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Abstract— Eye-blinks in electroencephalogram (EEG) sig-
nals can be regarded either as unwanted noise or as
a source of information. In both cases, a reliable and
accurate detector is needed. As many applications require
detection and processing of eye-blinks in real-time, detec-
tors are required to be fast and simple. In this work, we
have developed a non-learning algorithm for the detection
and extraction of eye-blink segments from EEG signals.
The signals were recorded by MuseTM, a portable EEG
device for recreational use. The proposed algorithm detects
eye-blinks via several deterministic processing steps. The
algorithm extracts peaks occurring in the EEG signal
during the two main eye-blink phases, via extraction of
unique features of the EEG eye-blink signal. The proposed
algorithm applies various pre-processing steps to ensure
robust detection, as well as several sanity-checks to prevent
the detection of false peaks and partial eye-blinks. A
dataset with recordings of the length of approximately 20
seconds each, taken from few different subjects has been
created. The eye-blink annotations were made manually.
The proposed algorithm obtains an accuracy rate of
100% on the obtained dataset, while employing a set of
deterministic operations which renders it usable in low-
resource, real-time applications.

Keywords— Biomedical signal processing, Electroen-
cephalogram.

I. INTRODUCTION

Eye-blinks are a temporary closure of the eyelids.
Eye-blink detection enables a range of applications,
especially in healthcare and human-computer interface
research. There are numerous existing approaches for
eye-blink detection. We identify two main categories of
eye-blink detection solutions – Electroencephalogram
(EEG) based solutions and non-EEG based solutions.
In the non-EEG based category, there exists several ap-
proaches. The video-based approach uses data received
via a camera positioned in front of the subject to detect
eye-blinks visually. Eye-blinks have been detected using
the measurement of the maximum velocity of the eyelids
for the purpose of detecting driver drowsiness [1]. Al-
though high detection capability is achieved, the system
is unusable in certain environmental conditions, such
as darkness. Smart glasses embedded with a camera
and a processor were also used to detect eye-blinks
in a learnable fashion [2]. The employed glasses are
resource-limited which enable real-time detection. Nev-
ertheless, the algorithm is data-driven, i.e., there exists
a generalization problem, and it is also unusable in dark
conditions. Another approach for non-EEG based eye-
blink detection is based on the physical characteristics

of the eye-blink. For example, employing tiny magnets
placed on the upper eyelid, as well as specialized glasses
[3]. This approach records the signals originating from
the magnets and outputs voltages related to the eyelid
movement. The authors achieve high detection accuracy
using a deterministic, non-data-driven algorithm which
is usable in more diverse conditions, but require the
use of designated hardware and magnets to be put on
the subject’s eyelids, which makes the whole process
cumbersome and possibly expensive.

The second main category of eye-blink detection solu-
tions utilize EEG signals. EEG signal recordings enable
a look inside the human brain, or at least into its
electrical activity. EEG electrodes that are employed on
the subject’s head measure the electrical activity created
by the electromagnetic fields of the neurons in proximity
to an electrode [4]. These measurements are usually
sensitive to various disturbances. These disturbances can
be divided into disturbances caused by the patient’s
current situation (e.g., fatigue, eye-blinks and stress) and
disturbances caused by the surroundings (e.g., electric
system noise, electrode moisture). A large amount of
effort has been put into the removal of eye-blinks from
EEG signal [5, 6]. However, eye-blinks in EEG signals
can be viewed as sources of relevant information in
various use-cases. As eye-blinks are noticeable in many
EEG signal recordings, extracting eye-blink features
from EEG signals has presented the ability to predict
and monitor neurological conditions, e.g. Alzheimer’s
disease, strokes, and other nervous system diseases
[7, 8].

Traditional EEG systems are physically large, expen-
sive, and cumbersome for usage. Thus, they are usually
placed in hospitals and universities for clinical and
research use. Due to technological improvements in
recent years, user-friendly and cheap EEG systems have
been widely available and are used for meditation,
biofeedback, research and more [9, 10]. The MuseTM

headband is a portable, home-use EEG system contain-
ing 5 electrodes for EEG sampling. MuseTM includes a
friendly user-interface and developer tools which enable
EEG signal recording and processing [11].

