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Background
Sepsis and preterm

Sepsis

▶ Clinical condition which involves a destructive host response to a blood stream infection.

▶ High mortality and morbidity in all populations (adults, children, newborns)

Prematurity

< 37 weeks of gestation, of all livebirths:

▶ 8.7% preterm in Europe, 11.1% worldwide [1]

▶ Almost all pre-term infants are admitted to a Neonatal Intensive Care Unit (NICU)

NICU
▶ 5-10% of NICU patients get an infection [2]

▶ 1.5 to 5 fold higher risk neurological disturbances into adulthood [3]
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Background
Sepsis detection

Sepsis detection

▶ The analysis of blood samples reveals on-going infections
▶ Difficult and harmful on preterms
▶ Levels are slow to rise and lead to delayed treatments.
▶ Change in concentration is unspecific to sepsis, leads to inadequate antibiotics treatments

potentially harmful for pre-terms
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Background

Sepsis detection

▶ Certain (unspecific) patterns are visible on bed-side monitors, e.g.
▶ Drop in oxygen saturation
▶ Drop in heart rate
▶ Apnea

▶ Sepsis detection using bed-side monitoring is the way forward, because it can be done
continuously and non-invasively.
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Methods
Data collection
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Annotations
▶ Manual annotation of raw text data

▶ ≈ 250 categorized clinical events

Vital signs

▶ 3 dimensional time series: SpO2, IBI, RF.

▶
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Methods
Dataset preparation

Processing

▶ Given multi-dimensional series x (k) =
(
x (k)
1 , · · · , x (k)

Tk

)
and binary labels y

(k)
t ∈ {0, 1}.

▶ Segment the series into overlapping 55 minutes frames.

▶ Compute features developed to quantify known cardio-vascular behaviors, e.g. [4] and [5],
sex, birth weight, weight measurement, age.

▶ Resulting in z (k) =
(
z (k)
t

)Tk

t=1
, where z (k)

t ∈ R24, and binary labels y
(k)
t .

Overall

▶ Birth weight: 927 ± 282g (VLBW)

▶ Sex: 44% male (52) and 56% female (66)
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Methods
Cross-validation
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Methods
Models

Predictors: RNN
Simple representation of time-dependency

ht = g(zt ,ht−1) = tanh(aff(zt) + aff(ht−1))

ŷt = f (ht) = sigmoid(aff(ht))

LSTM
More complex mechanism

(ht , ct) = g′(zt ,ht−1, ct−1)

ŷt = f ′(ht)

Differences
▶ RNN back-propagation through time: vanishing/exploding gradient

▶ LSTM stabilizes back-propagation through time

▶ Better at retaining important information with forget gates

Experiments

▶ The forward pass is done on sub-sequences of feature vectors of length T = 50 (≈ 24h).

▶ The RNNs are used in a many-to-one setup.

▶ Weighted cross-validation loss
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Results
Numerical

Predictors: RNN
Simple representation of time-dependency

ht = g(zt ,ht−1) = tanh(aff(zt) + aff(ht−1))

ŷt = f (ht) = sigmoid(aff(ht))

LSTM
Better back-propagation through time:

(ht , ct) = g′(zt ,ht−1, ct−1)

ŷt = f ′(ht)

Predictions scores

Positive patients Neg. Overall
F1 Spec. Spec. AUROC bAcc

Logistic regression

0.11 (0.07) 0.73 (0.28) 0.77 (0.04) 0.81 (0.15) 0.60 (0.23)

Vanilla RNN

0.07 (0.07) 0.58 (0.24) 0.70 (0.11) 0.71 (0.18) 0.62 (0.18)

LSTM

0.18 (0.31) 0.87 (0.17) 0.98 (0.03) 0.81 (0.18) 0.66 (0.2)
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Results
Example
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Conclusions
Future perspectives

Models
+ Using time correlation in LSTM models helps reduce false positive rate:

- Interpretability can be introduced with attention layers.

Cohort

+ Our scores are obtained in a realistic setting (as opposed to case control)

- Although realistic, the cohort is small, no external test is performed

- Clinical events are grouped, but could be studied separately

Data

+ Features capture useful information

- Raw signals could help further improve performances (so far negative results)



Thank you !
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