

# An LSTM-based Recurrent Neural Network for Neonatal Sepsis Detection

Antoine Honoré, Henrik Siren, Ricardo Vinuesa, Saikat Chatterjee and Eric Herlenius

IEEE Signal Processing in Medicine and Biology Symposium December 3rd, 2022





## Sepsis

- Clinical condition which involves a destructive host response to a blood stream infection.
- High mortality and morbidity in all populations (adults, children, newborns)

### Prematurity

- < 37 weeks of gestation, of all livebirths:
  - ▶ 8.7% preterm in Europe, 11.1% worldwide [1]
  - Almost all pre-term infants are admitted to a Neonatal Intensive Care Unit (NICU)

### NICU

- ▶ 5-10% of NICU patients get an infection [2]
- 1.5 to 5 fold higher risk neurological disturbances into adulthood [3]

## Background Sepsis detection



#### Sepsis detection

- The analysis of blood samples reveals on-going infections
  - Difficult and harmful on preterms
  - Levels are **slow** to rise and lead to delayed treatments.
  - Change in concentration is unspecific to sepsis, leads to inadequate antibiotics treatments potentially harmful for pre-terms



# Background



#### Sepsis detection

#### Certain (unspecific) patterns are visible on bed-side monitors, e.g.

- Drop in oxygen saturation
- Drop in heart rate
- Apnea
- Sepsis detection using bed-side monitoring is the way forward, because it can be done continuously and non-invasively.



#### Data collection





#### Annotations

- Manual annotation of raw text data
- $\blacktriangleright$   $\approx$  250 categorized clinical events

#### Vital signs

▶ 3 dimensional time series: SpO<sub>2</sub>, IBI, RF.



Dataset preparation



#### Processing

- Given multi-dimensional series  $\underline{x}^{(k)} = \left(x_1^{(k)}, \cdots, x_{T_k}^{(k)}\right)$  and binary labels  $y_t^{(k)} \in \{0, 1\}$ .
- **Segment** the series into overlapping 55 minutes frames.
- Compute features developed to quantify known cardio-vascular behaviors, e.g. [4] and [5], sex, birth weight, weight measurement, age.

• Resulting in 
$$\underline{z}^{(k)} = (z_t^{(k)})_{t=1}^{T_k}$$
, where  $z_t^{(k)} \in \mathbb{R}^{24}$ , and binary labels  $y_t^{(k)}$ 

#### Overall

|          | # of<br>pa-<br>tients | Average # of<br>samples per pa-<br>tient | # of samples |            |
|----------|-----------------------|------------------------------------------|--------------|------------|
| Patients |                       |                                          | Total        | Prevalence |
| Positive | 10                    | 2 099 (1 280)                            | 20 992       | 2.86 %     |
| Negative | 108                   | 1 053 (952)                              | 113 676      | 0 %        |
| Overall  | 118                   | 1 141 (1 027)                            | 134 668      | 0.48 %     |

- Birth weight: 927  $\pm$  282g (VLBW)
- Sex: 44% male (52) and 56% female (66)

**Cross-validation** 





Models

#### Predictors: RNN

Simple representation of time-dependency



#### LSTM

More complex mechanism

$$\begin{aligned} \mathbf{h}_t &= \mathbf{g}(\mathbf{z}_t, \mathbf{h}_{t-1}) = \tanh(\operatorname{aff}(\mathbf{z}_t) + \operatorname{aff}(\mathbf{h}_{t-1})) \\ \hat{y}_t &= f(\mathbf{h}_t) = \operatorname{sigmoid}(\operatorname{aff}(\mathbf{h}_t)) \end{aligned}$$

$$(\mathbf{h}_t, \mathbf{c}_t) = \mathbf{g}'(\mathbf{z}_t, \mathbf{h}_{t-1}, \mathbf{c}_{t-1})$$
  
 $\hat{y}_t = f'(\mathbf{h}_t)$ 

#### Differences

- RNN back-propagation through time: vanishing/exploding gradient
- LSTM stabilizes back-propagation through time
- Better at retaining important information with forget gates

