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Abstract— It is well understood that the CREB protein is 
highly involved in neuronal mechanisms underlying 
memory and learning in mammalian brain, and deficiencies 
in CREB activity can result in transition to certain 
pathological conditions. In this paper, we use some 
published experimental data, along with a neuronal system 
composed of the Izhikevich neuron model, to characterize 
how CREB abnormalities can alter neuronal signals and the 
system behavior. The abnormal data are extracted from 
intracellular recordings collected from the neurons of 
transgenic mice expressing VP16-CREB - a constitutively 
active form of CREB - whereas the normal data are 
obtained from the wild-type mice neurons. Upon estimating 
the neuron model parameters from the experimental data, 
we observe that the model exhibits good fit to both normal 
and abnormal data, for various synaptic input currents. To 
study the effect of CREB abnormalities on the considered 
neuronal system, we use the information theoretic 
redundancy parameter. It basically measures - for the 
system output neuron - the amount of spike count 
information overlap that exists between the states of the 
stimulus currents injected to the input neurons. Our 
analysis reveals a noticeable increase in the information 
redundancy, when CREB behaves abnormally. This finding 
motivates further exploration of the biological implications 
of the information redundancy in neuronal systems, and its 
use as a parameter to model abnormalities in CREB and 
perhaps other important transcription factors involved in 
learning and memory. 
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I. INTRODUCTION 
Learning and memory are key functions of the cognitive 
human brain. CREB, a cAMP response element-binding 
protein (with cAMP denoting the cyclic adenosine 
monophosphate), is highly involved in learning and 
memory. Alterations and abnormalities such as its 
sustained activation can result in pathological conditions 
such as seizures and loss of neurons. Given its 
importance, targeting CREB and its pathway are of 
interest in therapeutic developments for several 
neurodegenerative disorders such as Alzheimer’s disease 
and Huntington’s disease [1]. 

Compared to the research efforts that study CREB as a 
molecule whose activity is regulated by a molecular 
network, e.g., [2], and focus on intraneuronal molecular 

interactions, in this paper our goal is to study and 
understand how CREB and its malfunction can affect a 
neuron and its action potential spike signals, as well as a 
system of such neurons. 

Towards this goal, we use the experimental data given in 
Table 1 and Figure 1 of [1] that include both normal and 
abnormal CREB scenarios and the associated action 
potential signals, to estimate the parameters of a neuron 
model for both CREB scenarios. As we will see later in 
the paper, the model shows good fit to the experimental 
data. We then use an information theoretic parameter 
called redundancy [3], to model and study how the 
behavior of a neuronal system can change due to a 
deficiency in CREB activity. The use of information 
theoretic parameters and methods in neuroscience is 
advantageous for multiple reasons [3]. For example, they 
define and quantify how much information neuronal 
signals carry, they are model independent, they can be 
applied to various combinations of data, regardless of 
whether the relations among the data are linear or 
nonlinear, they are suitable for multivariate data 
modeling and analysis, and also can handle different 
types of data such as voltage, current, spike count and 
spike timing together. 

The rest of the paper is organized as follows. Estimation 
of the parameters of the Izhikevich neuron model [4] 
using the measured data of [1] that reflect normal and 
abnormal CREB activities can be found in Section II, 
along with a comparison of the model results with the 
experimental data. The considered neuronal system is 
discussed in Section III, and its behavior is studied 
without and with the abnormality of CREB. The system 
behavior is further characterized using the redundancy 
parameter, and changes in this parameter due to the 
CREB deficiency are analyzed in Section III as well. 
Concluding remarks are provided in Section IV. 

II. CALCULATION OF NEURONAL PARAMETERS USING 
EXPERIMENTAL DATA 

Given the importance of CREB in learning and memory 
formation, CREB-related experimental data of [1] is used 
here to first compute several neuronal parameters for two 
different types of neurons: an abnormal neuron where 



 

 

CREB exhibits abnormal activity, and a normal neuron. 
The abnormal neuronal data are intracellular 
measurements collected from neurons of transgenic mice 
expressing VP16-CREB, which is a constitutively active 
form of CREB, whereas the normal neuronal data are 
collected from neurons of wild-type mice. Both of the 
normal and abnormal experimental neuronal firing data 
sets include measured numbers of action potentials, in 
response to several different currents injected to the 
neurons [1]. Basically, when a neuron receives an 
electrical transmembrane current, its membrane potential 
changes according to the intensity of the input current. 
An action potential (AP) spike is generated when the 
neuron membrane potential reaches its apex upon 
receiving high enough input current injection [5][6]. And 
AP number is the number of spikes of the membrane 
potential, for a given injected current. 

