

# Analysis of the Impact of the Presence of Physical Pain in fNIRS-based BCI Systems

#### Ashwini Subramanian, Foroogh Shamsi and Laleh Najafizadeh

Integrated Systems and NeuroImaging Lab Rutgers University, Piscataway, NJ 08854, USA

This work was supported by NSF

12/03/2022

1

# Outline



### Introduction

- Background
- Motivation

### Methods

- Experimental Design
- Analysis
- Results
- Conclusions

# Background



- functional Near Infrared Spectroscopy (fNIRS)
  - Non-invasive neuroimaging technique that measures brain activity via its vascular response
  - Brain activation causes changes in the concentration of Oxy hemoglobin [HbO] and Deoxy hemoglobin [HbR]



- 1. M. Abtahi, et al. "Hand Motion Detection in fNIRS Neuroimaging Data." *Healthcare*. vol. 5, no. 2, 2017.
- 2. N. Naseer, et al. "fNIRS-based brain-computer interfaces: a review", Frontiers in human neuroscience, vol. 9, pp. 3, 2015.

# Background

RUTGERS

#### • Brain Computer Interface (BCI)

- Enables control of peripheral devices using signals acquired from the brain
- Needs to be trained to respond to the subject's cortical signal prior to application
- Key application : Assistive interface for patients with motor and communication disabilities



fNIRS-based BCIs – use fNIRS technology for brain signal acquisition



#### Most BCI Users Are Patients Who Experience Physical Pain

- Often, pain is prevalent in patients with motor disabilities
- Pain is expected to impact cortical activity related to the task at hand [3]
- This in turn would impact the BCI performance potentially resulting in failure of assistive devices



# **Motivation**

# RUTGERS

#### • Physical Pain – 3 types

- Transient pain
  - o Fleeting in nature
- Acute pain
  - Has a sudden unpredictable onset
  - $\circ$   $\,$  Higher magnitude and duration than transient pain
  - o Caused by injury to local tissue
- Chronic pain
  - o Longest duration
  - Caused by prolonging conditions
  - Possible habituation
- Among these, acute pain is expected to have more impact on the BCI performance due to its unpredictable nature









#### • Goals of This Study

- Analyze the impact of the presence of physical pain on mental task classification accuracy of fNIRSbased BCIs using deep learning classifier
- For further analysis, perform multi-label classification to detect the presence of pain and classify mental tasks simultaneously
- Propose a strategy to mitigate the negative impact of presence of pain on the BCI performance

# Outline



### Introduction

- Background
- Motivation

### Methods

- Experimental Design
- Analysis
- Results
- Conclusions

# RUTGERS

#### fNIRS Recordings

- Experimental setup for data collection : NIRx system (sampling rate: 10.41 Hz)
- Channels:
  - $\circ$  number: 50 (16 sources and 24 detectors)
  - o location: prefrontal and motor cortices





#### Pain Stimulation

- TSA-II Medoc System
- 30 × 30 mm standard thermode
- Painful stimuli on dorsum of left hand



TSA-II system.





#### Standard thermode

The thermode attached to the subject's dorsum of the left hand

RUTGERS

#### • Experimental Paradigm

- 3 healthy right-handed subjects
- 5 no-pain and 5 pain blocks in random order
- 2 classes of mental arithmetic tasks
  - o mental subtraction
  - o mental back counting
- Pain inducing stimulus temperature was used for pain blocks and baseline temperature (32°C) for nopain blocks
- 65 trials of each task were recorded under pain and no-pain conditions



Visual illustration of a single trial.

GERS



#### Preprocessing

- [ΔHbO] signal from [0-6] sec window
- Drifts and artifact removal using nirsLAB [1]
- Bandpass filtering [0.01-0.2] Hz
- Baseline correction (baseline: [-1~0])



 Three Cases of Training and Testing the BCI Classifier Are Considered To Study The Impact of Pain





- Multi-Label Classification of the Two Tasks
  - During classification, a data sample can belong to more than one label at a time
  - Multi-label classification schema :

| TASK DATA | PAIN LABEL | TASK LABEL |
|-----------|------------|------------|
| SN        | 0          | 0          |
| CN        | 0          | 1          |
| SW        | 1          | 0          |
| CW        | 1          | 1          |

