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Abstract— An important application of brain computer
interface devices (BCIs) is in assistive systems for patients
with motor and communication disabilities. Due to their
condition, these patients may experience pain. However,
how the presence of pain influences the operation of
such BCIs has not been fully investigated. This paper
studies the impact of the presence of acute pain on
the classification accuracy of a BCI, which employs
functional near infrared spectroscopy (fNIRS) for brain
signal acquisition. Cortical signals are obtained in the
presence and absence of an external pain stimulus,
while participants perform two mental arithmetic tasks.
Convolutional neural network (CNN) is used to classify
the tasks. It is observed that when the classifier is trained
on pain-free data and tested on data obtained in the
presence of pain, the classification accuracy significantly
drops. Next, multi-label classification is performed to
simultaneously identify the presence of pain and classify
the tasks, further demonstrating that the distinction of
tasks in the presence of pain is challenging. Finally,
to mitigate the impact of pain, it is proposed to train
the model collectively on data obtained in the presence
and the absence of pain. It is observed that using this
approach significantly improves the classification accuracy.
Our results suggest that it is critical to include data
obtained in the presence of pain in the training process of
the classification models, when designing BCIs in assistive
systems for patients.

I. INTRODUCTION

Non-invasive functional neuroimaging techniques
provide unique opportunities for studying the
functionality of the brain in realistic environments, as
well as for the realization of assistive systems that rely
on brain computer interfaces (BCIs). The role of a BCI
in such systems is to create commands for controlling
peripheral devices (e.g., a wheelchair or a robotic arm),
from brain signals that correspond to user’s intentions.
For the realization of the brain signal acquisition
module in BCIs, while electroencephalography (EEG)
has been widely used [1], functional near infrared
spectroscopy (fNIRS) has been gaining interests to be
employed, due to its advantages such as being less
sensitive to motion artifacts [2]-[5].

Pain is prevalent in a substantial number of patients with
motor disabilities who are in need of assistive systems.
The presence of pain could be independent of the
underlying condition and last a long duration (chronic
pain condition), or it could have an unpredictable
onset with a relatively short duration (acute pain).

Few studies have tried to identify biomarkers for pain
[6]-[10] in an attempt to standardize pain measurement.
However, till date, self-reporting is the commonly-used
method for pain description, making it highly subjective.
Pain is known to impact cortical activities, influencing
cognitive functions [11]-[12]. As such, an important
question that needs to be investigated would be: is
the operation of BCIs compromised by the presence of
pain? For example, how would the BCI perform if the
patient does not experience pain while training the BCI,
but later experiences pain while using the BCI? The
limited existing research in this area suggests that EEG
and fNIRS signals are influenced by the presence of
pain [13]-[16], highlighting the need for finding models
and features that are robust to sudden occurrences of
pain.

In this paper, we investigate the impact of the presence
of acute pain on the classification accuracy of a
fNIRS-based BCI. We consider a one dimensional
convolutional neural network (CNN) as the classifier
for the BCI. In our previous work [16], we considered
frequency-domain features from fNIRS signals with
support vector machine (SVM) as the classifier. SVM
required extensive manual crafting of features. As an
alternative approach, here, we use CNN, as it learns
features automatically from the input data, thereby,
eliminating the need for manual feature extraction.
Next, we perform a multi-label classification to identify
the presence of pain and classify the performed task,
simultaneously. Finally, we propose a training process
that pools data obtained both in the presence and the
absence of pain as a solution to mitigate the presence
of pain for the operation of the BCI.

The paper is organized as follows. Experimental
procedure, data preprocessing steps and classification
methods are described in Section II. Results and
discussions are presented in Section III, and the paper
is concluded in Section IV.

II. METHODS

II-A. Experimental procedure

All procedures were approved by the Rutgers’
Institutional Review Board (IRB). Data collection from
3 healthy subjects were performed in the NeuroImaging
Laboratory at Rutgers University. Details of the
experiment have been previously described in [16].
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Figure 1. Architecture of the CNN

Briefly, fNIRS signals were recorded using NIRx
system (NIRScout, NIRx Medical Technologies, LLC)
at wavelengths of 760 nm and 830 nm. The signals
were sampled 10.41Hz. 16 NIR light sources and 24
detectors, forming 50 channels, were placed over the
prefrontal and the motor cortices. Two mental arithmetic
tasks (mental subtraction and backward counting) were
considered. Each trial of the experiment consisted of
6 seconds of task interval, followed by a rest interval
of 10− 12 seconds. Each block consisted of 13 trials
of each task. During the experiment, 5 pain-free and
5 under-pain blocks were presented in random order,
resulting in a total of 65 trials per task for each of the
pain-free and under-pain conditions [16].