In this section, we use the experimental data to calculate 
the parameters of the Izhikevich model, which is widely 
used for modeling the dynamics of spiking neurons 
[4][5]. This allows to understand how the neuronal 
parameters vary, when comparing normal and abnormal 
neurons of wild-type and mutant mice, respectively. This 
is also important when studying a system of several 
neurons later in the paper. 

In what follows, first a brief overview of the Izhikevich 
model is presented in Subsection A, followed by 
neuronal parameter calculations using the experimental 
data of normal and abnormal neurons in Subsections B 
and C, respectively. 

A. The Izhikevich Neuron Model 

This model is widely used by various groups of 
researchers and while it is computationally simple to 
implement, it incorporates certain biophysical aspects of 
more complex models and therefore is capable of 
reproducing different neuronal behaviors. The Izhikevich 
neuron model is composed of two ordinary differential 
equations [4][5]: 
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where ( )v t is the neuron membrane potential, ( )u t  is the 
membrane recovery variable and ( )I t  represents the 
synaptic input. Furthermore, C  is the membrane 
capacitance, rv  is the resting potential, thv  represents the 
instantaneous threshold potential, a  is the recovery 
variable time scale, b  reflects the recovery variable 

sensitivity, d  refers to the after spike recovery variable 
reset, and c  represents post action potential voltage reset 
value. Equations (1) and (2) need the following 
accompanying after-spike reset: 
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where peakv  is the spike cutoff voltage. The above 
equation shows how ( )v t  and ( )u t  are reset, if the 
membrane potential spike reaches its peak value. 

When it comes to model parameter calculations in the 
next two subsections, the following equations are used 
[5]: 

             1 ( )in r thR b k v v− = − − , (5) 

             ( ) ( )( ) ( )r th rI V k V v V v b V v = − − − + − , (6) 

             1(0.5( ))rheo r thI I k b v v−

= + + , (7) 

where 1
inR−  is the inverse of the input resistance, ( )I V

 
represents the steady state current-voltage relation, and 

rheoI  is the rheobase current defined as the minimum 
injected current for the neuron to fire. Equation (7) is 
obtained by noting that the maximum of ( )I V

 in 
Equation (6) can approximate the rheobase current [5]. 
We also have the following relation [5]: 

                                     inR C = , (8) 

where   is the membrane time constant. 

In the next two subsections, all the model parameters in 
Equations (1)-(4) are either directly taken from [1], or 
determined by substituting some of the measured 
parameters reported in [1] into Equations (5)-(8), or 
estimated from the measured data presented in [1]. 

B. Parameter Calculations for a Normal Neuron Using 
Experimental Data 

All the numerical parameters for a normal neuron are 
presented in the second column of Table 1, obtained as 
explained at the end of the previous subsection, and 
specified in the footnotes of Table 1. The particular 
experimental data and parameters of [1] used here for a 
normal neuron are labeled as “Wild-type On” in [1]. 

The parameters a and d are estimated by minimizing the 
mean-squared-error (MSE) representing the difference 
between the number of spikes of the Izhikevich model, 
i.e., the measured number of APs in [1]. 

Comparison of the number of spikes of the model and the 
measured number of spikes for various synaptic input 
currents, as shown in Figure 1, indicates the suitability of 
the model and the calculated parameters. 



 

 

 
C. Parameter Calculations for an Abnormal Neuron 

Using Experimental Data 

All the numerical parameters for an abnormal neuron are 
presented in the third column of Table 1. They are either 
directly taken from [1], or determined by substituting 
some of the measured parameters reported there into 
Equations (5)-(8), or estimated from the measured data 
(see the footnotes of Table 1). The specific experimental 
data and parameters used here for an abnormal neuron are 
labeled as “VP16-CREBhigh On” in [1]. 

Similarly to the normal neuron, a comparison of the 
number of spikes of the model and the abnormal neuron 
measured number of spikes for various synaptic input 
currents [1] is shown in Figure 1, generated by choosing 
a and d such that the MSE between the model and the 
data is minimized. The good fit of the model to the 
measurements demonstrates that the model and the 
calculated parameters reasonably represent the 
experimental data. 

