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Abstract— Analysis of functional connectivity helps to
determine how brain regions interact with one another and
to understand neurological diseases better. In this study,
we compare functional connectivity networks derived from
electroencephalogram (EEG) data using Pearson’s corre-
lation and mutual information. The TUH EEG Epilepsy
Corpus (TUEP) dataset is analysed with methods from
Graph Theory, Statistics and Machine Learning. Our
findings can be used to develop features for predictive
models. Specifically, we show that with just 19 channels, a
convolutional neural network model achieves 94% and 95%
area under the receiver operating characteristic (ROC)
curve (AUC) for correlation and mutual information,
respectively. Thus, we provide evidence that application of
Machine Learning methods to EEG data not containing
seizures can help to accurately identify individuals with
epilepsy. This may have considerable implications on
diagnosing the pathology.

Keywords— epilepsy, functional connectivity, graph topol-
ogy, neural networks, maximum spanning tree.

I. INTRODUCTION

The research on brain connectivity networks has seen
some outstanding results in the recent years. It was
found that patients with different neurological diseases
have differences in the types of connections within their
brains. For example, patients with Alzheimer’s disease
or dementia with Lewy bodies differ in the way how
brain networks are activated [1]. Patterns of the brain’s
network are in some ways as unique as fingerprints.
It is potentially possible to identify a person by using
brain recordings with an accuracy greater than 99% [2].
Individuals with different moral qualities differ from one
another in the way their brain networks work [3]. Peo-
ple’s adaptability to conflict situations is also reflected
by their brain networks [4]. The study of brain con-
nectivity has also proven crucial to better understanding
human intelligence [5], specifically, greater connectivity
is associated with higher intelligence scores [6].

Several methods are typically employed to quantita-
tively evaluate functional connectivity. Minimum span-
ning trees (MST) of phase lag index-based (PLI) graphs
for different EEG frequency bands have been used in
distinguishing individuals with dyslexia [7] and those
with Alzheimer’s disease [8] from healthy controls. A
weighted version of PLI is also often used, such as in the
case of analysing memory loads through EEG [9]. More
recently, measure using Granger causality combined

with VAR models have been applied alongside with
RNNs to capture non-linear causal relations [10].

The increasing amount of data on brain’s activity, such
as the TUH EEG Corpus project, have made it pos-
sible to employ machine learning and deep learning
approaches for studying brain-related pathologies [11].
In particular, Convolutional Neural Networks (CNN)
and Graph Neural Networks (GNN) have successfully
been used to classify EEG data [12] in several contexts,
emotion recognition being one of them [13].

Using neural networks to classify EEG time-series
leaves us with the challenge of finding a good frame-
work for generating features. Features may be created
and selected manually. This usually requires some ex-
pert knowledge and the number of analyzed features is
limited. In the end-to-end approach, machine learning
or deep learning methods are used to learn features
automatically and this has been the focus of a lot of
recent work. This leads to a biased impression that
the models based on the end-to-end approach perform
better [14].

The main goal of this work is to study Functional
Connectivity (FC) from different angles. We aim to find
parameters that could be used as features for model
building. In order to do that, we first review some
concepts of FC, before introducing the four classes of
methods we base our analysis on: connectivity matrices’
thresholding, graph’s topology, hierarchical clustering
and convolutional neural networks. We show that these
methods enable to identify epilepsy based on FC. This
provides further evidence that, compared to healthy
(control) groups, FC patterns are different in epileptic
groups. Finally, we also compare the results obtained
with different methods and mention some of their lim-
itations.