For the blocks that were accompanied with pain,
subjects were exposed to thermal pain that was induced
by applying heat to the dorsum of the left hand via a
standard 30× 30 thermode from TSA-II from Medoc.
For each subject, the pain threshold was measured
before applying the thermode. The process is described
in [16]. For the pain-free blocks, the temperature of the
thermode was set to baseline.

II-B. Data preprocessing

Pre-processing of the recorded signals was performed
using nirsLAB. Signals were bandpass filtered between
0.01 to 0.2 Hz to remove artifacts, cardiac signal
and low-frequency oscillations, and then converted
into oxygenated ([∆HbO2]) and deoxygenated ([∆HbR])
hemoglobin concentration changes using the modified
Beer-Lambert’s law [17]. The duration of [−1 to 6]
seconds, with 0 indicating the onset of stimulus, was
selected for each trial. [∆HbO2] signals were used due
to their better signal-to-noise ratio compared to [∆HbR]
signals.

II-C. Classification of tasks using CNN

Recently, CNN has been explored for classification
of fNIRS signals in various studies [18]-[23]. The
architecture of the CNN used for classification of
the tasks in the presence and the absence of pain
is shown in Figure 1. The CNN was composed of
3 convolutional layers with 128, 64 and 32 filters
and kernel sizes of 16, 8 and 4, respectively. Each
convolution layer was followed by a dropout of 0.7
to minimize overfitting. The output from the third
convolution layer after dropout, was fed to a maxpooling

layer to reduce the size of features by downsampling
the generated feature map by a factor of 4. The output
from this layer was flattened and provided as input to
a dense layer with 1 output for classifying the tasks.
Rectified linear unit (ReLU) was used as the activation
function for the convolution layers due to its least
susceptibility to vanishing gradients. Sigmoid activation
function was used for the output layer as it is non-linear,
differentiable, and has an output range from 0 to 1,
making it ideal for binary classification. The weight of
the nodes in the network were updated using the adam
optimizer. A learning rate of 0.0001 and exponential
decay rate of 0.9 and 0.999 for the first and second
moment estimates were used, respectively. The network
was trained for a total of 500 epochs with a batch
size of 32. Binary cross-entropy was used as the loss
function for the optimizer. The CNN architecture in this
work was chosen empirically. Future works will explore
architecture selection methods for classification.

Besides adding dropout layers in the network, data
augmentation, which is a method used to prevent
overfitting in small datasets [24], was also employed.
Specifically, the preprocessed signals were first
resampled at 200 Hz, and signals from the interval of
[0−6] seconds were divided into 0.5-second segments,
and were fed as inputs to the CNN with a total of 780
training samples (65 trials × 12 segments). Thus, the
input data size was 780 (samples) × 200 (datapoints)
× 50 (channels) per task. To account for the stochastic
nature of the CNN, the training and testing processes
were repeated 10 times. The average over 10 iterations
was reported as the result.

We considered three cases to train and test the CNN
classifier for the BCI.

Case 1 (NP-NP): The pain free data (no-pain (NP) data)
was used for both training and testing the classifier. This
situation occurs when the patient does not experience
any pain during training or while using the BCI for
assistive purposes.

Case 2 (WP-WP): The data obtained in the presence of
pain (with-pain (WP) data) was used for both training
and testing phases. This is the situation when the patient
experiences pain of acute nature during training as well
as when using the BCI.
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Table 1. Labeling Schema for Multi-label Classification

Data Pain Label Task Label
Subtraction - No pain 0 0
Counting - No pain 0 1

Subtraction - With pain 1 0
Counting - With Pain 1 1

Case 3 (NP-WP): The pain-free data (NP) was used
for the training phase and the classifier was tested
on data obtained in the presence of pain (WP). This
case resembles the situation where the patient does not
experience any pain while training for the BCI, but
experiences acute pain while using the BCI.

The classification accuracy of the CNN is taken as the
metric of performance for each case.