### Experiments

- ▶ The forward pass is done on sub-sequences of feature vectors of length T = 50 ( $\approx 24h$ ).
- The RNNs are used in a many-to-one setup.
- Weighted cross-validation loss

# Results

Numerical

#### Predictors: RNN

Simple representation of time-dependency

$$\begin{aligned} \mathbf{h}_t &= \mathbf{g}(\mathbf{z}_t, \mathbf{h}_{t-1}) = \text{tanh}(\text{aff}(\mathbf{z}_t) + \text{aff}(\mathbf{h}_{t-1})) \\ \hat{y}_t &= f(\mathbf{h}_t) = \text{sigmoid}(\text{aff}(\mathbf{h}_t)) \end{aligned}$$

### LSTM

Better back-propagation through time:

$$egin{aligned} (\mathbf{h}_t, \mathbf{c}_t) &= \mathbf{g}'(\mathbf{z}_t, \mathbf{h}_{t-1}, \mathbf{c}_{t-1}) \ \hat{y}_t &= f'(\mathbf{h}_t) \end{aligned}$$

#### Predictions scores

| Positive patients   |                    | Neg.               | Overall     |             |  |  |  |
|---------------------|--------------------|--------------------|-------------|-------------|--|--|--|
| F1                  | Spec.              | Spec.              | AUROC       | bAcc        |  |  |  |
| Logistic regression |                    |                    |             |             |  |  |  |
| 0.11 (0.07)         | 0.73 (0.28)        | 0.77 (0.04)        | 0.81 (0.15) | 0.60 (0.23) |  |  |  |
| Vanilla RNN         |                    |                    |             |             |  |  |  |
| 0.07 (0.07)         | 0.58 (0.24)        | 0.70 (0.11)        | 0.71 (0.18) | 0.62 (0.18) |  |  |  |
| LSTM                |                    |                    |             |             |  |  |  |
| <b>0.18</b> (0.31)  | <b>0.87</b> (0.17) | <b>0.98</b> (0.03) | 0.81 (0.18) | 0.66 (0.2)  |  |  |  |

# Results



#### Example





#### Models

- $+\,$  Using time correlation in LSTM models helps reduce false positive rate:
  - Interpretability can be introduced with attention layers.

## Cohort

- + Our scores are obtained in a realistic setting (as opposed to case control)
- Although realistic, the cohort is small, no external test is performed
- Clinical events are grouped, but could be studied separately

#### Data

- + Features capture useful information
- Raw signals could help further improve performances (so far negative results)

#### Thank you !







# References I



- H. Blencowe, S. Cousens, D. Chou, M. Oestergaard, L. Say, A.-B. Moller, M. Kinney, J. Lawn, and Born Too Soon Preterm Birth Action Group, "Born too soon: The global epidemiology of 15 million preterm births," *Reprod Health*, vol. 10 Suppl 1, p. S2, 2013.
- B. Cailes, C. Kortsalioudaki, J. Buttery, S. Pattnayak, A. Greenough, J. Matthes, A. Bedford Russell, N. Kennea, P. T. Heath, and neonIN network, "Epidemiology of UK neonatal infections: The neonIN infection surveillance network," *Arch. Dis. Child. Fetal Neonatal Ed.*, vol. 103, pp. F547–F553, Nov. 2018.
- A. M. Nuyt, J.-C. Lavoie, I. Mohamed, K. Paquette, and T. M. Luu, "Adult Consequences of Extremely Preterm Birth: Cardiovascular and Metabolic Diseases Risk Factors, Mechanisms, and Prevention Avenues," *Clin Perinatol*, vol. 44, pp. 315–332, June 2017.
- D. E. Lake, J. S. Richman, M. P. Griffin, and J. R. Moorman, "Sample entropy analysis of neonatal heart rate variability," *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*, vol. 283, pp. R789–R797, Sept. 2002.



M. P. Griffin and J. R. Moorman, "Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis," *Pediatrics*, vol. 107, pp. 97–104, Jan. 2001.