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Abstract— Early and accurate neonatal sepsis detection
(NSD) can help reduce mortality, morbidity and antibiotic
consumption in premature infants. NSD models are often
designed and evaluated in case control setups and using
data derived from patient electrocardiogram (ECG) only.
In this article, we evaluate our models in a more realistic
retrospective cohort study setup. We use data from dif-
ferent modalities, including ECG, chest impedance, pulse
oximetry, demographics factors and repetitive measure-
ments of body weights. We study both the vanilla and long-
short-term-memory (LSTM) Recurrent Neural Networks
(RNN) architectures in a sequence to sequence mapping
framework for NSD. We compare the performances of
the models with logistic regression (LR) on a variety of
classification metrics in a leave-one-out cross validation
framework. The population we used contains 118 very
low birth weight infants, among which 10 experienced
sepsis. We showed that LSTM-based RNNs are both (1)
more conservative and (2) more precise than LR or vanilla
RNN, with a true negative rate at least +26% higher and
a precision score of 0.16 compared to 0.06 for LR. This
indicates that LSTM-based RNNs have the potential to
reduce the false alarm rate of existing linear models, while
providing a reliable diagnostic aid for neonatal sepsis.

Keywords— Neonatal sepsis detection, Recurrent neural net-
work, LSTM.

I. INTRODUCTION

Infants born preterm, before 37 weeks of gestation, are
at risk of developing a sepsis after birth. Of all live
births, 10% are preterm worldwide, of which 10-25%
are affected by sepsis [1]. Sepsis increases mortality and
morbidity on this population. Although early antibiotic
treatment can help avoid adverse consequences of sep-
sis, the over-usage of antibiotics has harmful side effects
and should be avoided [2]. Traditional methods to diag-
nose sepsis involve blood cultures which are invasive,
slow and often inaccurate. Clinical decision support sys-
tems (CDSS), based on patient monitoring were shown
promising for early neonatal sepsis detection (NSD)
[3, 4]. These methods rely on features extracted from
the routinely monitored electrocardiogram-derived inter-
beat-interval (IBI) signal. It was shown that sepsis could
be detected up to 24 hours early, using window-based
features and linear predictors [4]. Features computed
on the pulse oximetry derived blood oxygen saturation
level (SpO2) were also shown useful to predict infection
related conditions in preterm infants [5]. The respiratory
behavior of patients is heavily impacted by sepsis, and

thus adding chest impedance derived respiratory fre-
quency should help increase NSD [6]. Linear predictive
models are limited in their ability to use interdepencies
between input features calculated from windows of
monitoring signals. Moreover, features extracted from
sliding windows of signals are correlated, and this is
often not taken into account in linear predictive models.

To address these issues, we explore the use of recurrent
neural networks (RNN) for NSD. RNNs are non-linear
and dynamical models that are capable of leveraging
both correlation among features extracted from individ-
ual time frames as well as dependencies in time, thus
making them particularly suited in our context. These
models have also proven useful in a variety of timeseries
classification tasks, including NSD in a case control
study setup [7]. We thereby examine whether RNNs
can improve over linear classification models in a more
realistic scenario by performing a cohort study with
118 patients, among which 10 experienced sepsis. The
study was conducted by first comparing a vanilla RNN
architecture with a linear predictor. We then evaluated
long short-term memory (LSTM) architecture with the
two baseline models. All the performance metrics we
used for comparison are computed on a cross-validation
scheme. Finally, we display prediction plots of example
patient cases.

II. METHODS

II-A. Population

We performed a retrospective cohort study on a pop-
ulation of 118 very low birth weight (VLBW) infants
hospitalized at Karolinska University Hospital. Among
these, 10 patients were diagnosed with at least one
sepsis while under full monitoring. The birth weight of
the infants was 927±282g and the gender distribution
was 44% male (52) and 56% female (66). On average
523± 471 hours of monitoring data was available per
patient. The study was approved by the Swedish Ethical
Review Authority (2020-02487).