II-D. Multi-label classification

To further analyze the impact of the presence of pain
for task classification, multi-label classification was
performed on the data. In multi-label classification, a
data sample can belong to more than one label at a
time [25]-[28].

We assigned two labels to the fNIRS data. The first
label indicated whether the data was obtained in the
presence or the absence of pain, and the second
label classified the task as either mental arithmetic or
backward counting (see Table 1). For the pain label, the
presence of pain was indicated by 1, and the absence
of pain was indicated by 0. For the task label, the
subtraction and the counting tasks were assigned 0 and
1, respectively. Multi-label classification was performed
on the data using the same CNN architecture described
in II-C. However, the number of outputs from the final
dense layer was modified to 2 (one for each label). Since
each label has a binary classification target, the sigmoid
function was chosen for output activation.

We used the Hamming loss and micro-averaged F1
score as metrics for multi-label classification [28],
[29]. The Hamming loss measures the proportion of
incorrectly predicted labels to the total number of labels,
and is expressed as

Hamming Loss =
1

nL

n

∑
i=1

L

∑
j=1

y_predi, j == y_gti, j, (1)

where n is the number of data samples, L is the number
of labels, y_pred is the predicted value, and y_gt is the
ground truth of the value. The comparison is assigned a
0 if the predicted and the ground truth labels match, and
1 is assigned when there is a mismatch. Lower values
of the Hamming loss indicate a better performance. The
micro-averaged F1 score is the harmonic mean of the
precision and recall scores of the data [28], is described
as

Micro−averaged F1 score =
∑

1
i=0(2∗T P)i

∑
1
i=0((2∗T P)i +(FP)i +(FN)i)

(2)

Table 2. Classification Accuracy (%) of the CNN

Subject NP-NP WP-WP NP-WP
Subject 1 92.76±2.13 90.45±1.60 52.14±2.68
Subject 2 92.97±1.52 93.59±2.04 49.42±1.56
Subject 3 95.17±0.81 93.61±1.30 59.19±2.18

AVERAGE 93.63±1.48 92.55±1.65 53.58±2.15

where i represents the binary classification for
each label, and TP, TN, FP and FN denote the
true positives, true negatives, false positives and
the false negatives, respectively. The micro-averaged
score essentially computes the proportion of correctly
classified observations out of all the observations. Thus,
higher values of F1 scores indicate a better performance
of the classifier.

II-E. Pooled data analysis

To mitigate the impact of pain on the classification
accuracy of the BCI, we propose to train the classifier
on both the data obtained in the presence and the
absence of pain. This enables the BCI to learn the
cortical signatures of the pain along with that of the
tasks during the training phase. The cortical signals of
the two tasks, collected both in the presence and the
absence of pain, were pooled together and fed as input
to the classifier during training. The trained classifier is
then tested using NP data, and using WP data. The CNN
model architecture described in section II-C is used for
pooled data analysis as well.

III. RESULTS

The classification accuracy of the CNN for the mental
arithmetic tasks, for the three cases of NP-NP, WP-WP
and NP-WP as described in II-C, are presented in
Table 2. For case 1 (NP-NP), the cortical activities
predominantly represent the tasks during both training
and testing phases. The CNN model is seen to perform
well with an average accuracy of 93.63% across the
subjects. For case 2 (WP-WP), the BCI has assimilated
the signature of pain along with cortical activity of
the task during training. Since the nature of the pain
experienced by the patient while using the BCI is similar
as that experienced during the training phase, not much
difference is expected in the cortical signals between
the training and testing phases. As a result, a high
classification accuracy is expected. Accordingly, in this
case, the CNN yields an accuracy of 92.55%. In the
third case (NP-WP), as the patterns of cerebral activity
induced by pain is unknown to the model during the
testing phase, the classification accuracy is expected to
be lower. Accordingly, the accuracy drops to almost the
chance level of 53.58%. This suggests that a BCI model
trained with no knowledge of the pain signatures will
fail to perform if the patient experiences pain later while
using the BCI, leading to the potential failure of the
BCI-controlled assistive device.
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Table 3. Multi-label Classification Metrics

Subject NP Data WP Data
Hamming Loss Micro-F1-Pain Micro-F1-Task Hamming Loss Micro-F1-Pain Micro-F1-Task

Subject 1 0.15 0.77 0.93 0.24 0.77 0.76
Subject 2 0.048 0.95 0.95 0.19 0.82 0.81
Subject 3 0.048 0.95 0.96 0.15 0.83 0.87

AVERAGE 0.083 0.89 0.95 0.19 0.80 0.81

For multi-label classification, the Hamming loss and
micro-averaged F1 score metrics are presented in
Table 3. The F1 score metrics is reported for the
pain classification label (Micro-F1-Pain) and task
classification label (Micro-F1-Task), separately.

