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Abstract— Signals measured with multiple sensors simul-
taneously in time form multivariate signals and are com-
monly acquired in biomedical imaging. These temporal
signals are generally not independent of each other, but
exhibit a rich spatial structure. Graph filtering, either spa-
tial or spectral, is a method that can leverage this spatial
structure for various preprocessing tasks, such as graph
denoising. Previous studies have focused on learning the
parameters of spatial graph impulse response (GIR) filters,
while neglecting spectral graph frequency response (GFR)
filters, even though GFR filters offer unique advantages in
terms of regularisation and interpretation. In this study,
we therefore compare learning GIR filters and GFR filters
as a trainable preprocessing step for two different neural
networks on an Alzheimer’s classification task. We tested
both a functional connectivity graph as well as a geometric
graph as the base of each filter type, and varied the
localisation of the spatial filter. As expected, the retrieved
shapes of the trained filters suggest that GFR filters can
be interpreted in terms of their graph structure, while the
same does not hold for GIR filters. Contrarily, however,
we found that only the geometric, highly localised GIR
filter outperforms the baseline significantly, surpassing it
by 3.8 percentage points. These findings suggest that the
observed performance boost of a trained localised GIR
filter may in fact not be due to the graph structure.
Instead, we hypothesise that this boost is caused by
favourable algebraic properties of the filter matrix.

Keywords— electroencephalogram, graph signal processing,
graph filtering, machine learning, Alzheimer’s disease.

I. INTRODUCTION

Neurophysiological signals are often multivariate sig-
nals, as multiple sensors or channels acquire time
series simultaneously. Notably, these time series are
not independent of each other: Correlations arise due
to the spatial proximity of the sensors or the causal
connectivity between the regions measured by the sen-
sors, forming a spatial structure in the multivariate
signal [1]. While this structure is commonly disregarded
in the spectral analysis of those signals, or analysed
separately, graph signal processing (GSP) has gained
traction over recent years as a framework that promises
to integrate the spatial structure into the signal analysis
[2, 3]. GSP methods have numerous applications for
biomedical imaging, such as magnetic resonance imag-

ing or electroencephalography (EEG) and include graph
denoising [4], graph spectral filtering [5], or the analysis
of graph frequency signals [6]. Common to all methods
listed here is that they linearly transform the multivariate
signals across space by means of the graph Fourier
transform, which is based on the spatial structure of the
signals. These tools can also be incorporated in larger
models for various subtasks, such as dimensionality
reduction [6] or graph pooling [7].

This study investigates graph filtering as a tool to pre-
process input data samples for downstream tasks. Two
main graph filtering approaches are compared, namely
spatial and spectral graph filtering. Graph spatial filter-
ing is used extensively in graph neural networks and
is based on the notion of localisation [8]. On the other
hand, graph spectral filtering is useful for tasks such as
graph denoising, which uses as low-pass graph filter to
reduce the graph total variation of an input multivariate
signal [5]. Setting the graph filter parameters manually
is arbitrary and may not result in optimal filtering.
A more general solution is to learn the graph filter
synchronous with the downstream task from the data.
This approach is not new: Previous research explored
learning the parameters of a localised GIR filter [8] or of
a GFR filter [9] for use in a graph neural network layer.
The former approach, called the ChebNet, has found
more widespread use as it is more localised and com-
putationally more efficient [10]. However, advantages of
GIR over GFR filters such as localisation, computational
efficiency, or parameter reduction may only hold for
large, sparse graphs. Therefore, they may not play a
role for neurophysiological signals, where graphs are
typically of the order of 100 nodes or less. On the other
hand, GFR filters have the advantage that filters can
be interpreted in terms of band-pass filters, which also
facilitates their regularisation.

Our approach in this study is to systematically compare
various GIR and GFR filters for data preprocessing, with
the intention to test their applicability as well as to gain
more insight into the parameters optimisation. To this
end, we implemented the two filter types as a trainable
preprocessing step for an EEG classification task. We
tested a patient-dependent functional connectivity graph
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as well as a geometric graph as the base for each
filter, while we vary the degree of localisation for the
GIR filter. Further, we apply each graph filters on two
different downstream EEG classification network archi-
tectures. While the first architecture uses engineered
low-frequency spectral features in the time domain, the
second architecture learns the feature extraction from
the data by means of a 1D convolutional neural network
(CNN). Computing the classification accuracy relative
to the graph type for each filter type allows to compare
the usefulness of the filter. We find that only the geo-
metric, localised GIR filter improves the classification
accuracy of the baseline models considerably by 3.8%.
On the other hand, the retrieved filter shapes give insight
into how the filters are learnt, by revealing whether
filters are learnt consistently and how the learnt filters
differ across different network architectures. We show
that the learnt parameters of our best-performing filter
are inconsistent, suggesting that the graph structure is
not crucial for performance.