III. NEURONAL SYSTEM ANALYSIS IN THE PRESENCE OF 
AN INTRANEURONAL MOLECULAR ABNORMALITY 

A. A Neuronal System 

As discussed, and demonstrated previously, 
intraneuronal abnormalities such as constitutively active 
CREB can alter the spiking behavior of individual 
neurons. In this section, we consider a small neuronal 
system [3] to study how the intraneuronal abnormality of 
each neuron affects the interactions among neurons in a 
neuronal system. Here we consider a system of three 
neurons shown in Figure 2, where the excitatory neurons 
E1 and E2 drive the excitatory neuron E3. The neurons 
E1 and E2 receive the two separate stimulus currents A 
and B, that can have different levels of correlations. We have 
simulated this system using a neuroscience toolbox [3], as 
explained below. 

Simulations are performed with a 0.1 ms time step. As 
Figure 2 shows, E1 and E2 receive two current pulses A 
and B, respectively, with equal durations of 500 ms and 
equal amplitudes of 500 pA. A pink noise is also 
simulated to represent membrane noise, with a noise 
power that is inversely related to the frequency. This 
noise results in spontaneous firings. The synaptic weight 
among the neurons is set at 100 pA [3]. Other parameters 
of the system are taken from Table 1, to simulate a 
normal or an abnormal system, respectively. The 
generated spikes by all the neurons and in response to 
various stimulus currents are shown in Figure 3A and 
Figure 3B, for normal and abnormal systems, 
respectively. 

The increased number of spikes in Figure 3B for each 
neuron receiving a current pulse in the abnormal system 
is noteworthy, compared to Figure 3A that depicts the 
normal system. This is consistent with what we observe 
in the experimental results in Figure 1, i.e., a typically 
increased measured number of spikes for a given input 
current in an abnormal neuron, when compared to a 
normal neuron. 

 

 

 

 
Figure 1. Number of spikes versus the synaptic input current 
in the normal and abnormal neurons. 

Table 1. Model Parameters for Normal and Abnormal Neurons 

Parameter Normal     
Neuron 

Abnormal 
Neuron 

a 0.01 3 0.02 3 
b -0.205 2 -0.34 2 
c -57 mV 1 -55 mV 1 
d 176 3 115 3 
k 0.191 2 0.142 2 

Rin 181 MΩ 1 210 MΩ 1 
τ 25 ms 1 21 ms 1 
C 138 pF 4 100 pF 4 
vr -70 mV 1 -70 mV 1 
vth -40 mV 1 -34 mV 1 

vpeak 68 mV 1 68 mV 1 
Irheo 40 pA 1 40 pA 1 

 
1 Directly taken from [1] 
2 Calculated using Equations (5)-(7) 
3 Estimated from the measured data presented in [1] 
4 Calculated using Equation (8) 



 

 

B. Analysis of the Redundancy in the Neuronal System 

To gain further insight beyond visual differences among 
neuronal spike signals in normal and abnormal systems, 
we use an information theoretic parameter called 
redundancy [3]. 

Advantages of using information theoretic measures and 
parameters in neuroscience are already outlined in the 
Introduction section. 

The redundancy quantity 1 2( , ; )R X X Y  is the mutual 
information between the pair of input variables 1 2( , )X X  
and the output variable Y, with an additional 
minimization over 1X  and 2X  [3]. The redundancy 
parameter essentially specifies the minimum overlap in 
the amount of information which is redundantly provided 
by both 1X  and 2X  about each state of Y individually. In 
this paper and similarly to [3], 1X  and 2X  in 

1 2( , ; )R X X Y  represent the (ON/OFF) states of the two 
current stimuli A and B applied to the neurons E1 and E2, 
respectively, whereas Y represents the action potential 
spike count of the neuron E3. All these are graphically 
depicted in Figure 2 and Figure 3. 

In Figure 4 we observe the information redundancy in the 
neuronal system of Figure 2 composed of three normal 
neurons, where the two neurons E1 and E2 receive the 
two current stimuli with various degrees of dependency, 
characterized by the parameter D. This parameter 
allocates the probabilities of 0.25 ,D+ 0.25 ,D−
0.25 D−  and 0.25 D+ , respectively, to the four states 
of the stimulus pair (A,B): (OFF,OFF), (ON,OFF), 
(OFF,ON) and (ON,ON) [3]. When 0.25,D = −  the anti-
correlated case, the two stimuli take opposite states only. 
In the 0D =  uncorrelated case, the two stimuli take all 
possible states with equal probabilities. Finally, if 

0.25,D =  the correlated scenario, the two stimuli take 
exactly the same states. 

As Figure 4a shows, the redundancy is mostly small for 
the anti-correlated, uncorrelated, and correlated  

stimulation scenarios in the normal neuronal system. This 
is persistently observed for other values of D, as shown 
in Figure 4b. The increase of the redundancy with D in 
Figure 4b is a reasonable trend, because as D increases, 
the states of the two stimuli are more likely to be the 
same. This means the overlap between the information 
individually provided by the two stimuli increases, i.e., 
more information redundancy in the system, when the 
two inputs become more correlated. 

