASE NA 0.7993 0.9868 0.9783 0.9869
[23] DRIVE NA 0.7839 0.989 0.9709 0.9864
CHASE NA 0.7839 0.9894 0.9721 0.9866
[24] DRIVE NA 0.7941 0.9798 0.9558 0.9847
CHASE NA 0.8167 0.9704 0.9608 0.9865
[25] DRIVE NA 0.7921 0.9810 0.9568 0.9806
CHASE NA 0.7818 0.9819 0.9635 0.9810
IOSTAR NA 0.7322 0.9802 0.9544 0.9623
[26] DRIVE NA 0.7653 0.9818 0.9542 NA
CHASE NA 0.7633 0.9809 0.9610 NA
HRF 0.6647 0.7881 0.9592 0.9437 NA
[27] DRIVE 0.8335 0.7891 0.9848 0.9674 0.9836
CHASE 0.8486 0.7559 0.9900 0.9738 0.9872
28] DRIVE NA 0.7991 0.9813 0.9581 0.9823
CHASE NA 0.8239 0.9813 0.9670 0.9871
IOSTAR NA 0.7538 0.9893 0.9652 0.9859
HRF NA 0.7803 0.9843 0.9654 0.9837

an accuracy of 0.9842. They also achieved the high-
est accuracy for IOSTAR dataset with an accuracy of
0.9865. The highest accuracy for the DRIVE dataset
was obtained by Jiang et al. [23] which is 0.9864. On
the other hand, the highest accuracy for CHASE dataset
was achieved by Guo et al. [27] which is 0.9872. In
comparison to our work on the effect of preprocess-
ing techniques on the accuracy of the retinal vessel
segmentation in the literature, it offers more accurate
results for certain datasets. For instance, particularly
Min-Max stretching technique helped the SGL model
to learn better the segmentation of the thin vessels.
Although the accuracy was not improved remarkably
for HRF and IOSTAR datasets, our proposed model
obtained 0.9987 and 0.9908 accuracy for DRIVE and
CHASE dataset, which clearly demonstrates the effect
of the preprocessing technique on the segmentation of
retinal vessel outcome. Hence, our results outperformed
in terms of accuracy for DRIVE and CHASE datasets
compared to the reviewed studies. The limitation of our
work is that it evaluated the impact of the preprocessing
methods on only four publicly available datasets. While
the datasets were diverse and included images from
different sources, they may not represent the full range
of retinal images. The findings may not be generalizable
to other datasets with different characteristics, such
as varying image quality or different types of retinal
diseases. Additionally, the study did not use any private
or newly acquired datasets, which may have provided
more insight into the performance of the preprocessing
techniques.

The performance of the reviewed models can be sig-
nificantly improved by using appropriate preprocessing
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techniques to enhance the quality of retinal images.
Several preprocessing techniques have been proposed
in the literature, including contrast enhancement, noise
reduction, vessel enhancement, and morphological oper-
ations. These techniques can be applied either individu-
ally or in combination to obtain better results. However,
the choice and combination of preprocessing techniques
depend on the specific dataset and deep learning model
used for segmentation. This approach can help identify
the most effective preprocessing techniques for retinal
vessel segmentation and facilitate their translation to
clinical practice.

IV. CONCLUSIONS AND FUTURE WORK

In conclusion, retinal vessel segmentation using retinal
images is essential for the development of automatic
diagnostic models for the diagnosis of retinal diseases.
This research paper explored the impact of preprocess-
ing techniques, such as CLAHE and min-max contrast
stretching, on a study group learning (SGL) segmenta-
tion model. The study demonstrated that preprocessing
techniques can significantly improve the accuracy of the
SGL model in identifying and classifying tiny retinal
blood vessels. The results indicate that the min-max nor-
malization technique is the most effective preprocessing
method for this task within the scope of our work. The
findings of this study have important implications for the
development of accurate and efficient diagnostic models
for retinal diseases. In the future, it will be interesting
to see the performance of large language models for
vessel segmentation task [29].
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