II-B. Dataset Preparation

In this section we describe how our datasets are created.
We first describe how the signals were collected, how
the features were extracted from said signals and how
the data was labeled.
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II-B1. Monitoring Data

We collected high frequency data from Philips In-
telliVue MX800 Patient Monitor (Philips Healthcare,
Amsterdam, Netherlands). In parallel, we built a de-
tailed clinical event timeline from the Electronic Health
Records (EHR) in place at Karolinska University hospi-
tal, Stockholm, Sweden. From these timelines, we used
the identified time of the collection of a blood culture as
the time of sepsis suspicion. The pre-processed monitor-
ing data, resampled at 1 Hz were used as basis signals.
We used the electrocardiogram-derived IBI signal, the
level of blood oxygen saturation measured by pulse
oximetry (SpO2) and the respiratory frequency derived
from chest impedance. The IBI signal was further
filtered to allow the use of the sample entropy feature
[8]. Ectopic beats and the strong non-physiological
frequency content of the signals were removed using
the composition of a moving median filter of width 3
samples and a Butterworth filter of order 6 with cut
frequencies of 0.0021 and 0.43 Hz [9, 10].

II-B2. Feature Extraction

We extracted features on sliding windows of length
55 minutes with 50% overlap. We have shown that
this window length leads to good performances in a
preliminary experimental study [11]. A sliding window
starting up to 24 hours from sepsis diagnosis was
labeled 1, and we labeled 0 the windows starting earlier
or after the time of sepsis suspicion. When several
sepsis where diagnosed on the same patients at most
14 days apart, the frames contained between the two
diagnosis were labeled 1. We calculated the range of the
signals and the statistics up to order 4 to characterize
the distribution of the signal samples in a time frame.
For this, we extracted the minimum, maximum, mean,
standard deviation, skewness and kurtosis of all the
signals. The skewness characterizes the deviation of the
signal distribution from a Gaussian distribution while
the kurtosis captures the dispersion of the variance
around it’s expectation [3]. We additionally compute the
sample asymmetry and the sample entropy of the IBI
signal. These two features, together with the standard
deviation, are part of the commercialized HeRO system
[4]. We added two static demographics features: the sex
and the birth weight, as well as the postnatal age and
the repetitive body weight measurements.

Overall, we get a dataset of N = 118 patients,
D = (X(k),Y(k))}N

k=1, where X(k) = [x(k)1 , . . . ,x(k)Tk
] is

the series of length Tk of d = 24 dimensional samples
for patient k and Y(k) = [y(k)1 , . . . ,y(k)Tk

] is the series of
length Tk of binary labels for patient k.

II-C. Dataset Description

We denote the collection of the timeseries from pa-
tients with at least one frame labeled 1 as the positive
population. On the contrary, the negative population is

comprised of patients with all frames labeled 0. We
report our results on these populations separately as well
as on the overall population. This allow us to determine
whether our prediction algorithms tend to output more
false alarms on the sickest patients than on the healthiest
patients.

A summary of these populations is presented in Table 1.

# of
pa-
tients

Average # of
samples per pa-
tient

# of samples

Patients Total Prevalence
Positive 10 2 099 (1 280) 20 992 2.86 %
Negative 108 1 053 (952) 113 676 0 %
Overall 118 1 141 (1 027) 134 668 0.48 %

Table 1. Description of the datasets. The prevalence corre-
sponds to the ratio: # class 1 samples

# class 0 samples .

II-D. Recurrent Neural Networks (RNN)

Here the construction of the examined RNNs is de-
scribed, the format of the input data discussed as well
as the aspects related to model training presented.

II-D1. Architecture
RNNs are a family of deep learning models suited
to tasks containing sequential data. These models are,
in theory, able to capture non-linearity and long term
dependencies in input time sequences. The model ar-
chitecture can be formulated as a state space model:

ht = g(xt ,ht−1), ŷt = f (ht) (1)

where g is a trainable function returning the hidden
state at time t, ht , from (1) the data at time t, xt , and
(2) the hidden state at the previous time step, ht−1.
f is a trainable linear function of the hidden state at
time t with a sigmoid activation returning the estimated
probability of sepsis at time t, ŷt . This process allows
RNN models to leverage information from previous
time steps and to use them to the predict the output
sequence of labels. A key advantage of these models
is that they are suited to capture dependencies in long
sequences.

II-D2. Input Data

For each patient, the sequence of estimated sepsis prob-
abilities were obtained by (1) segmenting the timeseries
into sub-sequences of 50 samples (i.e. 22.9 hours) with a
step size of 1 sample, and (2) using the RNN in a many-
to-one setup [12], i.e. where only the last predicted label
is used to compute the loss.

