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I. INTRODUCTION 

Deep learning-based methods have powered recent advancements in medical image segmentation, 
accelerating the field past previous statistical and Machine Learning-based methods [1]. This, however, has 
simultaneously created a need for large quantities of labeled data, which is difficult in domains such as 
medical imaging where labeling is expensive and requires expert knowledge. Semi-supervised learning 
(SSL) addresses these limitations by augmenting labeled data with large quantities of more widely available 
unlabeled data. Existing semi-supervised frameworks based on pseudo-labeling [2] or contrastive methods 
[3], however, struggle to scale to the high resolution of medical image datasets. In this work, we propose 
the Histopathology DatasetGAN (HDGAN) framework, an extension of the DatasetGAN framework for 
image generation and segmentation that scales well to large-resolution histopathology images. We make 
several adaptations on the original framework, including updating the generative backbone, selectively 
extracting latent features from the generator, and switching to memory-mapped arrays. These changes 
reduce the memory consumption of the framework, improving its applicability to medical imaging domains. 

Previous works have shown that generative models learn a powerful, detailed latent space representation 
while learning to generate images [4]. DatasetGAN [4] leverages this property for semantic segmentation 
by performing pixel-wise classification on the latent features of Generative Adversarial Networks (GANs) 
to generate segmentation maps. Our work focuses on improving upon the DatasetGAN framework to 
increase its applicability and computational feasibility on high-resolution medical image datasets. 

II. METHODS 

The dataset for our experiments consisted of 1,577 whole slide images (WSIs) taken from 100 native kidney 
biopsies; 50 with a diagnosis of thrombotic microangiopathy (TMA) and 50 mimickers of TMA, with 
similar or overlapping histopathological features in which a different diagnosis was made. The WSIs are 
taken from the three medical centers (Cologne, Weill-Cornell and Turin) and included at least three of the 
four diverse histopathological stainings: hematoxylin-eosin (HE), periodic-acid Schiff (PAS), Jones silver 
and trichrome, all scanned with a x40 objective. In this work, we pre-process the WSIs by first extracting 
4096x4096 tiles which contained morphological compartments of interest. We then filtered out tiles which 
consisted of mostly whitespace, resulting in a dataset of 32,732 tiles. We split the tiles into 5 folds and 
trained our StyleGAN model on 4 of the folds, leaving one out as a holdout. 

Our framework builds upon the original DatasetGAN framework proposed in [4]. The core idea is, given a 
latent vector z that is passed through the generator, we can extract the latent feature activations from 
convolutional layers of the generative network. These feature maps contain semantic information about the 
image being generated, and therefore are useful for pixel-wise segmentation tasks. The feature maps, which 
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are extracted at different resolutions from the generator network, are upsampled to match the output image 
size and concatenated, yielding a single three-dimensional feature map tensor. With annotations on a small 
number of generated images, a small classifier is then trained to predict segmentation maps in a pixel-wise 
fashion from the extracted feature maps.  

We extend this framework to high-resolution histopathology images by making several adjustments. First, 
we use StyleGAN2-ADA [5] as our generative backbone, which has proven to work well in limited data 
settings and at higher resolutions. Second, unlike [4], we choose to only extract and upsample latent features 
from the last 5 blocks in the synthesis module of the generator network, as shown in Figure 1, yielding 
feature maps which contain more fine-grained semantic information. Utilizing only these later features is 
sufficient for our pixel-wise segmentation task, and drastically 
reduces the amount of computation and upsampling required in 
the framework. To further decrease memory consumption 
during training on large histopathology images, we use memory-
mapped arrays to load only portions of the feature map tensor 
currently in use. This allows us to scale our framework to 4096 
x 4096 TMA tile segmentation, with samples shown in Figure 2. 
For our pixel-wise classifier, we use a 3-layer Multilayer 
Perceptron (MLP) with ReLU activations, Batch Normalization 
[6], and Dropout [7]. We train using vanilla stochastic gradient 
descent with a learning rate of 0.0001. 

We evaluate the HDGAN framework on a 5-class semantic 
segmentation task on the TMA tile dataset. First, we generate 
500 images with a truncation of 0.7 using our trained 
StyleGAN2-ADA network, saving the corresponding latent 
vectors. 36 of the 500 images were then selected for our dataset 
by an expert nephropathologist, who provided pixel-wise 
annotations of each morphological compartment for these 36 
images. We randomly chose 16 images as the training set for the 
pixel-level classifiers, leaving 4 images for validation and the 
remaining 16 images as the test set. For baseline experiments, 
we refer readers to the original DatasetGAN paper [4] for 
comparisons to semi-supervised baselines. 

