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Abstract— In the last decade, improvements in automated speech
processing, powered by signal processing and machine learning,
has led to new approaches for medical assessment. Additionally,
previous research in clinical speech has identified interpretable
measures that are sensitive to changes in the cognitive, linguistic,
affective, and motoric domains. In order to include speech-based
automatic approaches in clinical applications, factors such as
robustness, specificity, and interpretability of speech features are
crucial. We focused on the analysis of a multi-modal array of
interpretable features obtained from the spoken responses of
participants with Neurodegenerative Diseases (ND) and control
participants (CN) to neuropsychological tests. ND participants
have Alzheimer’s disease (AD), Parkinson’s disease (PD), or
Parkinson’s disease mimics (PDM). We first collected spoken
responses to three tests, a modified version of the Stroop test
(MST), a verb naming task (VNT), and a noun naming task (NNT).
Then, we arranged two complementary sets of cognitive and
acoustic features and analyzed their statistical significance between
the groups studied. Our results suggested that AD participants had
significantly greater reaction times and significantly lower response
accuracy with respect to the other groups across tests. In addition,
PDM participants, compared to CN and PD participants, took a
significantly longer time to complete the MST and NNT, while all
the groups of participants with NDs showed significantly lower
confidence during the MST. Since the analyzed features provided
good differentiation results, they can be used in diagnostic tools
for the assessment of NDs.

Keywords—Alzheimer’s disease (AD), Parkinson’s disease (PD),
biomarker, speech and language technologies, artificial intelligence

I. INTRODUCTION

Neurodegenerative disorders (ND) are a group of neurological
disorders with varying clinical features and pathological
changes that affect specific subset of neurons, and are usually
chronic and progressive [1]. Alzheimer’s disease (AD) is the
most common type of dementia, followed by Vascular Dementia
and Dementia with Lewy Bodies (DLB) [2]. Parkinson’s disease
(PD) is also common, with millions of cases worldwide [3].
NDs vary considerably, in terms speed of onset, spectrum of
resultant symptoms, or degree of impoverishment of quality
of life. Some of them, such as AD and PD develop later in
life, while others, such as cerebrovascular disease, migraines,
and multiple sclerosis may develop across the age spectrum.
Neurodegenerative disorders, such as AD and PD, are chronic
and progressively worsen. This results in accumulating dis-

ability which may manifest with derangement in movement,
behavior or cognition. At present, few diagnostic tools can
reliably and easily distinguish NDs in their early stages without
resorting to invasive procedures (e.g. lumbar punctures or
repeated laboratory tests), or costly imaging studies. Moreover,
the individual variability in symptom progression introduces
additional challenges in accurate diagnosis. As changes in
speech (e.g., diminished rate of speech or increase in quietness)
are early indicators of NDS like amyotrophic lateral sclerosis
and PD, speech-based biomarkers show potential as early
detectors of NDs [4]. Recent advances in automated speech
processing and machine learning techniques allow for the
automatic extraction of speech-based biomarkers. Such features
can be analyzed due the acoustic, articulatory, and linguistic
information present in one’s speech. For instance, Harel et al.
[5] detected that for participants with PD, before a clinical
diagnosis, fundamental frequency (F0) variability during free
speech is diminished. Beltrami et al. [6] presented a set
of features regarding lexical, acoustic and syntactic aspects
that could distinguish between participants with multiple-
domain mild cognitive impairment (MCI), elderly dementia, and
healthy controls (CN). Other studies comparing individuals with
dementia and CN [7] showed that individuals with dementia
tended to have shorter response time and that differential frame-
to-frame Jitter was the most significant distinguishing acoustic
feature. The aforementioned studies were limited as they only
analyzed linguistic and acoustic features derived from a singular
language and task (i.e., usually a picture description task [8])
and had a narrow focus on one ND at a time. This work presents
the analysis of a set of cognitive and acoustic features extracted
from the spoken responses to three distinct neuropsychological
tests: a modified Stroop test (MST), a noun naming task (NNT)
and verb naming task (VNT). We employed different features
to characterize participants’ spoken responses and present a
statistical analysis to examine the extent in which these features
differ between participants with different NDs and CN. Our
goal is to create automatic and objective methodologies utilizing
different neuropsychological tests. These methodologies are
intended to assist clinicians in assessing the presence and
monitor the progression of different NDs. A summary of our
automated pipeline is provided Fig 1.
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Figure 1. A block diagram of the main modules of our automated pipeline.