II. METHODOLOGY

II-A. Functional connectivity

A statistical relationship between two brain activity
signals is an indicator of functional interactions between
corresponding brain regions, and is called functional
connectivity [15, 16]. Functional connectivity reflects
the similarity of the characteristics of neuronal activity
patterns of brain structures that are anatomically distant

IEEE SPMB 2022 December 3, 2022



A. Maratova, et al.: Comparative Analysis ... Page 2 of 10

0 2 4 6 8 10
Time (s)

FP1
FP2

F3
F4
C3
C4
P3
P4
O1
O2
F7
F8
T3
T4
T5
T6
FZ
CZ
PZ

40.0 µV 

0 2 4 6 8 10
Time (s)

FP1
FP2

F3
F4
C3
C4
P3
P4
O1
O2
F7
F8
T3
T4
T5
T6
FZ
CZ
PZ

40.0 µV 

Figure 1. Example of an EEG time-series from an epileptic (left) and non epileptic (right) person.

from each other. A classification of different metrics for
quantitative assessment of FC is given in Ref. [17].

In this work, we use two measures to compute FC. The
first is the linear correlation metric between two time-
series, X and Y , the Pearson coefficient rXY :

rXY =
∑

n
i=1(Xi − X̄)(Yi − Ȳ )√

∑
n
i=1(Xi − X̄)2

√
∑

n
i=1(Yi − Ȳ )2

, (1)

The second measure of FC we consider is the mutual
information, which is able to capture non-linear depen-
dencies and is defined as

I(X ,Y ) =
N

∑
i=1

N

∑
j=1

pXY (xi,y j) log(
pXY (xi,y j)

pX (xi)pY (y j)
) . (2)

Here, pXY (xi,y j) represents the joint probability of
finding variable X in bin xi and variable Y in bin yi,
while pX (xi) and pY (y) represent the corresponding
marginal probabilities.

In order to provide an appropriate number of bins N to
Eq. (2) we use Sturges’ rule [18]:

N = 1+ ⌊3.322logn⌋ , (3)

where N represents the bin number, n the number of
total observations and ⌊x⌋ is the integer part of x.

Interpreting the variables X and Y as two EEG channels,
we use Eqs. (1) and (2), to define the covariance matrix,
CM×M , and the mutual information matrix, IM×M for
a EEG dataset with M channels. These matrices are
referred to as FC matrices. To be able to compare
the matrices we normalize I , i.e. we divide each
element I[k,ℓ], corresponding to channels k and ℓ, by√

I[k,k]I[ℓ,ℓ]. In this way, as in the correlation matrix,
its diagonal elements become unitary normalized.

II-B. Thresholding methods for FC matrices

FC matrices can be interpreted as adjacency matrices of
weighted graphs. Thus, we can apply graph topological
metrics to the matrix and analyse individual nodes. One
key issue of graph analysis is to know which connec-
tions are actually meaningful and, in order to distinguish
between meaningful and spurious connections, it is
common to employ a thresholding method. As proposed
in Ref. [19], an improper choice of thresholding can
lead to substantial statistical differences in graph metrics
between samples. Thus, two commonly used approaches
are absolute thresholding and proportional thresholding
and their results are compared. Alternatively, Maximum
Spanning Tree (MST) of the graph can also be used as
a graph-based approach to thresholding [20, 21].

In absolute thresholding, all elements of an FC matrix
that are below a certain value are set to zero. Alterna-
tively, proportional thresholding retains a percentage of
the strongest connections (edges), for example, retaining
only the top 20% of the FC matrix values. Garrison et al.
[20] propose that graphs’ metrics remain stable across
proportional thresholds. When comparing groups, a
proportional threshold ensures equal density between
groups, i.e. the same amount of nodes and edges.

II-C. Graph metrics

It is important to be able to interpret the various metrics
for graphs’ topology. In a graph, the efficiency of a
pair of nodes is inversely proportional to the distance
between them, i.e. the sum of the shortest path edges’
weights. A graph’s mean efficiency is calculated as
the average pairwise efficiency of the nodes [22]. This
metric can be used to quantify the ability of a brain to
quickly transfer signals between distant regions.

The concept of centrality in graphs is important for
describing regions with many anatomical or functional
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connections. A popular measure for centrality is the
degree of a node. In a weighted graph, the degree of
a node is defined as the sum of it’s incident edges’
weights. High degree nodes are considered to represent
important hubs in functional connectivity graphs. An
overview of graph measures related to functional segre-
gation, integration, centrality and resilience is provided
in [23].

