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I. INTRODUCTION

Dynamical , causal and cross-frequency coupling analysis using the EEG has received significant interest for
the analysis and diagnosis of neurological disorders [1, 2, 3]. Due to the high computational requirements
needed for some of these methods, EEG channel selection is crucial [4]. Functional connectivity (FC)
between EEG channels is often used for channel selection and connectivity analysis [4, 5, 6]. Ideally, in
the case of selecting channels for dynamical and causal analysis, FC methods should be able to account
for linear and nonlinear spatial and temporal interactions between EEG channels. In neuroscience, FC is
quantified using different measures of (dis)similarity to assess the statistical dependence between two signals
[5]. However, the interpretation of FC measures can differ significantly from one measure to another[5, 7].
In the early diagnosis of AD, [7] showed correlations among various (dis)similarity measures, and therefore
these measures can be grouped. Thus, one from each is sufficient to extract information from the data [7].
Therefore, the development of a generic measure of (dis)similarity is important in FC analysis.

To learn the spatial and temporal structures within the data, in this study, kernel-based nonlinear manifold
learning is used. We introduce a novel EEG FC analysis method to determine a subset of important channel
inter-relationships for dynamical and causal analysis. For instance the changes due to neurodegeneration,
e.g. Alzheimer’s disease (AD), on global and local brain dynamics. Our FC analysis method uses robust
kernel Isomap as initialisation to the latent space for the Gaussian Process Latent Variable Model (Isomap-
GPLVM). The Isomap-GPLVM method is used to learn the spatio-temporal local and global (dis)similarities
present within the EEG data. The resulting kernel matrix quantifies this information as a generic measure of
(dis)similarity and can be used to assess linear and nonlinear FC, between EEG channels.

In this work, EEG data from healthy controls (HC) and patients with mild to moderate AD are used as a
case study. Kernel (dis)similarity matrices for each participant are evaluated and linear SVM classification
is used to assess how well our FC measure can differentiate between HC and AD groups. FC analysis for
both eyes-open (EO) and eyes-closed (EC) conditions are shown. Classification performance between our
measure and other commonly used FC measures is highlighted to show the efficacy of our method.

II. DATA

The specifics of the experimental design, diagnosis, data acquisition and EEG electrode placements are pro-
vided in [8]. In summary; three 12-second epochs of EO/EC EEGs from 20 HC and 20 AD participants
are used in this study. The following 23 bipolar channels, from a 10-20 international electrode arrange-
ment, were used for this work: F8–F4, F7–F3, F4–C4, F3–C3, F4–FZ, FZ–CZ, F3–FZ, T4–C4, T3–C3,
C4–CZ, C3–CZ, CZ–PZ, C4–P4, C3–P3, T4–T6, T3–T5, P4–PZ, P3–PZ, T6–O2, T5–O1, P4–O2, P3–O1
and O2–O1. EEG frequencies between 2 to 100Hz are only used. Frequency components around 50Hz
(49.5-50.5Hz) were removed to avoid any contamination by AC power line noise. Unwanted frequency
components were removed using the fast Fourier transform (FFT) and inverse-FFT. Time-domain signals
were then down-sampled from 2kHz to 200Hz. The EEG data are then normalised to zero mean and unit
variance.
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III. METHODS

Manifold learning methods learn local similarities or global dissimilarities within the data and embed this
information in the lower-dimensional space (or latent space) [9]. Methods that imply a data-to-latent space
mapping, such as Isomap and KernelPCA, preserve local similarities in the latent space[9]. Conversely,
methods such as GPLVM, which imply a latent-to-data space mapping, preserve global dissimilarities [9].
In kernel-based manifold learning methods, the kernel describes the learnt linear/nonlinear structures within
the data in the form of pairwise (dis)similarity. Therefore, such methods can be used to obtain a lower-
dimensional representation of spatio-temporal structures within EEG data. Through temporal dimensional
reduction, the kernel matrix obtained will reflect this information as a measure of (dis)similarity between
EEG channels and will be named a kernel (dis)similarity matrix.