II. MATERIALS

A. Data Collection

The data set, NeuroLogical Signals (NLS), is an ongoing data
set collected by the authors of this study. It contains spoken
responses to several tasks from participants with different
NDs and CN participants. Clinical patients represent different
NDs including, but not limited to, PD, AD, and Parkinson’s-
like diseases. Participants were also required to speak and
read English fluently. All ND patients were seen at the Johns
Hopkins Health System and all participants signed an informed
consent document. This study was approved by the Johns
Hopkins Medical Institutional Review Board. As this study was
performed during the COVID-19 pandemic, all the participants
wore the same surgical mask during recordings.

B. Participant Grouping

In the current study, we included individuals diagnosed with
clinically established PD, AD, PD mimics (PDM) and CN
participants. The PDM group was composed of people with
a variety of presentations that are PD-like in nature. These
included: Dementia with Lewy Bodies, Multiple System
Atrophy, Tourette Syndrome, Dystonia, Spinocerebellar Ataxias
and Wilsons disease. Prior to their final diagnosis, all PDM
participants were diagnosed with possible PD. All diagnoses
in the PDM group meet the highest clinical diagnostic criteria.
Table I contains the baseline characteristics of the different
ND groups.

C. Tasks

We analyzed spoken responses to three different neuropsycho-
logical tests. A trained research assistant gave instructions
on how to perform each task prior to the start of each
recording session. The first test was a modified version of
the Stroop test. The Stroop effect measures how well someone
overcomes the cognitive interference created by processing
two stimuli at the same time, and can be tested via the
Stroop test [9]. In our MST, only one word is displayed
on the screen and participants were instructed to name the
color of the word, not the word itself. The word displayed
was either red, blue, or green, and the color was likewise
red, blue or green. Presenting one word at a time allowed
measurement of the time between stimulus and response.
Participants were given an example prior to the test. The other
two tasks belong to the Frontotemporal Lobar Degeneration
(FTLD) Neuropsychological Test Module, specifically the
Northwestern Naming Battery. Tasks from the FTLD-MOD

neuropsychological battery are often used clinically, and for
research purposes [10]. The first task was an NNT in which
participants were given 4 seconds (s) to name an object
displayed on a screen. The objects used were glove, pepper,
cat, apple, snake, suit, belt, scissors, socks, and elephant.
Participants were asked to name the object using only one
word. The second task was a VNT that involves displaying a
cartoon containing an action and asking the participant to name
it in one word. Each image was displayed for 4 s. Participants
were told their response could end either with or without the
present particle ing. The actions used in this experiment were
zipping, barking, sweeping, spilling, throwing/tossing, praying,
swimming, pouring, reading/studying, and crying.
Each task was specifically chosen for their ability to measure
ideally single word responses to a single image or word.
Moreover, the tasks similarity to each other, especially the
ONT and VNT, allows for comparison across tasks in addition
to within the task.

III. METHODS

A. Automatic Transcription

All recordings were automatically transcribed using a pre-
trained conformer CTC model1 for the Librispeech data set [11]
built on top of icefall.2 Since speakers with NDs tend to produce
higher word error rate in automatic speech recognition [12],
we manually refined any errant transcription.

B. Audio supervision

All the audios were supervised to ensure that they had
appropriate quality. Criteria for appropriate quality includes
understandable speech, minimal background noise, and a task
related response. This level of quality was necessary for most
feature analysis. Recordings with no response were kept. Some
recordings that did not match the mentioned criteria, such as
background noise and non-task related audio, were kept for
the response accuracy analysis, as it is not impacted by these
factors. The recordings without an automatically generated
transcription were discarded, allowing for a greater degree
of automation. The exception were three AD participants,
which were transcribed manually to increase the sample size.
Recordings were resampled from 24 kHz to 16 kHz as some of
the employed signal processing libraries described in Section
III-C required this sampling rate.

C. Feature Analysis

To analyze transcriptions and recordings from each task, we
first arranged two complementary sets of cognitive and acoustic
features. The features and the method adopted to calculate them
are reported below. Some features were selected for their prior
use in analyzing speech in a clinical setting. For example, F0
variability has been shown to change in patients with NDs,
given that F0-related features can characterize prosody which
can be affected by neurological impairment [5]. We later used

1https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-ji
t-bpe-500-2021-11-09

2https://github.com/k2-fsa/icefall
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TABLE I
DEMOGRAPHIC AND DISEASE SEVERITY STATISTICS OF THE STUDY POPULATION. WE REPORT SAMPLE SIZE, SEX, AGE DISTRIBUTION AND SCORES ON THE
MONTREAL COGNITIVE ASSESSMENT (MOCA) FOR EACH EXPERIMENTAL GROUP. IN ADDITION, WE REPORT CLINICAL DEMENTIA RATING SCALE SUM
OF BOXES (CDR-SB)FOR THE AD GROUP (NLS DATA SET) AND UNIFIED PARKINSON’S DISEASE RATING SCALE PART III (MDS-UPDRS III) FOR THE

PD AND PDM GROUPS.