In order to understand if two samples, i.e. epileptic
patients and healthy persons, differ in the calculated
graph metrics the Student’s t-test can be applied [24].
We test the statistical hypothesis about equality of the
mathematical expectations of the graph metrics in our
samples.

II-D. Hierarchical clustering

Hierarchical agglomerative method can be described as
sequentially merging smaller clusters based on distances
between them. At the beginning, the algorithm treats all
elements as separate clusters and combines the closest
ones into one new cluster. In the subsequent steps,
merging continues until all objects constitute a single
cluster. In what follows, the closeness between elements
is calculated using the Euclidean distance. The result of
the algorithms work can be visualized by a dendrogram.
A dendrogram is a tree-like diagram that presents the
proximity of individual points and clusters to each other.

II-E. Convotutional neural network

FC matrices can be treated as images and processed
by a CNN [25]. In this regard, the matrices play the
role of snapshots of the brain’s functional activity, and
the trained model will distinguish between epileptic and
non-epileptic patterns.

Since it is a binary classification task on small matrices,
CNN models train quickly, and relatively few training
parameters are required to achieve high performance.
However, large amounts of data may be needed to
train models. To compensate for limited EEG datasets,
one can take non-overlapping intervals of the signals
from each subject’s recordings. FC matrices are then
computed for each interval.

When training a CNN model, the achieved performance
metric values at each epoch can be observed. The
training is stopped if the performance metric does not
improve or if the values for training and validation
sets diverge. One of the standard metrics for evaluation
of classification models is the "area under the ROC
curve", AUC. As proposed in Ref. [26], a model with
AUC between 80% and 90% has an excellent predictive
power; above 90% is considered outstanding.

II-F. Data preparation

The TUH EEG Epilepsy Corpus (TUEP) was chosen
to conduct experiments. The dataset contains EEG

Figure 2. International 10-20 system for EEG.

recordings from 100 subjects who do not have epilepsy
(288 files) and 100 subjects with epilepsy (1,360 files),
identified by certified neurologists [27].

For our analyses we use the EEG signals from 19 chan-
nels common to all recordings: ’FP1’, ’FP2’, ’F7’, ’F3’,
’FZ’, ’F4’, ’F8’,’T3’, ’C3’, ’CZ’, ’C4’, ’T4’, ’T5’,’P3’,
’PZ’, ’P4’, ’T6’, ’O1’, ’O2’. The international 10-20
system for EEG electrode location is used for correct
reflection of functional connectivity graphs Figure 2.

We take only the first EEG recording for each patient
in each group (epilepsy, no_epilepsy). These recordings
are used to compute functional connectivity. For the
experiment with MSTs, the recordings are restricted to
the Delta [1-4 Hz], Theta [4-8 Hz], Alpha [8-12 Hz],
Beta [12-30 Hz], All[1-40 Hz] frequency bands.

To train the CNN model, the EEG recordings were
split into non-overlapping 60-second intervals. Up to
10 intervals were taken from each recording.

III. EXPERIMENTAL RESULTS

III-A. Patterns in the heatmaps of the functional con-
nectivity matrices

Heatmap is a good method for visualizing FC matri-
ces and observe patterns in their values as pixels. To
illustrate this, we plot heatmaps of two subjects, with
and without epilepsy. Heatmaps of correlation matrices
are given in Fig. 3 (top). One can observe that for the
subject with epilepsy, high correlations prevail in the
frontal part of the head (red pixels in the upper left
corner of the heatmap). The inverse can be observed
in the occipital region, where high correlation are rarer
(lower right part of the heatmap).