II. THEORY

Graph filtering is a filtering method in the graph do-
main in analogy to classical filtering in the temporal
domain [2]. Similarly to the classical case, graph fil-
ters can both be constructed in terms of their graph
frequency response (GFR filter) or their graph impulse
response (GIR filter). Graph filtering can be employed
on multivariate signals with a spatial structure, which
is algebraically given by the graph adjacency matrix
A. The spatial structure can also be described by the
related Laplacian matrix L, which can be computed
from A as L=D−A, where D= diag(A1) is the degree
matrix of A and 1 is a column vector of ones. We can
interpret the adjacency matrix as a graph shift operator
and the Laplacian matrix as a graph difference operator.
The eigenmodes of this graph difference operator, i.e.
the sorted and normalised eigenvectors of L, constitute
the rows of the orthonormal Graph Fourier Transform
matrix GFT (for more details, see Ortega et al. [3]). Its
inverse is given by the transposed matrix GFT⊤.

A spectral GFR filter H(FR) operates on the spatial graph
signals x j ∈ RNc measured at time step t j, where Nc
is the number of sensors or channels. It transforms
each spatial signal x j ∈ RNc into the graph spectral
domain, linearly filters out the spectral components, and
transforms the signal back into the signal domain:

H(FR)x j = GFT⊤


h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...
0 0 · · · hn

GFTx j = x̃ j,

(1)

where x̃ j is the filtered spatial signal. The graph filter is
hereby characterised by the filter parameters hi, with 0≤
hi ≤ 1. The parameters hi with i < Nc/2 filter out low

graph frequencies corresponding to similarities between
the channels, while the remaining parameters filter out
high graph frequencies corresponding to differences. To
give an example, a GFR filter with all high-frequency
parameters set to zero filters out channel differences
and thereby noise; accordingly, the application of this
particular graph filter is also called graph denoising.

On the other hand, the spatial GIR filter is constructed
as a polynomial of either the graph shift operator [2],
in analogy to the classical case, or as a polynomial
of the graph difference operator. In the former case,
the degree of the polynomial term indicates how often
the graph operator “shifts” the signal along the graph,
meaning that lower-order terms correspond to localised
operations on the graph, while higher-order terms are
more global. We limit our study to the more common
construction with the graph difference operator [8]. The
filter coefficients θi are typically regularised as follows:
Firstly, the Laplacian matrix is normalised by dividing
it by its largest eigenvalue, L̃ = L/λmax. Secondly,
Chebyshev polynomials Ti are used, further adjusting
the coefficients. Thirdly, only filter coefficients up to a
cutoff k are considered, where lower k correspond to
higher spatial localisation. Hence, the GIR filter with
regularised coefficients acting on a graph signal x j is
given by:

H(IR)x j =

(
k−1

∑
i=0

θiTi(L̃)

)
x j = x̃ j. (2)

Importantly, any GFR filter can be expressed as a GIR
filter without cutoff, and vice versa, that is, there is a
one-to-one mapping between the Nc filter parameters
hi and θi. The principal difference between the two
filter types lies predominantly in how the parameters are
constructed or interpreted. Given the full multivariate
signal X ∈RNc×Nt , the graph-filtered multivariate signal
is computed as X̃ = H(FR/IR)X. Here, Nt is the number
of time steps, while the superscript (FR/IR) indicates
the choice of the filter type.