II-D3. Loss Function
Our dataset is imbalanced, with 11 times as many neg-
ative patients as positive patients. To account for this,
the functions g and f are trained with back-propagation
on a weighted cross-entropy loss (Eq. 2). Let us denote
Ŷ a sequence of estimated sepsis probabilities, and Y
the corresponding true sequence of labels for a patient
k. The weighted cross-entropy loss, between Ŷ and Y,
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can be written:

L (Y, Ŷ) =−
Tk

∑
t=1

wyt (yt log(ŷt)+(1− yt) log(1− ŷt)) , (2)

where we dropped the index k for readability, and the
weights w0 and w1 are inversely proportional to the class
frequencies of samples in the training data sets.

II-E. Performance Assessment

In this section, the methods for validating the per-
formance of our models are detailed and the relevant
performance metrics discussed.

II-E1. Cross-validation

In order to leverage as much information as possible
from our dataset, we used a leave one out cross-
validation scheme to evaluate our models. The process
is depicted as a flow chart in Figure 1. The training sets
are composed of all but one positive patient and 10% of
the negative patients selected randomly. The validation
sets are composed of the left out positive patient and the
remaining 90% of the negative patients. With this split
method, the test set is representative of the prevalance
of positive patients in the cohort. This scheme was
repeated 10 times. At each run, a new positive patient
was assigned to the validation set such that all positive
patients were used once for validation. Our results are
reported as the sample mean and standard deviation of
performance metrics computed on the validation sets.
We compare the performances of the models on (1)
the positive patients only, (2) the negative patients only,
(3) the overall patient population. Comparing scores by
separating patients in the validation sets allow us to
compare the specificity, and whether our model tends
to output more false alarms on the positive patients,
expected to be the sickest.

Validation setTraining set

Training
Performance
evaluation

Trained

Positive:     P, R, f1, Spec

Overall:           AUROC, bAcc

Scores

Negative:   Spec

Patient k Patient k

{Positive {PositiveNegative Negative

LR

RNN

LSTM
LR

RNN

LSTM

Figure 1. Training and validation procedure flowchart.

II-E2. Scores

We computed the number of true positives (TP),
the number of true negatives (TN), the number of
false positive (FP) and the number of false neg-
atives (FN). From these we reported the preci-
sion: T P

T P+FP , recall/sensitivity (sen): T P
T P+FN , specificity

(spec): T N
T N+FP , F1-score: 2 p×r

p+r and balanced accuracy
(bAcc): 1

2 (sen + spec). For these metrics, the individual

samples were classified "positive" when the output
probability ŷt > 0.5. We also report the threshold inde-
pendent area-under-the-receiver-operating-characteristic
(AUROC) on the overall population.

III. EXPERIMENTAL DESIGN

III-A. Baseline Models

We use a logistic regression (LR) model as a baseline.
In LR models, the sepsis probability is computed as a
linear combination of the input vector:

ŷt = sigmoid(wT xt +b), (3)

where w∈Rd and b∈R are trainable weights and a bias
term. The LR model considers consecutive window-
based feature samples as independent. LR was opti-
mized with the LBFGS solver on the binary cross-
entropy loss, using the sklearn library [13].

We also use a 1-layer vanilla RNN architecture. In this
model, the time dependency is taken into account in a
state space model, as described in Eq. 1. The output
sepsis probability at time t is computed as a sigmoid
function of the latent vector, rather than the input vector
at time t. This architecture can be written:

ht = g(xt ,ht−1) = tanh(Wixt +bi +Wsht−1 +bs)

ŷt = f (ht) = sigmoid(wT
o ht +bo)

(4)

where Wi ∈ Rh×d , bi ∈ Rh, Ws ∈ Rh×h and bs ∈ Rh

are trainable weight matrices and bias vectors for the
latent space vector computation. wo ∈ Rh, bo ∈ R are
trainable vectors for the sepsis probability computation.
The vanilla RNN was trained with back-propagation
using the Adam optimizer [14], a learning rate of 0.001
and 100 epochs. The results of both LR and vanilla
RNN are shown in Table 2.