Category Sample (n) Age MoCA CDR-SB MDS-UPDRS III

tot female male avg range avg range avg range avg range

CN 44 26 18 66.89 26-94 25.70 16-30 – – – –
AD 11 2 9 70.00 58-84 19.45 6-30 4.3 1.5-14 – –
PD 21 8 13 67.33 49-79 25.75 22-30 – – 24.27 8-44
PDM 12 8 4 54.33 27-74 24.73 19-28 – – 39.33 14-74

the cognitive and acoustic measurements to conduct a Kruskal-
Wallis statistical test, with α = 0.05, in order to quantify
the extent in which these features differed between the four
participant’s groups. The non-parametric Kruskal-Wallis test
measures against a null hypothesis that the median ranks of
the groups are equal. To account for False Discovery Rate, a
Benjamini–Hochberg correction was applied [13].

1) Reaction Time

Reaction time (RT) was defined as the time elapsed between
the presentation of a given stimulus (e.g., color word) and
the participant’s response. RT measures the time it takes to
verbally react to the stimulus, not to respond correctly. RT was
found using both a Hilbert envelope and two Voice Activity
Detectors (VAD), the Cobra VAD (cVAD) 3 and the Silero
VAD (sVAD)4. We employed two VADs to add more precision
to our RT estimation. We first obtained the Hilbert envelope
of the audio, which determined the start of any sound, voice
and background alike. A Hilbert envelope allows for higher
resolution, measuring the start of any audio to the millisecond.
The two VADs have less resolution, as they utilize a frame
shift larger than 30 ms but are able to distinguish between
voices and background noises. After the generation of Hilbert
RT (hRT) candidates the cVAD was used to generate possible
RTs. The hRT was generated by determining when the value
of the envelope exceeded the mean value of the envelope’s
most silent section by 50 standard deviations. Any hRT not
within 160 milliseconds of a cVAD generated RT (cRT) was
discarded. This was done to ensure that the hRT was associated
to a voice, not any sound. Any hRT candidate that was not
discarded was then compared to the sVAD RT (sRT). The hRT
closest to the sRT was chosen as the final RT. If there was no
sRT, the earliest hRT was selected. If there were no possible
hRTs, the cRT closest to the sRT was selected. If there were
no hRTs nor an sRT, the earliest cRT was chosen. If there was
no possible hRT or cRT, the RT was registered as missing.

3https://github.com/Picovoice/cobra
4https://github.com/snakers4/silero-vad/

2) Response Accuracy

To determine the accuracy of the responses, we used the
automatic transcriptions of the spoken responses collected
during the three tasks under assessment. For the MST, a
response was considered correct if the first task-related word
was the color of the word. All other responses were marked as
incorrect. For the NNT and VNT responses containing the right
word at any time during the recording were deemed correct.
This was done as many participants went beyond describing
the image in one word, for example saying boy throwing a
ball instead of throwing.

3) Confidence

To quantify the confidence of a participant’s response to a
given task, we measured the number of words contained in
the response. The underlying idea behind the adoption of this
feature is that the lower the number of circumlocutions and
periphrasis that participants use in their answers, the higher the
certainty they should have in recalling the target word during
the task. We expect that participants with NDs would utter
more words before recalling the correct one. We computed
this feature using only the spoken responses collected during
the MST since in the other two tasks participants were not
explicitly instructed to adopt a single words to complete the
tasks, as anticipated in Section II-C. To extract this feature
from the speech transcripts we used the pretrained pipeline for
English available on Spacy.5

4) Pitch Contours and Speech Time

To examine participants’ prosodic abilities, we employed
different techniques to perform an automatic analysis of the
speech signal. Acoustic features such as the length of silent
segments, fundamental frequency (F0) variability, and many
others can be used to assess irregularities in the rhythm and
timing of speech that often occur in motor and cognitive decay
[14], [15]. Moreover, patients reporting right hemisphere (RH)
stroke and people with selective NDs—e.g., PD, frontotemporal
dementia, schizophrenia—may have trouble modulating their
tone-of-voice to express sentence intonation and emotion [16].

5https://spacy.io/models/en#en core web sm
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Figure 2. Categorical plots reporting some of the significant features (p <
0.05) from the cognitive domain.