III. METHODS

III-A. Data Set

The data used in this study was acquired from 20
Alzheimer’s disease patients and 20 healthy controls
with a 23-channel EEG system at a sampling rate of
2048Hz, which we further downsampled by a factor of
10 to a sampling rate of 204.8Hz. For every patient
except one, 3 sections of roughly 12 seconds were
selected by a clinician, resulting in 119 samples. Each
sample can be windowed into smaller subsamples of
length 6 or 3 seconds to further increase the sample
size to 238 or 476, respectively. Note that the pseudo-
replicated samples corresponding to one patient are
not independent of each other. To cancel out volume
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Figure 1. Illustration of the graph filtering preprocessing stage in combination with the two network architectures. Either no
graph filter (back), a graph spectral filter (centre) or a graph impulse response filter (front) is applied to the input EEG sample,
whereby the filter parameters are trainable. The graph filter is based on the connectivity matrix, which can be computed either
from the input as the pairwise correlation, or from the geometry of the EEG electrodes. In the network stage, the first network
(upper, PSD-N) extracts power spectral densities and interprets them using a random Fourier features classifier. The second
network (lower) is a 1D CNN consisting of three convolutional layers

conduction artifacts, bipolar channels were created. Ad-
ditional details regarding the dataset can be found in
Blackburn et al. [11].

III-B. Graph Extraction

We extracted two types of graphs for the graph filtering.
The first type models the functional connectivity and
is estimated directly from the data, while the second
type models the geometric structure and is based on the
geometric location of the EEG electrodes. To extract the
functional connectivity graph, we compute one graph
A(FC)

p for each patient. Specifically, we compute the
entry ai j of A(FC)

p as the Pearson correlation for the
channel pair (i, j) with i ̸= j, incorporating the data of
all sampled sections of patient p. The diagonal entries
ai j are set to zero. Note that the symmetry of the
Pearson correlation entails the symmetry of the adja-
cency matrix, ai j = a ji. Note also that the correlation
between two channels can be negative, which means
that A(FC)

p is not necessarily positive semi-definite. As
a consequence, the eigenvalues of the Laplacian matrix
computed from the adjacency matrix can be negative.

Secondly, to compute the geometric graph A(G), we
use the midpoint ri between the theoretical geometric
locations of the EEG electrodes for each bipolar channel
i. The connectivity ai j ∈ A(G) between two bipolar
channels i and j is then computed as

ai j =

{
exp
(
− ∥ri−r j∥2

2
2ρ2

)
, if i ̸= j

0, otherwise,
(3)

where ∥·∥2 is the L2 norm, meaning that ∥ri−r j∥2 is the
Euclidean distance between the two bipolar channels.

We set the scaling parameter ρ to 50mm. Note that
as opposed to the functional connectivity graph, each
participant is assigned the same graph.

III-C. Trainable Graph Filter Preprocessing

We develop graph filtering as a trainable preprocessing
step preceding the EEG classification task, as shown in
Figure 1 on the left-hand side. The graph filter is either a
GFR or a GIR filter; no graph filter serves as a baseline
model. For the GIR filter, we test cutoff values of k = 2,
k = 12, and k = Nc = 23. This means that we tested 4
filter types and 1 baseline altogether. Each filter type can
be based on either the functional connectivity graph or
the geometric graph, resulting in 9 filter configurations.

The graph spectral filtering operation is given by a mul-
tiplication of the multivariate signal Xp of participant p
with the filter matrix H(FR)

p :

X̃p = H(FR)
p Xp = GFT⊤

p diag(h1, ...,hn)GFTp Xp. (4)

The matrix GFTp is based on the connectivity graph,
and depends on the participant p in the case of the
functional connectivity graph A(FC)

p . Note that the train-
able GFR filter coefficients hi universally apply to all
patients. We initialise the filter parameters hi as 0.5
with added noise and restrict them to the range [0,1] by
training the latent variables h̃i = S−1(hi), where S is the
logistic sigmoid function. This regularisation technique
significantly limits the possible graph filters to a much
smaller parameter space of viable filters.
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Table 1. Average testing accuracy over five runs for each model configuration. Bold font marks the best performing filter for filters
with the same configuration, while grey values mark values below the baseline. The results indicate that model configurations
using a GIR filter with a low cutoff k generally outperform both other filter types and the base model

testing accuracy [%] PSD-N 1D CNN

base GFR GIR base GFR GIR

graph retrieval length [s] k = 2 k = 12 k = 23 k = 2 k = 12 k = 23

Pearson correlation
3 82.0 82.1 82.7 78.3 73.5 61.2 60.6 60.9 51.1 45.8
6 82.8 81.9 83.4 79.4 71.8 60.6 58.3 56.3 49.2 46.3
12 83.5 83.7 84.9 80.3 70.3 59.0 60.5 59.0 48.1 47.7

geometric distance
3 82.0 81.0 82.3 81.5 82.5 61.2 63.8 71.3 71.4 69.4
6 82.8 82.4 84.1 82.5 83.3 60.6 61.0 67.6 64.4 60.6
12 83.5 83.0 84.0 83.4 83.0 59.0 60.0 62.5 61.2 60.2

