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Background

Sepsis and preterm

Sepsis
» Clinical condition which involves a destructive host response to a blood stream infection.

» High mortality and morbidity in all populations (adults, children, newborns)

Prematurity
< 37 weeks of gestation, of all livebirths:
» 8.7% preterm in Europe, 11.1% worldwide [1]

» Almost all pre-term infants are admitted to a Neonatal Intensive Care Unit (NICU)

NICU
» 5-10% of NICU patients get an infection [2]
» 1.5 to 5 fold higher risk neurological disturbances into adulthood [3]
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Sepsis detection

» The analysis of blood samples reveals on-going infections
» Difficult and harmful on preterms
P |Levels are slow to rise and lead to delayed treatments.
» Change in concentration is unspecific to sepsis, leads to inadequate antibiotics treatments
potentially harmful for pre-terms
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Background

Sepsis detection

» Certain (unspecific) patterns are visible on bed-side monitors, e.g.
» Drop in oxygen saturation

» Drop in heart rate
» Apnea

> Sepsis detection using bed-side monitoring is the way forward, because it can be done
continuously and non-invasively.

175 — Sp0; (%)
—— BB HF (/min)
150 —— RF (/min)

[ 5 10 20 25 30

15
Time (Minutes)




Methods

Data collection
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= Annotations

s » Manual annotation of raw text data
;—’—L P> ~ 250 categorized clinical events
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Methods

Dataset preparation
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Processing
» Given multi-dimensional series x(k) = <x£k)7 e ,x%?) and binary labels yt(k) € {0,1}.
> Segment the series into overlapping 55 minutes frames.

» Compute features developed to quantify known cardio-vascular behaviors, e.g. [4] and [5],
sex, birth weight, weight measurement, age.

T
> Resulting in z(¥) = (zt(k)> ‘ , Where zgk) € R?*, and binary labels y,_gk).

t=1
Overall

# of | Average # of # of samples

pa- s.amples per pa- ) )

tients | tent > Birth weight: 927 + 282g (VLBW)
Patients Total | Prevalence
Positive | 10 2099 (1 280) 20992 | 286 % » Sex: 44% male (52) and 56% female (66)
Negative 108 1 053 (952) 113 676 0 %
Overall 118 1 141 (1 027) 134 668 0.48 %
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Methods

Cross-validation

Training set

Patient

Prediction
models

Training by
error back-prop

Trained
models

Validation set
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evaluation

Overall:
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P, R, f1, Spec
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Predictors: RNN LSTM
Simple representation of time-dependency More complex mechanism

ht = g(Zt, ht—l) = tanh(aff(zt) + aff(ht_]_)) (hf_-7 Ct) = g/(Zt, ht_l, Ct_]_)

yr = f(h¢) = sigmoid(aff(h;)) Ve = f'(he)

Differences
» RNN back-propagation through time: vanishing/exploding gradient
» LSTM stabilizes back-propagation through time

> Better at retaining important information with forget gates

Experiments

» The forward pass is done on sub-sequences of feature vectors of length T = 50 (=~ 24h).
» The RNNs are used in a many-to-one setup.

> Weighted cross-validation loss
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Results

Numerical

Predictors: RNN

Simple representation of time-dependency

LSTM

h: = g(z¢, he_1) = tanh(aff(z¢) + aff(hs_1))

Predictions scores

Better back-propagation through time:

(hta ct) = g,(ztv ht71> ctfl)

y: = f(h;) = sigmoid(aff(h;)) Ye = f'(hy)
Positive patients Neg. Overall
F1 Spec. Spec. AUROC bAcc

Logistic regression

0.11 (0.07) 0.73(0.28) | 0.77 (0.04) | 0.81 (0.15) 0.60 (0.23)

Vanilla RNN

0.07 (0.07) 0.58 (0.24) [ 0.70 (0.11) [ 0.71 (0.18) 0.62 (0.18)

LSTM

0.18 (0.31) 0.87 (0.17) | 0.98 (0.03) | 0.81 (0.18) 0.66 (0.2)
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Future perspectives
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Models
-+ Using time correlation in LSTM models helps reduce false positive rate:
- Interpretability can be introduced with attention layers.

Cohort
+ Our scores are obtained in a realistic setting (as opposed to case control)
- Although realistic, the cohort is small, no external test is performed

- Clinical events are grouped, but could be studied separately

Data
+ Features capture useful information

- Raw signals could help further improve performances (so far negative results)
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