The Hamming loss measures how well the classifier can
make correct prediction on both the presence of pain and
the task identification, simultaneously. It is observed that
the average Hamming loss across all the subjects for the
data obtained in absence of pain is 0.083, suggesting
that the classifier can indicate the absence of pain and
identify the task correctly at the same time for roughly
91.7% of the times (1− 0.083 = 0.917). However, the
Hamming loss for data obtained in the presence of pain
is about one order of magnitude higher than that for
no-pain data. This means that the classifier can identify
the presence of pain and the tasks performed in the
presence of pain, simultaneously for only about 81% of
the times (1−0.19 = 0.81).

The micro-averaged F1 score for pain identification,
averaged across subjects, is 0.89 for no-pain data and
0.80 for data obtained in the presence of pain. This
represents the accuracy with which no pain and pain
conditions are identified, respectively, while performing
the tasks. Thus, the accuracy for pain identification
while performing a task is 89% for no-pain and 80%
for the presence of pain. These scores leads us to
hypothesize that the classifier finds it challenging to
isolate the pain component in the cortical signals while
a patient is performing a task. The micro-averaged
F1 score for task identification for no-pain data is
0.95, which represents the ability of the classifier to
identify the tasks in the absence of pain. However, the
micro-averaged F1 score for task identification in the
presence of pain is 0.81. This represents the ability
of the classifier to distinguish the two tasks while the
subject is experiencing pain. The lowered accuracy of
81% compared to the no-pain data accuracy of 95%
confirms that the task and pain signals from the brain
cannot be isolated easily. It also reinforces that pain has
a significant impact on the cortical signals of the task.

The pooled-data training method is used to mitigate
the negative effect of pain on the performance of the
BCI. The results are shown in Table 4. When testing
the model on NP data, it yields an average accuracy
of 94.64% across all the subjects. When the classifier
is tested on WP data, the classification accuracy of

Table 4. Classification Accuracy (%) of Pooled-data Training
Method

Subject NP WP
Subject 1 91.86±2.44 79.53±3.59
Subject 2 95.88±1.48 82.92±2.42
Subject 3 96.20±1.28 88.55±2.0

AVERAGE 94.64±1.73 83.67±2.67

the CNN is 83.67%. It can be seen that compared to
the results shown in Table 2, this method of training
has increased the accuracy for the NP-WP situation
from 53.58%. It is interesting to see that the accuracy
in the case of testing on WP data is lower than that
of NP data. This can be attributed to the significant
impact of pain on the cortical signals of the task and
the inability of the classifier to distinguish the task
component from the pain component in the cortical
signals. However, this method of mitigation provides
classification accuracy results that are high enough to
be applied on practical binary classification BCIs that
require a threshold classification accuracy of at least
70% [30].

IV. CONCLUSIONS

In this work, we first investigated the impact of the
presence of acute pain on the classification accuracy
of mental arithmetic tasks in fNIRS-based BCIs, when
CNN is used as the classifier. Our results indicated that
while CNN provided a reliable way for classification of
the tasks with greater than 90% accuracy, it performed
poorly when the model is trained on pain-free data
but tested on data collected in the presence of pain.
To delve deeper into the analysis, we performed
multi-label classification to detect the presence of pain
and classify the task, simultaneously. The Hamming
loss and micro-averaged F1 score metrics for this
classification were better for no-pain data. The classifier
performance was lower when it tried to detect the
presence of pain and task, simultaneously. This leads
to the conclusion that the cortical signals of the task
and pain cannot be isolated easily and thus, pain has
a significant impact on the cortical activity of the task
at hand. Finally, to remedy the impact of pain, it was
shown that the model can be trained collectively on task
data obtained both in the presence and the absence of
pain. In conclusion, it is of great importance to consider
the presence of pain prior to adapting BCIs for assistive
systems. Future work will explore methods to identify
models that are not impacted by the presence of pain.
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