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Setting

o Electroencephalography (EEG) recording:
o Multivariate signal (1)

@ Multiple sensors
o Each sensor acquires time series

o Data matrix shape:
7 sensors X # time samples
o Graph filtering (2; 3)

o Analogous to filtering in signal processing
o Graph:

@ Encodes connectivity in the data
o E.g. functional connectivity:
Pairwise Pearson correlation

o Filters are defined in terms of graph e
o Applications of graph filtering: X
o Graph denoising (4; 5)
@ Remove correlations Figure: EEG Spatial structure:
o Graph filter layer in Graph Neural correlations between channels
Network (6; 7)
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Finite Impulse Response (FIR) filter

@ Signal is filtered by convolving
signal with (localised) filter
F: [00, 91, ceey aNr—l]:

Xhr = F*x 72 . ..-.. .
o Filter with number of parameters 2T o
k=3: B i
F = [0, 01, 04] o 1N
@ How to deal with boundaries? g, —
e no padding, padding, cyclic, ... 00 beooeserooessieseesees
o Filter as matrix: using shift matrix U
S[_Z % o M
F = 6ol + 6:S, + 6,52,
xair = Fx p T e pr P pa

o Frequency formulation of FIR filter:
Fourier filter
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Introduction

Fourier filter

@ Time signal x is firstly transformed to
Fourier domain: x — X

o Note: Fourier signal X is complex (real and | | | ==, A
imaginary part) N te S

o Frequencies past the Nyquist limit mirror s 7 B B »
lower frequencies 0] ¢ - rea

e .. s~ imag
. | X3 >
¢ L Eae = 28 2

Fourier signal
°

o Highest frequency is at Nyquist limit

~10 13

o Fourier signal multiplied with spectral filter CEsEs:
F: [00, 01, ceey aNt_]_]

o Alternative: filter with k=3 < N,
parameters:
F=1[00,60,...,01,...,02,02,...,01, ..., 60]

o Filtered Fourier signal transformed to time el S - — - -
domain: FOX = X Fourerfreauency !
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@ Matrix notation (with discrete Fourier
transform matrix W): %
xaie = W Ldiag(F) W x o
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Analogy classical filtering - graph filtering

time filtering graph filtering (2; 3)
graph OXOROROROEIEEE®
00 0 .1 0 2 0 ...0
100 ...0 15 0 05 ... 0
connect. matrix  Agc= |01 0 ... 0 A=|1 05 0 ... 0
0 .. 10 0 .00
FIR filter (k=3) 6ol + 0:1Ac + 02A2, 0o + O1A + 0,A2
eigendecompos.  Agc = (W) AW A= (WE&-T) AWeer
0 O 0 0 O 0
0o 6 ... 0 0 6, ... 0
spectral filter w-t ,_1 W Wi | __1 [ Werr
0 s 0 s
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Graph filter preprocessing

o Task: EEG Alzheimer's disease classification
@ Use neural network to train filter coefficients!
o Base graph:
o Pairwise Pearson correlation
o Universal or individual
o (Trainable) graph filtering
o GFR filter ("graph frequency response”, Fourier filter)
o GIR filter
o Extract features (power spectral densities)
o Classifier network (random fourier features layer (8), SVM-like)

Graph filtering
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Results - filter shape

@ Do trained filters generalise to
unseen data? k=22,

GIR filter GFR filter
o Test two filters: GIR and GFR wr o) = sl
o Use universal graph (blue) and 1
individual graph (orange) P I —
o Vary # filter coefficients -
@ Run each configuration 30 times (3 -« : e
sample sizes x 10 repeats) -
@ Results: s 1\0@ Ao
o same filters learned across repeats -1
)
<s:fx)r:ft:s.ﬂI\’:::isetljearned even if # . E\VN
lW\Qc /WW

0 5 10 15 20 o 5 10 15 20
sorted graph frequency i Chebyshev polynomial degree i
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Results - performance

o GIR filter:
o Universal graph GIR filter GER filter

o Test accuracy constant, below 857 857
baseline

e Individual graph

801
o sharply decreases with # ]
parameters

704

test accuracy [%]
o
3

o Explanation:
o E.g. GIR filter coefficient 617

65

corresponds to A7 g0 ™= universal graph 60
. . === individual graph
o Universal 6,7 different for | - baseline
individual graphs A},{ and A},Z B0 1 2 5i%es1z 0 1 2 5ites1z
# filter parameters k # filter parameters k

o GFR filter (Fourier filter):

o Test accuracy constant

o No difference between universal and individual graph
o Below baseline:

o null result
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Conclusion

Interpretation

@ Null result:
o Function of filtering not needed for classification network
o # filter parameters for GIR filter based on individual graph:
o More coefficients: more detailed filter

o Less coefficients: better generalisation

— Trade-off between detail and generalisation
o Interpretation in the literature:

o Less coefficients: less parameters (7)
o Only partly true!
o Optimal GIR filter likely not higher than k=3 or k=2

o Similar findings in the literature (k <= 3) (9)
o Holds even for large networks
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Appendix

Limitations of analogy

Time graph Arbitrary graph
FIR filter o Highly localised: FIR filter with @ Generally not localised:
k = 3 only covers 3 nodes of o Example: each node
time graph connected to 10 nodes

e impulse response of filter
with kK = 3 can cover up
to 10 x 10 = 100 nodes!

Fourier filter @ Graph is directed — @ Graph is typically
eigendecomposition is complex undirected —
o eigenvalues have same eigendecomposition is real
magnitude: @ eigenvalues with different
o ordering of frequency not by magnitude:
their eigenvalue magnitude o Clear ordering of
e "High" frequencies past frequency
Nyquist limit are actually o But higher frequencies
low frequencies carry less meaning
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