We used Parselmouth, a Python library for the Praat software,
to quantify prosody features, namely F0 standard deviation,
skewness and kurtosis. To compute features based on F0
contours, we concatenated all the recordings that belong to
a single speaker for each of the tasks under investigation.
Moreover, we used DigiPsychProsody6 to compute total speech
time to assess whether participants with NDs took longer to
complete the different tasks. This library uses the WebRTC
Voice Activity Detector to create normalized features 7. In total,
4 acoustic features were used. 8

IV. RESULTS AND DISCUSSION

We collected spoken responses to three different neurolopsy-
chological tasks as indicated in Section III. We applied our
extraction pipeline using the techniques introduced in Section
III and Fig. 1. The results are summarized in Table II and com-
mented in the sections below. For each significant comparison,
we report results of the H-statistic, the corresponding p-value,
the eta squared effect size (η2) based on the H-statistic [17] and
the area under the ROC curve (AUROC). AUROC can be used
as a criterion to measure the feature’s discriminative ability [18].
Features not reported in Table II were not significant in any pair.
Though the groups are not perfectly age and gender-balanced,
we do not expect that this affected our results in a significant
way. The PDM, for example, is younger than the other three
groups, but, compared to CNs, they under performed in most
features.

A. Cognitive Features

The categorical plots reported in Fig. 2 represent the significant
features (p < 0.05) from the cognitive domain. During the
execution of the MST, all three groups with NDs showed a
significantly lower level of confidence (p < 0.05) with respect
to the CN group. This can be motivated by the need of inhibiting
the cognitive interference originated during this task. Moreover,

6https://github.com/NeuroLexDiagnostics/DigiPsych Prosody
7https://github.com/wiseman/py-webrtcvad
8https://github.com/wiseman/py-webrtcvad

Figure 3. Categorical plots reporting some of the significant features (p <
0.05) from the acoustic domain.

results suggest that the AD group have significantly slower
reaction time (p < 0.05) and less accurate responses (p <
0.05) in almost all the tasks under analysis. AD participants’
accuracy was 67.7%, 86.9%, and 73.8% for the MST, NNT,
and VNT respectively. The next lowest were 91.7%, 90.8%,
and 88.1%, all from the PDM group. The PDM group was
also characterized by a slower RT, even exceeding the AD
group in the NNT. Studies on individuals with AD have shown
that, compared to noun production, there exists a selective
impairment in generating verbs [19], [20]. However, there are
other studies that have shown that AD participants are impaired
in both object and action naming, with a significantly larger
deficiency in object naming [21]. Our experimental results
seem to support findings from both of these two sides.

B. Acoustic Features

The categorical plots reported in Fig. 3 represent most of the
significant features (p < 0.05) from the acoustic domain. During
the execution of both the MST and the NNT, participants with
PDM needed a significantly greater amount of time (p < 0.05)
to complete the tasks. This phenomenon can be explained by
the fact that half of participants with the PDM group were
diagnosed with MCI, which is usually characterized by an
early stage of memory loss and other cognitive ability (e.g.,
language, visual perception) [22]. Thus, the need to elaborate
their responses to cognitive tasks may be the source of a
longer speech time. For the AD group, results obtained for the
cognitive features on the VNT seem to find confirmation in the
acoustic domain. In fact, during this task participants with AD
employed a significantly greater amount of time (p < 0.05) to
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TABLE II
PAIRWISE KRUSKAL–WALLIS H TEST RESULTS FOR STATISTICALLY SIGNIFICANT FEATURES (p < 0.05) USING THE MST, VNT, AND NNT. FOR EACH
PAIR-WISE COMPARISON, WE REPORT H -STATISTIC, THE CORRESPONDING p-VALUE, THE ETA SQUARED (η2) EFFECT SIZE BASED ON THE H-STATISTIC

COMPUTED AS (H − k + 1)/(n− k), WHERE H IS THE VALUE OBTAINED IN THE KRUSKAL-WALLIS TEST; k IS THE NUMBER OF GROUPS; n IS THE TOTAL
NUMBER OF OBSERVATIONS. WE ALSO REPORT THE AREA UNDER THE ROC CURVE (AUROC) FOR EACH OF THE SIGNIFICANT COMPARISONS.