III-B. LSTM-based RNN Architecture and Training

The RNN model we used in this study was the long
short-term memory (LSTM) unit [15]. LSTMs are pop-
ular architecture that rely on a cell state to mitigate
the vanishing gradient problem, often encountered when
training RNNs. The readers can find the details of the
architecture in e.g. [16]. We report the results for models
with recurrent units of hidden size h = 50,100,150 and
200, and with a number of recurrent units composing the
model of 3 and 4. The weights of the linear transforms
composing the models were initialized from a uniform
distribution with support U (k) = [− 1√

k
; 1√

k
], where k

is the number of input features to the transform [17].
The back-propagation algorithm we used was the Adam
[14] optimizer, with a learning rate and a number of
training epochs fixed at 0.001 and 200 respectively.
All the sub-sequences from the same patients were
fed to the RNN algorithms in a single batch. Thus
the batch size varies from 102 to 4065 sub-sequences,
depending on the input patient. The models were im-
plemented in Python using the Pytorch [18] library. All
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the experiments were performed on a server computer
with 2× Intel(R) Xeon(R)Gold/6230/CPU@2.10GHz
and 4× Tesla V100/SXM2/16GB.

IV. RESULTS

IV-A. Baseline Models

We present the results for our baseline models in
Table 2.

Positive patients Negative
patients

Overall

Prec. Recall F1-score Spec. Spec. AUROC bAcc
Logistic regression

0.06
(0.04)

0.60
(0.39)

0.11
(0.07)

0.73
(0.28)

0.77
(0.04)

0.81
(0.15)

0.60
(0.23)

Vanilla RNN
0.04
(0.04)

0.59
(0.41)

0.07
(0.07)

0.58
(0.24)

0.70
(0.11)

0.71
(0.18)

0.62
(0.18)

Table 2. Mean (standard deviation) performance metrics for
the baseline LR and vanilla RNN. Spec.: Specificity, Prec.:
Precision, bAcc: Balanced accuracy.

The performances in terms of AUROC are 14% higher
for the LR model (0.81) than for the vanilla RNN (0.71)
when considering the overall population. On this popu-
lation, the balanced accuracy is the only score that we
reported higher for the vanilla RNN than the LR model,
although we note that the standard deviation is very
large. The specificity is also higher for the LR model
(0.77) compared to the vanilla RNN (0.70) when only
the negative patients are considered. For the positive
patients, the specificity of LR is 26% higher (0.73) than
that of vanilla RNN (0.58) although again the standard
deviation is large. The other metrics: precision, recall
and f1-score are similar for the two models.

These results indicate that LR performs marginally
better than the vanilla RNN. This RNN architecture is
thus not adequate to capture the time dependencies in
consecutive window-based features.

IV-B. LSTM Architectures

The results for the LSTM-based RNNs are reported in
Table 3.

We reported results for varying number of layers and
varying hidden size. The best performing LSTM-based
RNN in terms of both AUROC and bAcc computed
on the overall population is the model with 3 hidden
layers and a hidden size h = 200. We note that given
the large standard deviation, this is only marginally
better than a similar model with 4 hidden layers. All
the models perform similarly on the negative population
with a specificity ≥ 0.97 for all the models, and reaching
0.99 for the smallest model with 3 layers and a hidden
size h = 50. Across all the LSTM-based RNNs, the
specificity on the positive population has consistently
lower mean and higher standard deviation than on the

negative population. The best model in terms of mean
and standard deviation for this metric is a LSTM-based
RNN with 4 layers and hidden size 50. This result
indicates that the models have a tendency to produce
more false alarms on the positive patients than on the
negative patients.

The model with the best recall and f1-score, and the
second best precision is the LSTM-based RNN with
3 layers and a hidden size of 200. The model with
also 3 layers but a hidden size h = 100 has similar
performances across all metrics. The models with 4
hidden layers all have lower precision, recall and f1-
score. Given that the models with 3 layers have less
trainable parameters, we further compare the results
to the baseline models using LSTM-based RNN with
hidden size h = 100 and h = 200.

In comparison with the baseline models, LSTM-based
RNNs have a specificity that is +26% higher than the
LR model on the negative population, and +19% on
the positive population. The standard deviation is also
lower for the two LSTM-based RNNs. It however comes
at the cost of the recall that is 40% lower for the LSTM-
based RNNs, while their precision remains higher than
the LR 0.16 vs 0.06. This indicates that the LSTM-
based RNNs are more conservative that the LR models,
thus triggering fewer false alarms while missing some
positive frames.

