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I. INTRODUCTION

Gene Regulatory Networks (GRNs) depict the causal regulatory interactions between transcription factors
(TFs) and their target genes [2], where TFs are proteins that regulate gene transcription. GRN plays a vital
role in explaining gene function, which helps to identify and prioritize the candidate genes for functional
analysis [3]. Currently, high-dimensional transcriptome datasets are produced from high-throughput se-
quencing techniques, such as microarray and RNA-Seq. These techniques can capture the differences in the
expression of thousands of genes at once. Through these wet-lab experiments, studying the interconnections
among a large number of genes or TFs at a network level is challenging [4]. Therefore, one of the impor-
tant topics in computational biology is the inference of GRNs from high-dimensional gene expression data
through statistical and machine learning approaches [2].

There is a vast literature on using machine learning and statistical methods to reconstruct GRN from gene
expression data [2, 4]. Classical machine learning methods perform poorly on non-Euclidean objects, such
as networks or graphs. More recently, deep learning techniques have been extended to graph-based learning
approaches [2, 5]. The graph-based model identifies complex interconnections within a network instead of
only learning two ends of a relationship [1, 2], which makes it a suitable method for GRN inference and
has advantages over classical statistical inference approaches. Graph Neural Network (GNN) is one of the
emerging graph-based methods [5]. This technique can learn node embeddings by aggregating information
from topological neighbourhoods [2]. One of the GNN applications is link prediction, which can predict
missing links between two nodes in a network [1].

The GRN inference problem can be handled through link prediction, i.e. predicting missing links between
TFs and genes using the known links in the partially constructed network [1]. Adopting an autoencoder or
variational autoencoder for predicting links has helped to attain great performance transductively. Although
there are many types of architectures, graph convolution is popular among them [6]. Generally, the Graph
Autoencoder(GAE) is based on a Graph Convolutional Network (GCN). The study conducted by Kipf and
Welling [7] has designed a GAE along with a Variational Graph Autoencoder (VGAE), which is the prob-
abilistic variant of the former. Relating to this, graph convolution based on the GAE model has recently
been implemented to predict missing links in E. coli and yeast synthetic networks from the GeneNetWeaver
dataset [5]. From this study, it is proved that VGAE performs better than GAE in GRN link prediction. On
the other hand, to achieve superior accuracy in gene expression prediction, a one-dimensional Convolutional
Neural Network (1D-CNN) is employed as a feature extraction technique [10]. Therefore, In this study, we
propose a GCN-based graph autoencoder model with a 1D-CNN feature extraction module to enhance the
performance of the GRN inference.

II. DATA

The data used in this study is the gene-expression microarray data sets from E. coli in a Dialogue on Reverse
Engineering Assessment and Methods (DREAM) project, more specifically, DREAMS challenge [8]. E. coli
gold standard network from the DREAMS dataset consists of 4511 genes, 2066 verified interactions, and
805 samples. This dataset is used as a benchmark for training and testing the proposed method.
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III. METHOD

The proposed GRN inference method can be implemented in two steps: 1) Feature Extraction using a 1D
convolution neural network (1D-CNN) layer and 2) the GRN inference (link prediction) using GCN-based
GAE or VGAE.

Feature Extraction using 1D-CNN: A graph can be represented as G = (V, E); V represents a set of nodes,
and E is a set of edges between the nodes. In a GRN, genes are the nodes, and edges are the relationships
between the genes. To construct a GAE, this study uses gene expression as a node feature to learn the
relationship in the graph. To improve the performance of link prediction using graph autoencoder, a feature
learning approach has been implemented in the gene expression of each node. To learn the features, a
I1D-CNN is used. This is shown in Figure 1(a), where the raw gene expression matrix is the input, and
the output is a learned feature matrix. This extracted feature matrix is then used as the input of the GCN-
based GAE (Figure 1(b)). This feature extraction module consists of two convolutional blocks. Each block
consists of a 1D convolution (kernel size = 5, stride = 3), batch normalisation, ReLU activation function
and a maximum pooling layer (kernel size = 5, stride = 2). The convolution layer is designed to extract the
local features, and batch normalization is used to reduce overfitting. Since convolution is a linear operation,
to activate nonlinearity, a ReLU activation function is used. Moreover, max-pooling is adopted to reduce
dimensionality. The dropout layer (p = 0.2) is used to prevent overfitting.

