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The development of automated sleep apnea detection algorithms is an emerging topic of interest [1, 2]. The
main aim of automation is to reduce the time and cost associated with manually scoring polysomnogram
(PSG) tests [3]. To automate the process, traditional algorithms attempt to mimic the human observer by
implementing a series of predefined rules, such as the American Academy of Sleep Medicine’s (AASM)
scoring guidelines [4]. Recently, data driven methods have emerged [5]. Electroencephalogram (EEG)
frequency is known to be an important feature for both the human observer and data driven methods for
sleep staging classification. This study presents the initial findings for a novel approach to sleep stage
analysis. EEG time-frequency analysis is used to characterise the dominant frequency with respect to time,
specifically at the point of sleep stage transition. Poor inter-scorer agreement at sleep stage transitions is a
noted limitation of current manual and automated methods as the point of transition is poorly defined [6].
The goal of this study is to further discuss on the topic of sleep staging automation and explore alternative
and novel features to improve the inter-scorer reliability of sleep staging.

Clinically annotated PSG data were acquired from the “You Snooze You Win: The PhysioNet/Computing
in Cardiology Challenge 2018” [7, 8]. EEG channel O1-M2 was selected for initial investigation. The
dataset contains 994 overnight PSG recordings of approximately eight hours each, with clinical annotations
provided. Six sleep stage annotations were possible (N1, N2, N3, R, U, W) Stages N1, N2 and N3 represent
progressively deeper sleep, R represents REM sleep, U represents an undefined sleep stage, used for clinical
ease and W represents wakefulness. All 994 recordings were used in this study. Sleep stages were scored
in 30 second windows as recommended [4]. Given the annotations provided, six sleep stages were possible,
for a total of 36 transition categories. Sleep stage transitions were grouped by category as shown in Table 1.
It should be noted that successive annotations occurred e.g., N1→N1 in the data, however, as no sleep stage
transitions occurred these instances were excluded from analysis.

Table 1. Exhaustive Sleep Stage Transition Categories

N1 N2 N3 R U W
N1 N1 → N1 N1 → N2 N1 → N3 N1 → R N1 → U N1 → W
N2 N2 → N1 N2 → N2 N2 → N3 N2 → R N2 → U N2 → W
N3 N3 → N1 N3 → N2 N3 → N3 N3 → R N3 → U N3 → W
R R → N1 R → N2 R → N3 R → R R → U R → W
U U → N1 U → N2 U → N3 U → R U → U U → W
W W → N1 W → N2 W → N3 W → R W → U W → W

Sixty seconds of data were acquired for each sleep stage transition, 30 seconds before and after the point
of transition. This windowing gave two epochs as defined by the AASM scoring guidelines. A continuous
wavelet transform (CWT) with frequency bounds of 0.05-86.8 Hz was performed on each windowed signal.
For ease of comparison, figures referring to ‘standardisation’ were re-scaled from 0.05-86.8 Hz to between
0 and 1, using (value−min)/(max−min). In this study, CWT was used due to its time and frequency
localisation and hence ability in analysing non-stationary signals. Time-frequency ridge analysis was sub-
sequently performed on the CWT data, per windowed signal. An example of the CWT output, with sleep
stage transition centered in the x-axis, and dominant time-frequency ridge marked as a solid black line, is
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shown in Figure 1. The time-frequency ridges were segregated by sleep stage transition categories. While 36
categories were possible, 23 were populated based on the sleep stage transitions within the data. Sleep stage
category transitions varied from 10,000 sleep stage transitions (truncated for computation purposes), to 0
sleep stage transitions. Presentation of all 23 populated stages is outside the scope of this poster. Two stages
with a truncated maximum value of 10,000 will instead be considered. These transitions were N2→N3 and
N3→N2.

Figure 1. An example of a 60 second EEG CWT with subsequent time-frequency ridge shown as a solid black line.

Figure 2. Ascending median values of 10,000 time-frequency ridges for N2→N3 sleep stage transitions

The input EEG data is raw with no filtering as the frequency characteristics were the main point of interest.
Electromyography artifact noise is clearly visible as a high frequency energetic band (yellow band, top) as
shown in Figure 1. Several other noise sources were also expected including but not limited to; 50 Hz hum,
low frequency/DC noise due to central apnea and high frequency noise due to poor electrode contact. To
prepare the data for final analysis it was important to remove outliers - without introducing filtering bias - all
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10,000 samples (n) were sorted in ascending order based on the median value of the time-frequency ridge,
as shown in Figure 2. Extremely high and low frequency transitions were excluded from analysis. Vertical
lines are placed at n = 250, 500, 9500 and 9750 in Figure 2. The 250 lowest and highest samples based
on median value were excluded from analysis, effectively giving a 90% confidence interval. The remaining
data was approximately linear.