Table 2. Linear model fit for all testing accuracy values.
Standard errors and p-values were computed using an analysis
of variance (ANOVA). Significance levels are indicated in
the footnote. The upper section displays the intercept testing
accuracy for each network for the baseline. The lower section
displays the percentage point relative to this baseline for each
filter configuration. Positive coefficients indicate that the filter
outperforms the baseline. The highest filter coefficient, marked
in bold, indicates a significant average accuracy gain of 3.8
percentage points as compared to baseline (no graph filtering).
The lowest filter coefficient is marked in grey

network testing accuracy coefficient [%]

PSD-N 82.5(7)***
1D CNN 60.5(7)***

GFR GIR

graph retrieval k = 2 k = 12 k = 23

Pearson corr. −0.3(9) −0.3(9) −7.1(9)*** −12.3(9)***
geom. distance 0.4(9) 3.8(9)*** 2.5(9)** 1.7(9).

Standard errors in parentheses
. p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Conversely, the GIR filter is given by

X̃p =

(
k−1

∑
i=0

θiTi(L̃p)

)
Xp = H(IR)

p Xp, (5)

where L̃p is based on either the patient-dependent
functional connectivity graph A(FC)

p or the geometric
graph A(G). Here, the parameters θi are the trainable
parameters, which we initialise as zero with added
noise.

III-D. Network Architectures

The preprocessed data is passed to the network stage,
for which we tested two network architectures. The two
networks are shown in Figure 1 on the right-hand side.
The first network (PSD-N) interprets spectral features
in the time domain, namely power spectral densities
retrieved using Welch’s method, thereby implementing
a common strategy to classify Alzheimer’s disease [12].
As the spectral features do not need to be learned,
the network has only about 4,000 trainable parameters.

Specifically, 50 power spectral densities are extracted
in the range from 0.5Hz to 25Hz. The logarithmised
features are averaged across all channels and inter-
preted by a random Fourier features layer with an
output dimension of 2048, followed by a final dense
layer. We apply a dropout of 50% after the random
Fourier features layer for regularisation. Furthermore,
we use a hinge loss as the loss function, and optimise
our objective function using the Adam optimiser. The
random Fourier features layer in combination with the
hinge loss substitutes a support vector machine classifier
[13]. Unlike the support vector machine, however, the
random Fourier features layer can be trained and allows
gradients to be passed through the network stage back
to the preprocessing stage. Note that computing power
spectral densities uses the square function, which is not
a convex operation and may lead to additional local
minima in the objective function.

The second network architecture is a 1D CNN adapted
from Wang et al. [14]. Unlike the PSD-N, the 1D
CNN learns the feature extraction, which significantly
increases the number of trainable parameters to roughly
70,000. Each of the three network layers consists of a
convolutional layer and a ReLU activation function in
combination with a regularisation scheme. The convo-
lution is only carried out along the time with respective
filters of size 8, 5 and 3. Due to the limited size of
our dataset, we halved the number of filters in the three
layers as opposed to the original network to 64, 128
and 64, respectively. We applied 50% dropout after
the activation function to regularise the network. The
averaged features of the last layer are interpreted by
a dense layer and converted to probabilities using the
softmax function. As in the first network architecture,
the gradients were optimised using the Adam optimiser.

Both networks serve as baselines and allow to mea-
sure the effect of graph filter preprocessing on the
performance, relative to graph type and graph retrieval
method. Suitable hyperparameters of both baseline net-
work architectures were determined through preliminary
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Figure 2. (A,C) Mean shape for GFR filter (A) and GIR filter with k = Nc (C), averaged across sample window length and
repeats. Shaded regions indicate the standard error. Values outside the grey area indicate low frequency (A) or low polynomial
degree (C). (B, D) Correlation of filters between the configurations (off-diagonal) or within the same configuration (diagonal).
Squares below the diagonal indicate filter correlations restricted to low frequencies or low polynomial degrees, corresponding to
values outside the grey area in (A) and (C). Mean filter shapes in (A) align slightly at lower frequencies, in line with correlations
of up to 0.40 between 1D CNN configurations in (B). Auto-correlations for the 1D CNN are particularly high at 0.76 (geom.)
and 0.73 (corr.). Filter shapes in (A) corresponding to the 1D CNN exhibit a slight downward trend. GIR filter values in (C) do
not deviate strongly from the initialisation value of 0.50. Correlations of the learnt GIR filter shapes in (D) are negligible

testing. As this study is primarily focused on relative
performance differences between model configurations
with the same network architecture, the hyperparameters
were not further optimised.