GRN inference with GCN-based graph autoencoders: Autoencoder is a neural network consisting of both
an encoder and a decoder. The function of the encoder is to project the input data into a low-dimensional
latent space while the decoder reconstructs the input from the latent embedding. GAE architecture offers
several advantages over other graph-based methods. Firstly, it has the capability to map the graph data into
low-dimensional space. Secondly, it is one of the most effective graph embedding techniques among other
graph-based approaches, which also helps to control the computational cost [9].

GCN-based graph autoencoder is illustrated in the bottom part of Figure 1, which has three main compo-
nents: the input, which contains the node feature matrix and the adjacency matrix (Figure 1(b)), GCN-based
Autoencoder (Figure 1(c)), and the output as the reconstructed (predicted) GRN (Figure 1(d)). Figure 1(b)
demonstrates the input of a GCN-based graph autoencoder which contains an adjacency matrix A and node
feature matrix X. The adjacency matrix indicates the presence of the corresponding link in the network
by a matrix of booleans (0’s and 1’s). We propose two methods to obtain the node feature matrix. In the
first method, we use the original gene expression (without feature learning), and in the second method, a
1D-CNN is used for feature learning which is further discussed in section 3.1. The feature matrix is the
output of this model, and it is used as the input for the GCN-based graph autoencoder.

Figure 1(c) depicts GCN-based graph autoencoder methods. Two GCN-based graph autoencoder architec-
tures are utilised in this study which are the GAE and VGAE. GAE is an extension of autoencoder to graphs.
The encoder is a GCN and outputs a latent vector Z, where Z = GCN(A, X ). The decoder is executed through
the inner product among latent vectors (Z) with a sigmoid activation function (6(x) = 1/1+¢ ) to reconstruct
the adjacency matrix through learning the similarity of each node inside Z and outputs adjacency matrix A,
where A = 6(zZ7).

VGAE is an extension of GAE based on the variational auto-encoder [7]. The encoder of VGAE is shown

in equation 1, where Z; is the probabilistic version of the latent variable. Here y; is the matrix of the mean
vectors, L = GCNy (A, X) and o is the matrix of standard deviation vectors, log 6 = GCNg(A,X).

N
q(Z|A,X) = Hq(zl-]A,X), where q(zi|A,X) = N (zi| Wi, diag(6?)) (1)
'

1
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Figure 1. The overall architecture of a GCN-based graph autoencoder with 1D-CNN feature learning. The framework includes (a)
a 1D-CNN-based feature learning, (b) The graph links (connections) are divided into a training set (80%), validation set (10%) and
testing set (10%). Input for GCN-based graph autoencoder is adjacency matrix A and node feature matrix X where A is converted
from the training set of graph links, and X is either raw Gene Expression or Feature matrix from the output of 1-D CNN (c) a
GCN-based graph autoencoder (Encoder, Node Embedding, Decoder), and (d) the output is the predicted graph.

The decoder of VGAE is constructed similarly to before. The inner product among latent variables is given
in equation 2, where A;; is the elements of A and & is the sigmoid activation function.

N N
p(A1Z) =TT 1r(Aijlzi,z), where p(Ai; = 1|zi,2;) = 6(2] 2;) 2
i=1J=1

Finally, equation 3 provides the function used to optimize the variational parameters. Here, KL[g(.)||p(.)] is
the Kulback-Leibler (KL) divergence among ¢(.) and p(.). p(Z) is a Gaussian prior in the KL divergence,

ie. p(Z) =1Lip(z) =ILA (2l0,1)).
£ = Eyziax)llog p(A|Z)] — KL[g(Z|A,X) || p(Z)] 3)
IV. RESULTS AND CONCLUSIONS

Table 1. Evaluation of proposed methods

In this study, the GRN inference using GCN-based graph autoen- Model AUC | Precision

coders has been conducted and compared using the following com- GAE f/?g NN 8';(5)22 g'gggg
bination of methods. GAE method with 1D-CNN feature extractor VGAE 08193 03434

module, GAE without feature learning, VGAE with 1D-CNN fea- [VGAE + ID CNN | 0.8343 0.8836
ture learning and VGAE method with 1D-CNN feature learning.
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The results of all the described models are listed in Table 1. To evaluate the performance of these models,
the study uses Area Under the Curve (AUC) and precision. It is evident that ID-CNN has enhanced the
performance of GCN-based graph autoencoders. Moreover, VGAE performs better than GAE because of
its probabilistic nature.

In summary, this study has explored link prediction in GRN by using graph neural network methods. We
demonstrate that VGAE performs better than GAE and including a 1D-CNN feature learning module leads
to an increased performance of GCN-based GAE and VGAE. Future studies might explore other feature
learning methods and how those methods impact on link prediction of GNN models.
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