 
Figure 1. Histopathology DatasetGAN framework overview. 

 
Figure 2. Examples of synthesized images from 
HDGAN framework. (a) shows generated tiles 
from StyleGAN, (b) predicted segmentation map, 

and (c) ground truth segmentation. 
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III. RESULTS 

In Table 1 we report the class-wise pixel-level accuracy of the pixel-
classifier on our test set. As expected, the pixel-level classifiers achieve 
high classification accuracy on several morphological compartments, 
with an average dice coefficient of 0.92 on the test set images. The 
classifiers struggle, however, when morphological structures in 
generated images resemble two different compartments, often 
misclassifying arteriole pixels as either glomeruli or artery. This 
semantic blending was confirmed by our expert annotator, sometimes 
forcing the annotator to choose between different class labels when a 
generated compartment had features of both classes. 

IV. FUTURE WORK 

The HDGAN framework suffers limitations when the generative backbone is not trained well on the original 
dataset. This manifested itself in the produced segmentation maps as noisy contours around compartments, 
where the semantic meaning held in the feature space of the generative networks was not decisively one 
compartment or another. Future work exploring the latent space of generative networks in relation to 
semantic meaning of morphological compartments could help disentangle the feature space and result in 
cleaner segmentation maps. Alternatively, future work could explore directly producing the segmentation 
map as an output of the generative model. 
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Table 1. Class Pixel-wise Accuracy 

Class Accuracy (%) 
Whitespace 68.42% 
Cortical 

Tubulointerstitium 66.57% 

Glomerulus 82.89% 
Arteriole 52.09% 
Artery 77.82% 
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• Deep Learning-based image generation and 
segmentation networks hold great potential 
for augmenting and segmenting scarce 
histopathology image datasets
• One of the most pressing limits is the need for 

large quantities of labeled histopathology 
data
• Previous frameworks are too computationally 

expensive for high resolution histopathology 
images
• The aim of this work is to propose the semi-

supervised Histopathology DatasetGAN 
framework, with adaptations for application to 
high-resolution images and scarce medical 
image datasets

INTRODUCTION

METHODS

Figure 1. Histopathology DatasetGAN framework overview

ARCHITECTURE CONCLUSION

• Using a subset of latent features, the HDGAN 
framework successfully predicts segmentation 
masks for kidney biopsy images
• Glomeruli and arteries had the highest pixel-

wise segmentation accuracy

FUTURE WORK

• Explore latent space of generative network to 
investigate noisy contours in predicted masks, 
where semantic meaning in the feature space 
does not decisively indicate one class or 
another
• Apply methodology to other medical image

datasets
• Explore developing a generative architecture 

which directly produces segmentation maps 
alongside images as output
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• Our dataset consists of 1,577 whole slide 
images (WSIs) from 100 kidney biopsies, 50 with 
a diagnosis of thrombotic microangiopathy 
(TMA) and 50 mimickers of TMA
• We extract 4096x4096 resolution tiles from the 

WSIs, and remove tiles composed primarily of 
whitespace, yielding 32,732 tiles for training the 
generative network
• For semantic segmentation, we annotate 36 

generated images with 5 morphological class 
labels. We use 16 of the images to train the 
pixel classifier, and hold out 4 and 16 images 
for validation and test, respectively
• We utilize the StyleGAN2-ADA generative 

network, which has proven to work well in 
limited data scenarios
• We pass a latent vector, 𝑧, through the 

StyleGAN2 network and extract feature maps 
after each convolutional layer in the last 5 
synthesis blocks
• Feature maps are upsampled to match the 

original image resolution, and a 3-layer 
multilayer perceptron is applied to classify 
pixels into a segmentation mask
• HDGAN framework is illustrated in Figure 1
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RESULTS

• Pixel-wise classifier achieves high accuracy 
on several morphological components in 
semantic segmentation task
• Average dice coefficient of 0.92 on test set

images
• Predicted segmentation maps closely align

with ground truth mask, with some semantic
blending between morphological 
components (e.g., Glomeruli and Arteriole)
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Figure 2. Examples of synthesized images (a) from HDGAN framework, alongside predicted 
segmentation maps (b) and ground truth masks (c).