III-E. Network Combinations

Combining the 9 filter configurations of the preprocess-
ing stage with the 2 networks results in overall 18 mod-
els. Furthermore, we tested input sample lengths of 3, 6
and 12 seconds for each of the models, amounting to 54
model configurations overall. Each model configuration
was run 5 times to limit network initialisation effects.

III-F. Training and Testing

All models were trained for 100 epochs at a learning
rate of 0.001. Due to the relatively small size of the
dataset, the batch size was set to 8. We employed 10-
fold cross validation, meaning that 90% of the dataset
were used for training and the remaining 10% for testing
in each iteration. Samples of each patient were strictly
kept in one fold to avoid data leakage. Specifically, the
samples of 2 patients of each condition were assigned
to the testing set, while all other samples were used for
training.

IV. RESULTS

Table 1 shows the testing accuracy for each model
configuration, averaged over 5 runs. In order to retrieve

the accuracy enhancement for each filter, relative to
the baseline, we fitted a linear model to the data and
performed an analysis of variance (ANOVA) to retrieve
standard errors and significance levels, as shown in
table 2. The model includes one coefficient for each
combination of filter and graph retrieval type, and one
coefficient for each network. The results indicate that
the PSD-N achieved a base accuracy of 82.5%, which is
comparable to typical Alzheimer’s disease classification
accuracies between 80% and up to 90% [15]. The 1D
CNN only achieved a base accuracy of 60.5%, thereby
scoring roughly 22 percentage points lower than the
PSD-N. While the geometric GFR filter outperformed
the correlation GFR filter by roughly 0.7 percentage
point, neither filter deviates significantly from the base-
line. The geometric GIR filter with k = 2, however,
outperformed the baseline by 3.8 percentage points with
high significance. Both increasing the number of filter
parameters or basing the filter on the correlation im-
paired the performance. The accuracy of the correlation
GIR filter without cutoff is 12.3 percentage points lower
than that of the baseline.

Figure 2 shows the learned GFR (A) and the GIR filter
with k = 23 (C) visually, averaged over the window
length and repeats, along with the respective mean
correlation of all filters within (diagonal) or between
configurations in (B) and (D). In (A), the CNN GFR fil-
ters may function as a low-pass filter, indicative of graph
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denoising. The PSD-N, on the other hand, considers
only low-frequency features; correspondingly, the GFR
filters are neither low-pass nor high-pass filters. Further,
the filters appear to correlate at lower graph frequencies.
This intuition is supported by the correlation matrix in
(B), which shows that the shape correlation for CNN
filters across graph types is 0.40, and even as high as
0.24 across configurations with different graph type and
network. The correlation matrix also shows that filter
shapes are consistent within the same configuration,
with values of up to 0.76.

In (C), the learnt GIR filter shapes with k = 23 show
no significant deviation from its initialisation values,
indicating that the filter optimisation may have failed.
The respective correlation matrix in (D) demonstrates
that the filter shapes are not consistently learnt, even
not within the same configuration.

V. DISCUSSION

In this study, we found that a geometric, highly localised
GIR preprocessing filter improved the accuracy across
two EEG classification networks highly significantly
by 3.8 percentage points. This result demonstrates the
usefulness of graph filter preprocessing for neurophysio-
logical classification specifically, and multivariate signal
classification more generally. In line with Kipf and
Welling [16], we observed that increasing the number
of filter parameters reduces the accuracy. Our analysis
of the filter shapes suggests that too many parameters
hinder the optimisation of the graph filter, possibly be-
cause the additional parameters add more local minima
to the objective function.

We further showed that the learnt GFR filters cor-
relate with each other at low graph frequencies and
could be interpreted in terms of their function, such
as graph denoising, for the network. This indicates
that GFR filters are better regularised and add fewer
local minima to the objective function; however, these
advantages did not translate into performance gains.
Learnt GIR filters, on the other hand, are not consistent
across configurations and repeats, suggesting that they
poorly reflect the graph structure. We propose that their
usefulness for preprocessing stems from algebraically
suitable properties of the filter instead. Future studies
may verify our hypothesis by basing the GIR filter on
arbitrary graph structures and investigating the algebraic
properties of the resulting filters.
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