The methodology presented in this work compromises between learning local similarities and global dis-
similarities. This is achieved by using robust kernel Isomap [10] to initialise GPLVM; we name it Isomap-
GPLVM. Robust kernel Isomap approximates the geodesic distance to obtain a lower-dimensional repre-
sentation of the data, preserving local similarities and providing a method to eliminate critical outliers
[10, 9]. The choice of the latent dimension determines the size of the lower-dimensional representation
after dimensionality reduction. GPLVM, a kernel-based probabilistic latent variable model, uses the Isomap
representation of the data as an initialisation of the latent space. GPLVM then operates on this latent space
according to the distance between the high-dimensional data points, preserving global dissimilarities [9].
GPLVM achieves this by maximising the marginal likelihood of the data space with respect to the latent
space and the kernel hyper-parameters. The latent space to data space mapping in GPLVM is a function
of the kernel matrix [11] and determines the regions of similarity and dissimilarity between latent variables
[12]. The kernel matrix contains both local similarity and global dissimilarity information that is learnt from
the data and will be called the kernel (dis)similarity matrix. The Radial Basis Function (RBF) is used as
the kernel function for GPLVM. Therefore, the kernel matrix will represent the local/global (dis)similarities
learnt as a generic measure of similarity. The RBF kernel is used as the kernel function for GPLVM as it has
the universal approximation property and can be integrated into most functions to achieve smooth mapping
from latent space to data space [12].

Reducing the temporal dimension in each EEG data, participant-specific kernel (dis)similarity matrices of
the HC and AD groups are evaluated using Isomap-GPLVM for all three epochs. The choice of the latent
dimension and the initial conditions for the hyper-parameters for the RBF kernel are chosen (via grid search)
depending on how well the pairwise features from HC and AD kernel (dis)similarity matrices can distinguish
between the groups. Linear SVM with Monte-Carlo cross-validation (SVM-MCV) is used to assess this.
The initial conditions that result in the highest area under the receiver operator curve (AU-ROC) are chosen.
The training set comprises 10 HC and 10 AD kernel matrices randomly picked from the first epoch. The
testing set is composed of the remaining 10 HC and 10 AD kernel matrices from the first epoch. The testing
set will also include all the HC/AD kernel matrices from the second and third epochs. 1000 such random
samples are taken to generate several testing and training sets. The average AU-ROC from the testing
sets is used to assess the performance. Due to the small data set, this cross-validation strategy is deemed
appropriate to obtain a fair balance.

IV. RESULTS

The 23 bipolar montage EEG channels used can be grouped according to the respective underlying cortical
regions as follows; Occipital: O1-O2, P4-O2, P3-O1, T5-O1, T6-O2. Parietal: P3-PZ, P4-PZ. Temporal:
T3-T5, T4-T6. Centro-Parietal: C3-P3, C4-P4, CZ-PZ, C3-CZ, C4-CZ. Centro-Temporal: T3-C3, T4-C4.
Fronto-Central: F3-C3, FZ-CZ, F3-FZ, F4-FZ, F4-C4. Frontal: F7-F3, F8-F4. Fronto-Central and Centro-
Parietal regions can be grouped as Fronto-Parietal. EEG is a scalp level sensor with a low spatial resolution.
It does not measure the actual activity of the cerebral cortex. Cortical area name is used as a marker.
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The AU-ROCs of our kernel (dis)similarity based FC measure are 0.70± 0.04 and 0.73± 0.05 (EO and
EC respectively). Applying SVM-MCV to commonly used FC measures, the AU-ROCs for correlation
are 0.67± 0.04 and 0.68± 0.05. For phase-lag value (PLV) 0.70± 0.04 and 0.74± 0.04. In the above
comparisons the the former AU-ROC stated is for the EO case and the next is for the EC case.

The Mann–Whitney U test is applied for statistical comparison and the Benjamini-Hochberg false discov-
ery rate controlling method to mitigate the problem of multiple statistical comparisons. This was applied
element-wise to the resulting kernel (dis)similarity matrices between the groups. This information is il-
lustrated in Figure 1 in the form of a matrix where blue indicates the statistically significant EEG channel
pairwise (dis)similarities. Both conditions EO and EC are shown. A summary of the comparisons is given
below.

Common statistically significant FC changes in both conditions–between channels from the regions; Parietal
and Occipital, Parietal and Fronto-Parietal, Fronto-Central and Centro-Parietal. However, these pairwise FC
changes had low average weightings in SMV-MCV. A notable observation that had a higher weighting
in both cases is the significant FC changes between channel T6-02 (index 4, located in the bottom right
hemisphere) and the channels from regions Parietal, Fronto-Parietal, and Frontal.