IV-C. Example Cases

In Figure 2 we show the predicted sequences of sepsis
probabilities Ŷ versus the post natal age for two example
patients, along with the corresponding confusion matri-
ces. The sequences of estimated sepsis probabilities are
obtained from LSTM-based RNNs with 3 layers and a
hidden size h = 100 and 200.

For patient 1, we see that the two peaks in probability
of sepsis occur slightly after the labeled segments. This
is confirmed in the confusion matrices where very few
samples labeled 1 are accurately predicted "1" by the
LSTM models. We also note that the two LSTM-based
models output a large sepsis probability between 200
and 350 hours after birth. This time segment is located
between two diagnosis of sepsis. Our models might
detect truly adverse patterns in the vital signs that our
labeling method does not characterize as "septic".

For patient 2, the models succeed in detecting the frame
within the segment labeled 1. We also note that the
model with a hidden size of 200 outputs high sepsis
probabilities even before the segment labeled 1. As
is shown on the confusion matrices, the models fail
to correctly classify frame within the segment labeled
1. Both models falsely output high probabilities 13 to
14 days after the positive label segment. Our detailed
clinical timeline show that the patient was unstable
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Positive patients Negative
patients

Overall

Hidden
size

#
Layers

Prec. Recall F1-score Spec. Spec. AUROC bAcc

50 3 0.06 (0.08) 0.23 (0.36) 0.08 (0.12) 0.92 (0.14) 0.99 (0.02) 0.72 (0.22) 0.6 (0.18)
100 3 0.17 (0.24) 0.31 (0.39) 0.18 (0.26) 0.91 (0.21) 0.97 (0.03) 0.74 (0.26) 0.64 (0.2)
150 3 0.05 (0.06) 0.19 (0.32) 0.07 (0.09) 0.93 (0.17) 0.97 (0.03) 0.77 (0.23) 0.59 (0.16)
200 3 0.16 (0.31) 0.36 (0.4) 0.18 (0.31) 0.87 (0.17) 0.98 (0.03) 0.81 (0.18) 0.66 (0.2)
50 4 0.04 (0.12) 0.03 (0.07) 0.03 (0.09) 0.94 (0.13) 0.97 (0.03) 0.61 (0.23) 0.5 (0.04)
100 4 0.12 (0.24) 0.18 (0.33) 0.14 (0.27) 0.91 (0.13) 0.98 (0.02) 0.73 (0.25) 0.58 (0.17)
150 4 0.07 (0.09) 0.29 (0.41) 0.08 (0.12) 0.9 (0.17) 0.98 (0.04) 0.78 (0.21) 0.63 (0.19)
200 4 0.11 (0.16) 0.32 (0.43) 0.14 (0.2) 0.93 (0.17) 0.98 (0.02) 0.79 (0.22) 0.64 (0.21)

Table 3. Mean (standard deviation) performance metrics over the validation folds for various architectures of the LSTM-based
RNNs.
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Figure 2. Timeseries of sepsis probabilities and associated confusion matrices for two example patients. We depict the results
from two LSTM-based RNN with 3 layers and with hidden size h = 100,200.

until t = 400 hours, with multiple reports of apnea and
bradycardia. This could explain the high false alarm
rate.

The confusion matrices confirm that in both cases,
the labeled 0 segments after the last sepsis diagnosis
are well modeled with a large majority of the frames
correctly labeled 0 by both LSTM-based RNNs.

V. DISCUSSION

The 1-layer vanilla RNN model was not able to leverage
the time dependencies in the data. This could be at-
tributed to insufficient model complexity, or vanishing
gradient during training. A limitation in the detection
task is our labeling method which might not accurately
capture septic time periods. One sign of this could be
that the LSTM seldom managed to correctly classify
the negative samples occurring right after the positive

samples. Another limitation of our work is the lack of
experiments on an external testing cohorts. This would
enable the study the study of the generalization capa-
bilities of the models when predictions are performed
on patients from other NICUs.

VI. CONCLUSION

We showed using an internal cross-validation scheme
that LSTM-based RNN had similar performances than
LR in terms of overall population scores for neonatal
sepsis detection. The increased specificity for non-septic
patients however, makes these models less prone to
false alarms, in turn less likely to provoke alarm fatigue
in clinical wards. This is an important characteristic
enabling the deployment of predictive models in clinical
practice.
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