A comparison of the redundancy results of the abnormal 
neuronal system in Figure 5 with those of the normal 
system in Figure 4 reveals a noticeable increase in 
redundancy, especially for 0D  . In other words, the 
amount of redundant information in the abnormal system 
is evidently increased. This is an interesting finding and 
encourages further research to understand the biological 
implications of the increased redundancy in an abnormal 
neuronal system where the neurons exhibit a memory- 
related intraneuronal molecular abnormality, i.e., a 
constitutively active form of the important transcription 
factor CREB. 

 

Figure 2. A system of three neurons where the two neurons 
E1 and E2 receive two stimulus currents A and B, 
respectively. 

A) 
 

 
B) 
 

 
Figure 3. Spike rastergram of the neuronal system of Figure 2, 
together with the two stimulus currents: A) The three neurons 
are normal, B) The three neurons are abnormal. 



 

 

 

IV. CONCLUSION 
Given the importance of the CREB protein in learning 
and memory, in this paper we have modeled and analyzed 
the effect of CREB deficiencies in a neural system. More 
specifically, first we have fitted a neuron model to some 
experimental data, by estimating the model parameters 
from the data. We have observed that the model 
accurately fits the data, for both normal and abnormal 
CREB scenarios. Then we have considered a system of 
few neurons where each neuron is characterized using the 
above model whose parameters are estimated from 
measured data. Consistent with the measured data, our 
simulations show an increased number of spikes for each 
neuron receiving a current pulse in the abnormal system. 

Finally, we have computed the redundancy parameter in 
both normal and abnormal neuronal systems, for different 
correlation levels between the stimulus input currents. 

Our results indicate that the amount of redundant 
information in the abnormal system is increased, 
compared to the normal system. Therefore, one may 
conclude that perhaps the amount of information 
redundancy in a neuronal system can be used as a 
measure to model the departure of the system from its 
normal behavior, in the presence of an abnormality. 

Further research using other datasets and other neuronal 
systems is needed to better understand the utility of the 
information redundancy concept in modeling the role of 
CREB or other important proteins and transcription 
factors that are involved in learning and memory. 

The considered neuronal system in this paper is 
composed of three neurons. The small size of this system 
has allowed us to interpret the findings. One way of 
expanding this study is to apply it to other neuronal 
systems that have various combinations of excitatory and 
inhibitory neurons, similarly to those considered in [3]. 

 
    (a)  

 
        (b) 

Figure 4. Information redundancy in the neuronal system of 
Figure 2 composed of three normal neurons, for different 
levels of correlation between the two stimuli: (a) Redundancy 
versus time, (b) Redundancy versus the correlation parameter 
D. 

 
     (a)  

 
   (b) 

Figure 5. Information redundancy in the neuronal system of 
Figure 2 composed of three abnormal neurons, for different 
levels of correlation between the two stimuli: (a) Redundancy 
versus time, (b) Redundancy versus the correlation parameter 
D. 



 

 

The lessons learned from such analyses will pave the way 
for extending the work to much larger neuronal systems. 

 

REFERENCES 
[1] M. Lopez de Armentia, D. Jancic, R. Olivares, J. M. Alarcon, E. 

R. Kandel, and A. Barco, “cAMP response element-binding 
protein-mediated gene expression increases the intrinsic 
excitability of CA1 pyramidal neurons,” Journal of Neuroscience, 
vol. 27, no. 50, pp. 13909-13918, 2007. 

[2] A. Abdi, M. B. Tahoori and E. S. Emamian, “Fault diagnosis 
engineering of digital circuits can identify vulnerable molecules 
in complex cellular pathways,” Science Signaling, vol. 1, no. 42, 
pp. 48-61, 2008. 

[3] N. Timme and C. Lapish, “A tutorial for information theory in 
neuroscience,” eNeuro, vol. 5, no. 3, e0052-18, 2018 
(https://github.com/nmtimme/Neuroscience-Information-
Theory-Toolbox). 

[4] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE 
Transactions on Neural Networks, vol. 14, no. 6, pp. 1569-1572, 
2003. 

[5] E. M. Izhikevich, Dynamical Systems in Neuroscience. MIT 
Press, 2007. 

[6] C. Börgers, An Introduction to Modeling Neuronal Dynamics. 
Berlin: Springer, 2017. 

 