On the other hand, for the subject without epilepsy,
high correlation values prevail in the occipital region.
The differences in patterns are made more explicit with
50% proportional thresholding, Fig. 3 (bottom). The
central channel ’CZ’ has very few correlations with
other channels in the healthy individual, but the same is
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Figure 3. Heatmaps of correlation matrices original (top) and under 50% proportional thresholding (bottom) from an epileptic
(left) and non epileptic (right) person.
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Figure 4. Heatmaps of mutual information matrices original (top) and under 50% proportional thresholding (bottom) from an
epileptic (left) and non epileptic (right) person.
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Figure 5. Dendrograms derived from FC matrices for the correlation matrices (top) and mutual information (bottom) and from
an epileptic (left) and non epileptic (right) person.

not found in the epileptic patient. It is more difficult to
visually compare the heatmaps for mutual information
since most values are small. However, one can observe
analogous patterns in this case (Fig. 4). These findings
give us an idea of how the two groups of subjects can
be differentiated.

III-B. Hierarchical clustering analysis

We applied the hierarchical clustering algorithm to the
FC matrices presented above. The obtained dendro-
grams are given in Fig. 5. The heights of the vertical
lines correspond to the distances between channels and
their clusters. Horizontal lines visualize the sequence
in which channels and clusters get grouped. Different
colours determine the main clusters.

One can observe that channels get grouped after their
geometric location on the scalp in the case of a healthy
person. In the correlation case, electrodes from the
frontal part and the occipital parts are grouped into
two clusters. In the case of mutual information, there
are separate clusters for the frontal and occipital parts,
and for the left and the right side of the head. For the
epileptic patient, some of the channels got clustered with
geometrically distant ones. For example, electrode ’F3’
is grouped together with the ’O1’. This could indicate
that due to epilepsy some brain regions establish func-
tional connections that are not present within healthy
individuals.

For the thresholded FC matrices only correlation-based
clusters of the epileptic patient get influenced. For all

Table 1. T-test for global efficiency between the FC graphs
proportionally thresholded at 50%

Global Epilepsy No Epilepsy T-test
efficiency mean std mean std T-score p-value
Mutual
Information 0.732 0.032 0.744 0.043 2.145 0.033

Correlation 0.721 0.066 0.74 0.069 1.91 0.057

other cases, the dendrograms remain the same.

III-C. Analysis of the effect of thresholding

Some edges in the FC graphs may be spurious due to
the presence of artifacts and noise in the EEG data. This
may distort the analysis of graph structures and lead to
wrong conclusions. To circumvent these problems, it is
proposed to neglect the edges with smaller weights.

Proportional thresholding at 50% removes half of the
edges with smaller weight values. This approach allows
comparing graphs that result from different FC metrics,
and it is also valid when analysing graphs of different
subject groups. Table 1 summarises the results of the
t-test. At the level of 50%, the global efficiencies of
graphs in the two groups attain significant difference.
Thus, the 50% level is a reasonable choice for our
problem. In Fig. 6 the effects of proportional threshold-
ing on correlation-based FC graphs is illustrated. The
analogous visualisations for graphs based on mutual
information are given in Fig. 7.

Further, we extract MSTs for the FC graphs. In Fig. 8
examples of MSTs are presented. Correlation and mu-
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Figure 6. Proportional thresholding for the correlation metric from an epileptic (left) and non epileptic (right) person.
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Figure 7. Proportional thresholding for the mutual information metric an epileptic (left) and non epileptic (right) person.
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Figure 8. Maximum Spanning Trees for FC graphs

tual information give very similar MSTs for an individ-
ual subject, epileptic or healthy.

We add one more level of complexity to our analysis by
restricting the EEG signals to different frequency bands:
Delta [1-4 Hz], Theta [4-8 Hz], Alpha [8-12 Hz], Beta
[12-30 Hz], All [1-40 Hz]. Thus, we obtain 5 MSTs
from each of the 200 recordings. We then apply the
Student’s t-test to check if the average degrees of MST
nodes are the same in the two groups.

