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Introduction

• Brain tumors pose significant challenges in medical field, ranging from aggressive 

malignancies to gliomas

• Neuroimaging technique like Magnetic Resonance Imaging (MRI) provides high 

resolution images for diagnosis

• Manual tumor detection by the doctors and radiologist often expose to human 

error, Inconsistency, time consuming and limited detection

• These threats has always inspired the tumor detection and diagnosis to be 

automated using AI
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Motivation and Objectives

Motivation:

• Lack of annotated data for training and validation of automated diagnostic systems

• The need for diverse and high-quality data

Objectives:

• Synthetic Image Generation: Using ACGAN to generate diverse synthetic 

images

• Precise Segmentation: Employing U-Net for accurate segmentation maps

• Validation: Using an independent CNN-based classifier to validate synthetic 

images
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Previous Research and Works
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Materials and Methods

Semantic Annotation for Image Segmentation:

• Total Dataset after Data augmentation in the real dataset: 5490

• 75% of the total dataset as Training sets: 4117

• Remaining 25% split equally as validation and test sets: 686

• Each MRI image in the dataset includes a segmentation mask with annotated and 

labeled tumor regions
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Materials and Methods

• Four different classes of tumor as represented in Table 2:
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Tumor Numerical Encoding

Non-Tumor 0

Glioma 1

Meningioma 2

Pituitary 3

Table 2: Tumor Classes and respective Numerical Encoding



Materials and Methods

CNN-Based Generator in ACGAN:
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• Generator input: Noise , class label

• Embedding layer translates class label into a dense vector 

representation

• The dense vector or embedding captures the semantic 

meaning of the class  allowing generator to generate images

conditioned on the class label

• The flattened embeddings and noise vector are multiplied

and passed to dense layer to expand the dimensionality of

the input representation  

• Dense layer size: 32*32*256 with leaky RELU activation

• Reshaped to form 3D tensors, passed to conv2d Transpose

to increase the spatial dimension to 128*128



Materials and Methods

CNN-Based Discriminator in ACGAN:
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• Distinguishes real vs. synthetic data and performs 

classification.

• Batch of real and fake images fed during training.

• Images pass through convolutional layers to extract 

features.

• Each convolutional layer is accompanied by LeakyReLU 

activation to introduce nonlinearity in the model

• Final conv2d layer output is flattened to a 1D vector.

• 1D vector processed through a dense layer with 0.4 dropout 

to prevent overfitting.

• Dense layer output passes through a layer with 1 neuron 

(sigmoid) and 4 neurons (SoftMax).



Materials and Methods

Activation Function:

• Uses Leaky RELU activation in both generator and discriminator

• Introduces nonlinearity in the model to learn complex pattern by approximating 

continuous function

• Overcomes dying RELU problem by introducing small nonzero gradient when 

input is negative

Loss Function:

• Adversarial loss : Binary cross entropy

• Classification loss: Categorical cross entropy
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Materials and Methods

U-Net Architecture for Brain Tumor Segmentation:

• Designed to segment the tumor region in the MRI
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Materials and Methods

Segmentation performance evaluation metrices:

• Both Dice coefficient and IOU measure the overlap between predicted and ground truth 

masks in image segmentation

• They differ in their calculation and sensitivity to the overlap region

Dice Coefficient:

• Formula: 2×
Area of Overlap

Area of Predicted Mask + Area of Ground Truth Mask
• More sensitive to overlap size.

• Higher scores for larger overlaps.

Intersection over Union (IoU):

• Formula: 
Area of Overlap
Area of Union

• Less sensitive to overlap size.

• Focuses on overall alignment.

 

11



Materials and Methods

CNN-based Classifier for Evaluating Synthetic Image :

• Model first trained on real data

• The saved model further used to classify the real and synthetic data combined

• Comparison made between two classification report

• If the classifier performs similarly on both real and synthetic images, it indicates

that the synthetic images have successfully captured the key features of the real

images
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Materials and Methods

CNN based Classifier
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• VGG16 used as a base model

• Input image of shape 128,128,3 

• Two consecutive layer of dropout, dense, normalization 

and activation

• Final dense layer with 4 neurons and SoftMax 

activation assuming four classes of classification

• Sparse categorical cross entropy (loss function)



Results

Realism and Accuracy of Synthetic images

• Accessed through CNN-based classifier

• Classification on Real Images

• Classification on Real and Synthetic Images combined

• Classification report compared based on Sensitivity, Specificity, Precision, Recall and F1 

Score

• Sensitivity:
True Positives(TP)

True Positives (TP)+False Negatives (FN)

• Specificity:
True Negatives (TN)

True Negatives (TN)+False Positives (FP)
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Results

Classification with Real VS combined Real and Synthetic images
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Classification with Real Images

• Overall Accuracy: 0.98

Classification with combined Real and Synthetic 

Images

• Performed over 5-fold cross validation

• Overall Accuracy: 0.84



Results

Classifier Training Process

• Accessed through Loss and Accuracy graph
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Results

ACGAN Training Process

• Monitored for generator and discriminator for both adversial and classification losses 

over the epoch
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Results

Sample Real Images

Sample Synthetic Images
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Results

Segmentation Accuracy

• Dice Coefficient and Intersection over Union (IoU) metrics were computed to 

evaluate the accuracy of the generated segmentation maps

• Beside Dice Coefficient and IoU, the model's performance on the test set was 

evaluated using several critical metrics
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Results

Training process evaluation of U-Net architecture

• Evaluated in terms of Accuracy, Loss, Dice Coefficient and MeanIOU for training 

and validation sets over the epochs
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Results

Comparison of the predicted segmentation over ground truth for multiple

tumor class
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Discussion and Conclusion

• ACGAN generates satisfactory images compared to the real samples

• The quality of the synthetic images can be further improved to resemble the real sample 

by considering MRI views within the dataset

• Classifier accuracy on combined real and synthetic image: 0.84

• U-Net Segmentation shows good result

•  Dice Coefficient: 76.43%, MeanIOU: 92.91%, Sensitivity: 99.49%, Specificity: 

99.87%.

• Future Directions may include Dual Classification by incorporating both MRI views and 

tumor types, Multi-Modality Image synthesis, Semi-Supervised/Unsupervised Learning 

by utilizing unlabeled data and exploring different GANs for enhanced performance.

22



Issues faced and Solution

• Discriminator was consistently and highly overpowering the generator 

• Integration of conditional information with noise 

• Hyperparameter Adjustment while using Functional API

• Model overfitting while training U-Net architecture
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