Modified Stroop test

Feature Sample (n)
H p-value η2 AUROC

1 2
Cognitive features

Reaction time [s] CN (n = 41) AD (n = 10) 41.59 < 0.001 0.83 0.77
PD (n = 21) AD (n = 10) 35.21 < 0.001 1.18 0.78

Response accuracy
CN (n = 41) AD (n = 10) 37.04 < 0.001 0.74 0.64
PD (n = 21) AD (n = 10) 21.66 < 0.001 0.71 0.63
PD (n = 21) PDM (n = 12) 11.18 0.002 0.33 0.62

Confindence [# words]
CN (n = 41) AD (n = 10) 7.82 0.010 0.14 0.54
CN (n = 41) PDM (n = 12) 10.39 0.003 0.18 0.55
CN (n = 41) PD (n = 21) 5.77 0.03 0.08 0.53

Acoustic features

Speech time [s] CN (n = 44) PDM (n = 10) 10.43 0.006 0.18 0.62
PD (n = 21) PDM (n = 10) 10.00 0.023 0.31 0.63

Verb Naming task

Cognitive features
Reaction time [s] PDM (n = 12) PD (n = 19) 6.73 0.02 0.20 0.59

Response accuracy
CN (n = 41) AD (n = 10) 33.98 < 0.001 0.67 0.55
PD (n = 19) AD (n = 10) 12.81 < 0.001 0.44 0.55
AD (n = 10) PDM (n = 12) 7.50 0.01 0.33 0.52

Acoustic features

Speech time [s]
CN (n = 41) AD (n = 10) 7.87 0.020 0.14 0.59
AD (n = 10) PD (n = 19) 11.17 0.003 0.8 0.62
PD (n = 19) PDM (n = 12) 6.92 0.025 0.20 0.59

Noun Naming task

Cognitive features

Reaction time [s]

CN (n = 41) AD (n = 10) 7.60 0.006 0.13 0.59
CN (n = 41) PDM (n = 12) 17.49 < 0.001 0.32 0.78
PD (n = 19) AD (n = 10) 10.17 0.001 0.34 0.61

PDM (n = 12) AD (n = 10) 5.95 0.03 0.25 0.32
PDM (n = 12) PD (n = 19) 19.23 < 0.001 0.63 0.19

Response accuracy
CN (n = 41) AD (n = 10) 10.77 0.001 0.20 0.60
PD (n = 19) AD (n = 10) 10.27 0.001 0.34 0.58
PD (n = 19) PDM (n = 12) 5.03 0.049 0.14 0.60

Acoustic features
F0 [Hz] (skew) CN (n = 41) AD (n = 10) 4.87 0.04 0.08 0.73

F0 [Hz] (kurt) CN (n = 41) AD (n = 10) 4.76 0.04 0.08 0.72

Speech time [s] CN (n = 41) PDM (n = 12) 8.72 0.017 0.15 0.59
PD (n = 19) PDM (n = 12) 6.90 0.023 0.20 0.59

deliver their responses. Moreover, once we concatenated all the
spoken responses elicited during the 3 tasks under assessment,
participants with AD turned out to have a lower F0 variability
in the NNT.

V. CONCLUSION AND FUTURE WORK

In this work, we collected spoken responses to three neuropsy-
chological tests and we adopted signal processing and machine
learning techniques to arrange a multi-modal array of features to
model the presence of different NDs along distinct dimensions.

Our set of cognitive features represents valuable metrics to
quantify the response time and confidence of the participants
during the execution of the tasks well as the accuracy of their
responses. On the other hand, the set of acoustic features
encodes information about the time required by participants to
complete a given task and fundamental frequency variability.
All of these features were motivated by the clinical literature
showing changes in voice and speech in participants with
NDs. Overall results suggested that participants with AD had
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significantly greater reaction times and significantly lower
response accuracy with respect to the other experimental groups
across tests. In particular, they exhibited greater difficulties
during the execution of the VNT and NNT as anticipated in
related studies. In addition, the AD group showed lower ability
to modulate pitch. We expect to find a similar result for the PD
group once we analyze tasks that require spontaneous speech
elicited during a picture description, for instance. On the other
hand, participants with PDM took significantly longer time
to complete the MST and the NNT, while all the groups of
participants with NDs showed a significantly lower confidence
during the execution of the MST. In the future, we will include
more participants to balance the experimental groups in terms
of age, sex, and number of participants. Moreover, we will study
the other tasks contained in our data set (i.e., reading passage,
picture description) and will design new tasks to elicit different
spoken responses. New tasks will test motor and memory
abilities and capture the cognitive decline. On the whole, the
ultimate goal of this study is developing a fully automated
diagnostic pipeline that can help clinicians to perform precise
assessment of the disorders and to monitor their progression in
time, without the need of costly and time-consuming human
analysis.
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