Table 2 summarises the results of the test. Here, we
present only the cases where the p-value is less than
10%. For the channels ‘P3’ and ‘P4’, their average
degrees in MSTs are not the same in the Beta fre-
quency range, ‘P4’ also significantly differs in the
Theta frequency range. Channels ‘C4’, ‘T6’, ‘F8’, ‘CZ’,
and ‘FP2’ have significant differences at 10% level.
Table 3 presents the corresponding results obtained for
the correlation-based MSTs. In this case, differences
between groups are located in the other nodes. However,
the channels ’P4’ and ’O2’ in the Beta and Delta
bands stand out here, as they do in the case of mutual
information. Thus, our analysis shows that nodes of
FC graphs have significantly different average degrees
between epileptic patients and healthy persons.

III-D. Application of Convolutional Neural Network

We produced two sets of 19-by-19 FC matrices, one set
of correlation matrices and another of mutual informa-
tion matrices, and trained the same CNN architecture
on each one, thus producing two CNN models. The
dataset for modelling includes 1732 matrices in each
of the cases. Further, the dataset was split into the train
(64%), validation (16%), and test (20%) subsets. The

Table 2. T-test results (p-value < 0.1) comparing Epilepsy
and No Epilepsy groups: differences in node degrees of the
Maximum Spanning Trees derived from the MI metric

Freq. bands EEG channels T-Score p-value
All [1-40 Hz] C4 1.661 0.098
Alpha [8-12 Hz] T6 2.008 0.046
Beta [12-30 Hz] P3 2.916 0.004
Beta [12-30 Hz] P4 3.212 0.002
Delta [1-4 Hz] F8 1.870 0.063
Theta [4-8 Hz] CZ 1.922 0.056
Theta [4-8 Hz] FP2 -1.689 0.093
Theta [4-8 Hz] P4 2.022 0.045

Table 3. T-test results (p-value < 0.1) comparing Epilepsy
and No Epilepsy groups: differences in node degrees of the
Maximum Spanning Trees derived from correlation

Freq. bands EEG channels T-Score p-value
All [1-40 Hz] FP2 1.821 0.070
All [1-40 Hz] O2 -1.695 0.092
Alpha [8-12 Hz] FZ 2.212 0.028
Beta [12-30 Hz] F7 -2.372 0.019
Beta [12-30 Hz] P4 1.896 0.059
Delta [1-4 Hz] F7 1.676 0.095
Delta [1-4 Hz] F8 1.810 0.072
Delta [1-4 Hz] O2 -2.122 0.035

proportion of matrices coming from the two groups of
patients was kept close to 50% in each subset. The target
vector has two values: 1 for epileptic cases and 0 for the
healthy ones. Thus, we have got a binary classification
problem. The input layer has the dimension 19x19x1 to
ingest the matrices with functional connectivity values.
The input layer is followed by a repeated combination
of convolutional and max-pooling layers. Flattening and
two dense layers complete the network. Accuracy was
chosen for the optimisation metric.

The model training results in the form of ROC-AUC
curves are presented in Fig. 9. Both models give 89%
accuracy on the test set. There is a slight difference in
the ROC-AUC metric for the two models. The model
with mutual information achieves 95% in AUC on the
test set, whereas the model for correlation matrices
reached 94% AUC, thus showing that our CNN model is
extremely efficient at distinguishing between individuals
with and without epilepsy.

IV. DISCUSSION

In this work we obtained one more piece of evidence
that functional connectivity patterns are different in
epileptic individuals, when compared with healthy ones.
MST shows that an epileptic patient has weaker connec-
tions in the frontal poles (channels ’FP1’ and ’FP2’) and
the occipital part (channels ’O1’ and ’O2’) than that of
a healthy person (see Fig. 2). It also shows connections
from distant part of the brain.

Furthermore, when classifying individuals with or with-
out epilepsy, CNNs achieved a AUC of 95% and 94%
when taking mutual information matrices or correlation
matrices. This substantiates the usefulness of these
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Figure 9. Convolutional neural network ROC-AUC for the
correlation metric (top) and mutual information (bottom).