Occipital

Parietal

Temporal

Centro-Parietal

Centro-Temporal

Fronto-Central

Frontal

O
c
c
ip
it
a
l

P
a
ri
e
ta
l

T
e
m
p
o
ra
l

C
e
n
tr
o
-P
a
ri
e
ta
l

C
e
n
tr
o
-T
e
m
p
o
ra
l

F
ro
n
to
-C
e
n
tr
a
l

F
ro
n
ta
l

Occipital

Parietal

Temporal

Centro-Parietal

Centro-Temporal

Fronto-Central

Frontal

O
c
c
ip
it
a
l

P
a
ri
e
ta
l

T
e
m
p
o
ra
l

C
e
n
tr
o
-P
a
ri
e
ta
l

C
e
n
tr
o
-T
e
m
p
o
ra
l

F
ro
n
to
-C
e
n
tr
a
l

F
ro
n
ta
l

EO EC

Figure 1. Statistically significant group differences in EEG FC – comparison of EO and EC. Blue indicates significant change in
the respective pairwise channel FC between groups

V. CONCLUSIONS AND FUTURE WORK

This study presents a novel EEG channel FC measure. Kernel-based manifold learning was used to learn
(dis)similarity information within the EEG data to determine important FC changes between pairs of EEG
channels, in the case of AD. Compromising between global and local spatio-temporal structures within the
EEG data for linear and nonlinear FC analysis is a main feature of our method. Following this work, a more
comprehensive FC analysis and comparisons with a range of common FC measures are required. By includ-
ing more participant data, the methodology can potentially be used as a diagnostic tool for neurodegenerative
diseases, which not only gives a classification but also provides an analysis of FC changes.
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Results: Eye-Open (EO) and Eye-Close (EC) 

comparison

• The Mann–Whitney U test and the Benjamini-Hochberg 

false discovery rate controlling method was applied 

element-wise to the resulting kernel (dis)similarity 

matrices between the groups.

• Common statistically significant FC changes in both 

conditions--between channels from the regions; 

• Parietal and Occipital

• Parietal and Fronto-Parietal

• Fronto-Central and Centro-Parietal

• However, the above pairwise FC changes had low average 

weightings in SMV-MCV.

• A notable observation that had a higher weighting in both 

cases, EO and EC, is the FC changes between a channel in 

the right occipital region and the channels from regions 

Parietal, Fronto-Parietal, and Frontal

Results: Classification comparison

Conclusions and Future Work

• This study presents a novel EEG channel FC measure.

• A more comprehensive FC analysis and comparisons with 

a range of common FC measures are required.

• The methodology has potential to be developed as a 

diagnostic tool for neurodegenerative diseases, which not 

only gives a classification but also provides an analysis of 

FC changes.

Kernel-based Nonlinear Manifold Learning for EEG Functional Connectivity Analysis with Application to Alzheimer’s Disease
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Background

• Functional connectivity (FC) is quantified using 

different measures of (dis)similarity to assess the 

statistical dependence between two signals.

• The interpretation of FC measures can differ 

significantly from one measure to another.

• Therefore, the development of a generic measure 

of (dis)similarity is important in FC analysis.

• This study presents a novel EEG channel FC 

measure attempting to generalise FC.

• Kernel-based manifold learning was used to learn 

(dis)similarity information within the EEG data to 

determine important FC changes between pairs of 

EEG channels, in the case of AD.

Isomap – GPLVM 

• The methodology compromises between learning 

local similarities and global dissimilarities.

• This is done by using robust kernel Isomap to 

initialise Gaussian Process Latent Variable Model 

(GPLVM) – Isomap-GPLVM.

• Robust kernel Isomap forms the initial latent 

positions by preserving local similarities and 

providing a method to eliminate critical outliers.

• GPLVM then operates on these latent positions 

accordingly to embed global dissimilarities.

• The latent space to data space mapping in GPLVM 

is a function of the kernel matrix.

• Therefore, the learnt (dis)similarity information is 

reflected on the kernel as a generic measure of 

similarity – kernel (dis)similarity matrix.

• Initial conditions for the kernel hyper-parameters 

and the desired latent dimension is chosen via 

grid search to achieve the best average area under 

the receiver operator curve (AU-ROC).

• Classification is done using linear SVM with a 

Monte-Carlo cross validation strategy (SVM-MCV).

Method Average AU-ROC 

EO EC

Isomap-GPLVM 0.70 ± 0.04 0.73 ± 0.05

Correlation 0.67 ± 0.04 0.68 ± 0.05

Phase Lag Value (PLV) 0.70 ± 0.04 0.74 ± 0.04
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Overview of the Isomap-GPLVM methodology
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