- Pain label : No pain condition is labelled 0 and with pain condition is labelled 1
- Task label : Subtraction task is labelled 0 and counting task is labelled 1



#### Mitigation Strategy

- Train the BCI classifier on cortical signals of tasks obtained both in the presence and absence of pain
- Enables the BCI to learn the cortical signatures of pain along with that of the task during training





#### • Classifier for the BCI

- Deep learning algorithm, convolutional neural network (CNN) was used for classification
- Same architecture of CNN was used for task classification, multi-label classification and mitigation strategy



# Outline



### Introduction

- Background
- Motivation

### Methods

- Experimental Design
- Analysis

### Results

Conclusions

### **Results**



- Task Classification Results For 3 Cases Of Training And Testing CNN Classifier
  - Presence of pain impacts classification accuracy and lowers the accuracy to the chance levels

|           | Case 1<br>Train (no-pain)<br>Test (no-pain) | Case 2<br>Train (pain)<br>Test (pain) | Case 3<br>Train (no-pain)<br>Test (pain) |
|-----------|---------------------------------------------|---------------------------------------|------------------------------------------|
| Subject 1 | 92.76± 2.13                                 | 90.45± 1.60                           | 52.14± 2.68                              |
| Subject 2 | 92.97± 1.52                                 | 93.59± 2.04                           | 49.42± 1.56                              |
| Subject 3 | 95.17± 0.81                                 | 93.61± 1.30                           | 59.19± 2.18                              |
| AVERAGE   | 93.63± 1.48                                 | 92.55± 1.65                           | 53.58±2.15                               |
|           |                                             |                                       |                                          |

## Results



- Multi-Label Classification Results for CNN Classifier
  - Metrics : Hamming loss and micro-averaged F1 score
  - Hamming loss measures how well the classifier can make correct prediction on both the presence of pain and the task identification, simultaneously
  - Micro-averaged F1 score for pain identification represents the accuracy with which no pain and pain conditions are identified, while performing the tasks
  - Micro-averaged F1 score for task identification represents the accuracy with which tasks are identified, in the presence or absence of pain

|           |              | NP Data       |               |              | WP Data       |               |
|-----------|--------------|---------------|---------------|--------------|---------------|---------------|
|           | Hamming Loss | Micro-F1-pain | Micro-F1-Task | Hamming Loss | Micro-F1-pain | Micro-F1-Task |
| Subject 1 | 0.15         | 0.77          | 0.93          | 0.24         | 0.77          | 0.76          |
| Subject 2 | 0.048        | 0.95          | 0.95          | 0.19         | 0.82          | 0.81          |
| Subject 3 | 0.048        | 0.95          | 0.96          | 0.15         | 0.83          | 0.87          |
| AVERAGE   | 0.083        | 0.89          | 0.95          | 0.19         | 0.80          | 0.81          |
|           |              |               |               |              |               |               |

### **Results**



- Mitigation Strategy Results using CNN Classifier
  - Pooled data training method is used to mitigate the negative impact of the presence of pain on BCI performance

|           | NP Data     | WP Data     |
|-----------|-------------|-------------|
| Subject 1 | 91.86± 2.44 | 79.53± 3.59 |
| Subject 2 | 95.88± 1.48 | 82.92± 2.42 |
| Subject 3 | 96.20± 1.28 | 88.55± 2.0  |
| AVERAGE   | 94.64± 1.73 | 83.67± 2.67 |
|           |             |             |

# Outline



#### Introduction

- Background
- Motivation

### Methods

- Experimental Design
- Analysis

### Results

Conclusions

- The CNN classifier for a fNIRS-based BCI provides a reliable way for classification of mental tasks with greater than 90% accuracy, but, when trained on pain-free data and used in the presence of pain, it performed poorly
- For further analysis, we performed multi-label classification. The hamming loss and micro-averaged F1 score metrics for this classification were better for NP data as compared to WP data
- Finally, to remedy the impact of pain, it was shown that the model can be trained collectively on task data obtained both in the presence and the absence of pain
- In conclusion, it is of great importance to consider the presence of pain prior to adapting BCIs for assistive systems
- Future work will explore advanced methods to mitigate the negative impact of pain on the BCI performance



# Thank You!



# **Questions?**