Predicted label
0 1 0 1
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la
be

l

0 157 22 151 28

1 17 151 11 157

Table 4. Confusion matrices relative to the CNN classification
method applied to the 19-by-19 correlation matrix (left) and
to the 19-by-19 mutual information matrix. Both show an
accuracy of ∼ 89%.

methods when applying them to EEG time-series.

This result is particularly significant, since our data were
gathered with a very limited number of channels (19
channels). This has two consequences. On one hand,
a higher resolution EEG may yield finer distinctions
between the two groups here analysed. On the other,
from a computational point of view, this reduces the
computational cost for medical applications, since it
uses only 19 channels to classify EEG signals.

The accuracy obtained with the methods above is better
than the one with other CNN-based approaches for
FC-based epilepsy classification. Namely, as can be
seen from the confusion matrices in Tab. 4, we ob-

tained 89% accuracy, while the benchmark from the
literature is 85% [28]. However, our approach seems
to yield a smaller accuracy when compared to cases
where machine learning methods are applied, namely
K-nearest neighbours, support vector machines or tree-
based methods [29]. Further studies might clarify if
these methods are preferred to CNN-based methods.
Still, we stress that our database is significantly larger
than those of most studies, some of which use equip-
ment with more channels and a higher sampling fre-
quency. These factors make the use of this database
preferable in order to obtain statistically significant
results which can be more easily replicated in a medical
context.

In the future, it would be interesting to analyse causal
relationships between activities of different brain re-
gions by computing Granger causality, following some
recent works [10] . The resulting functional connectiv-
ity graphs are directed, and relevant graph parameters
would have to be used to analyse them. Moreover,
studying the EEG signals via frequency domain mea-
sures, such as coherence or phase slope index, could
facilitate the discovery of new patterns in the brain’s
work.

V. SUMMARY

In the current work, we applied Graph theory, Statistics
and Machine learning to study functional connectivity
(FC) data derived from EEG signals. Recordings from
the TUH EEG Epilepsy Corpus (TUEP) were used for
our analyses. We found differences in the patterns of
FC between epileptic patients and healthy individuals.
These findings can be used to develop interpretable
features for predictive models.

Correlation and mutual information were chosen as FC
metrics. Observation of heatmaps that were obtained
from the respective matrices, lead us to the idea that the
epileptic patients and the healthy individuals might have
different FC patterns. In particular, the epileptic patient
had stronger functional connections in the frontal lobes
and less in occipital zone when compared to the healthy
person. Furthermore, clusters of EEG channels show
that the epileptic brain establish functional connections
between distant areas of the brain. This contrasts with
healthy subjects, where clusters of EEG channels re-
flected their geometrical placements.

For the analysis of graphs emerging from FC matrices, it
was important to use a thresholding method that could
be applicable for comparing two subject groups, and
for neglecting weak and possibly spurious connections
without destroying graphs’ structures. We found that
proportional thresholding at 50% was suitable for that.
At this level, global efficiencies of the graphs became
significantly different between the two groups, Table 1.
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The maximum spanning tree (MST) was proposed as
an alternative for thresholding. To make the analysis
deeper, we derived MSTs for signals in different fre-
quency bands and computed all node degrees. The t-test
showed significant differences in average degrees for
several EEG channels, Tables 2, 3. Such insights could
be valuable for understanding how interactions between
brain regions change in the development of epilepsy.

Using FC matrices as training data, we built Convolu-
tional Neural Network (CNN) models for classification
between epileptic patients and healthy persons. The
Area under the ROC Curve (AUC) of 95% was achieved
for mutual information matrices and 94% for correlation
matrices, showing that applying CNNs to FC matrices is
an extremely efficient way to distinguishing an epileptic
EEG from an healthy one. This example supports the
idea that working with features may be more important
than building sophisticated and uninterpretable end-to-
end models.

Python scripts developed for this article can be found
on GitHub1.
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