Figure 3. The median time-frequency ridge (magenta) for transition N2→N3 (top) and transition N3→N2 (bottom) with 90%
confidence intervals in grey against standardised frequency

With the data distilled, the median and 90% confidence intervals were generated for transitions. For illustra-
tive purposes, transitions N2→N3 and N3→N2 are shown in Figure 3. Dominant ridge patterns were clear
in Figure 3, in addition there was frequency correlations between reversal of sleep stage transitions which is
promising. It should be noted that Figure 3 plots 90% confidence intervals to allow for obvious visual inter-
pretation. A detailed results section is beyond the scope of this poster, thus has been excluded. However, the
reader should note that for N2→N3 and N3→N2, a median difference of approximately 25% was reported.
This is statistically significant. The methodology could lend itself to future automated pattern matching or
an additional channel for clinicians to offer better interscorer reliability at the point of transition.
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The author notes a few limitations of this work; firstly, the selected database contains individuals who under-
went an overnight PSG study to assess sleep disordered breathing conditions. While this could skew data, it
is not expected to be significant. In addition, sleep disordered breathing conditions are highly prevalent as
discussed in [9], and therefore should be considered for generalised models. Secondly, distilling temporal
data by a single average could remove data of interest. While limiting this data to 90% confidence intervals
should ensure sufficiently generalised data is retained. This method offers a means to filter data without
applying filter bias.
In conclusion, time-frequency ridge analysis is a promising approach to improving interscorer reliability
due the observable, statistical changes in the time-frequency ridges at the point of transition. Future work
will focus on fully quantifying ridges, generating all transition patterns and implementation for automation.
Thus, advancing the current knowledge base of the physiological underpinning of sleep.
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Abstract

1. Sleep apnea is a highly prevelent condition in which breathing

reduces or ceases during sleep [1].

2. An overnight polysomnogram (PSG) test is the current gold

standard for clinical detection and severity.

3. Overnight PSG tests are currently manually scored, a process

that takes approximately 2 clinical hours per recording.

Inter-scorer reliability (ISR) is only ∼80% [2].
4. Automating clinical sleep stage scoring has the potential to

revolutionise the field and reduce the clinical burden of

manual scoring.

5. The majority of inter-scorer disagreement comes from

transitions between sleep stages.

6. With these limitations in mind; robust simple features to

determine the point of transition could significantly improve

the ISR.

Introduction

Clinically annotated PSG data were acquired from the Computing

in Cardiology Challenge 2018 [3]. EEG channel O1-M2 was se-

lected for investigation. The dataset contained 994 overnight PSG

recordings with clinical annotations. From this data time frequency

ridges were generated based on each sleep stage transition.

Table 1. Exhaustive Sleep Stage Transition Categories

N1 N2 N3 R U W

N1 N1 → N1 N1 → N2 N1 → N3 N1 → R N1 → U N1 →W

N2 N2 → N1 N2 → N2 N2 → N3 N2 → R N2 → U N2 →W

N3 N3 → N1 N3 → N2 N3 → N3 N3 → R N3 → U N3 →W

R R → N1 R → N2 R → N3 R → R R → U R →W

U U → N1 U → N2 U → N3 U → R U → U U →W

W W→ N1 W→ N2 W→ N3 W→ R W→ U W→W

Aims and Objectives

The aim of this study was to explore alternative and novel features

to improve the inter-scorer reliability of sleep staging and generate

discussion on the topic. Several objectives were identified to meet

this aim;

1. Characterise the profile of sleep stage transitions though the

use of time-frequency transform analysis.

2. Propose the use of this characterisation for future work such as

artificial intelligence approaches for determining sleep stages

and improving ISR.

Methodology

Sixty seconds of data were acquired for each sleep stage transition.

A continuous wavelet transform (CWT) with frequency bounds of

0.05-86.8 Hz was performed on each windowed signal. This win-

dowing gave two 30 second epochs as defined by the AASM scor-

ing guidelines. A time-frequency ridge was then generated. Time-

frequency ridge analysis was subsequently performed on the CWT

data, per windowed signal.

Figure 1. An overview of the processing pipeline

Figure 2. An example of a 60 second EEG CWTwith subsequent

time-frequency ridge shown as a solid black line.

Figure 3. Ascending median values of 10,000 time-frequency ridges for

N2→N3 sleep stage transitions

Results and Conclusions

Figure 4. The median time-frequency ridge (magenta) for transition N2→N3

(top) and transition N3→N2 (bottom) with 90% confidence intervals in grey

against standardised frequency

In conclusion, time-frequency ridge analysis is a promising ap-

proach to improving interscorer reliability due the observable, sta-

tistical changes in the time-frequency ridges at the point of transi-

tion. Future work will focus on fully quantifying ridges, generating

all transition patterns and implementation for automation. Thus,

advancing the current knowledge base of the physiological under-

pinning of sleep.
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