Previous work on eye-blink detection in EEG signals
was conducted for several applications using different
approaches. An unsupervised algorithm was used for
the detection of eye-blinks [12], where the algorithm
learns the subject’s eye-blink pattern and relies on
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its regularity. While using a single EEG channel, and
although impressive results are obtained on several
datasets, the algorithm is based on the assumption
that a subject exhibits a consistent eye-blink pattern.
Such an assumption cannot be made in all cases and
instances. Thus, a decrease in performance is observed
when irregular eye-blink patterns appear in the data.
Different work achieves eye-blink detection based on
the frequency-domain features of the EEG signals and
to detect drowsiness [13]. In this algorithm the user is
required to choose an estimated blinking frequency and
relies on this choice for the detection of eye-blinks.
Setting such blinking frequency might cause degrada-
tion in detection capabilities in the presence of certain
neurological conditions during which the eye-blink is of
shorter or longer duration than normal. Other approach
utilized a 1D convolutional neural-network for the task
of detecting voluntary eye-blinks and discriminate them
from involuntary eye-blinks for the usage of brain-
computer interfaces [14]. The algorithm requires signals
from 4 EEG sensors as input, which might be more
costly and cumbersome compared to a system which
require signals obtained from a single sensor. A gener-
alization problem is also present in the neural-network
setting, which might cause degradation of results when
testing the network on data from a different distribution
than the training data distribution, e.g., new subjects,
new neurological conditions, etc.

Eye-blinks are noticeable in EEG signal recordings, as
seen in Figure 1, and can be described with respect to
the measured baseline voltage. The eye-blink starts with
a steep drop in the measured voltage, representing the
closing of the eyelid. It is then followed by a steep rise
that crosses the baseline and reaches higher voltages,
representing the opening of the eyelid. Finally, it is
followed by a return to the measured baseline. Eye-
blink detection enables the extraction of various features
such as eyelid closing and opening voltage amplitudes,
peak-to-peak voltage amplitudes and eye-blink duration.
These features enable medical professionals to achieve
an improved understanding of the patient’s neural con-
dition [7, 8].

In this work, we present a novel approach to eye-
blink detection in EEG signals acquired by the MuseTM

headband device. An EEG dataset is recorded consisting
of recordings from 3 different subjects. The proposed al-
gorithm performs signal processing in the time-domain,
preventing the overhead of applying transforms to the
signals prior to processing. Consisting deterministic and
low-complexity steps, the proposed method achieves
100% accuracy on the acquired dataset with 0 false-
positives. Moreover, the proposed method demonstrates
short run-time while making only few assumptions on
input signals, making it robust to variations in inter-
subject and intra-subject eye-blink patterns.

Figure 1. A short recording from TP9 electrode of the MuseTM

headband. Prominent minimum peaks, followed by the related
maximum peaks, represent eye-blinks.

II. EYE-BLINK DETECTION ALGORITHM

In this section, we elaborate the two main stages in the
proposed eye-blink detection algorithm: preprocessing
and detection.

II-A. Preprocessing

The preprocessing stage consists of numerous steps.
First, local minima of the time-domain signal (repre-
sented in voltages) are found in the raw signal. These
minima represent the initial estimates of the eye-blinks’
locations, and are found with two constraints: Mini-
mum distance and minimum voltage difference. (1) A
minimum distance of 0.1 seconds between every two
peaks. This constraint is regarded as the minimum eye-
blink time and prevents the detection of secondary peaks
found on main peaks that occur due to noise. (2) The
local minimum is at least 70µV below the baseline
of the signal (which is calculated as the mean of the
signal). This constraint prevents the detection of small
peaks which are not eye-blinks, but rather represent
noise. The 70µV threshold was empirically selected.
The next preprocessing step is centering and filtering
during which the input signal is normalized to have
zero mean, and then filtered twice. The first filter is
an exponential moving average filter, defined as:

y[n] = αx[n]+ (1−α)y[n−1] (1)

Where y[n] is the output of the filter at time-step n,
x[n] is the input to the filter at time-step n, and α

is the weight. The proposed algorithm uses α = 0.1.
The second filter is the standard moving average filter,
defined as:

y[n] =
1
L
(x[n]+ x[n−1]+ ...+ x[n−L+1]) (2)

Where y[n] and x[n] are defined as above, and L is the
window size of the filter, which was set to be 0.01
seconds. This combination of filters was empirically
found to provide optimal smoothing of the signal in
terms of noise suppression and keeping the eye-blink
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peaks prominent. The smoothing of the signal reduces
the signal’s amplitude significantly. Therefore this step
is performed following the obtaining of the initial min-
ima points, since amplitude differences before filtering
are considerably greater. The final preprocessing step is
the removal of partial eye-blinks which occurred at the
beginning or the end of the signal. These partial eye-
blinks usually occur due to recording which begin or
finish during an eye-blink, providing partial information
which is unusable for our intended use case. The partial
information makes these partial eye-blinks irrelevant for
most applications and the proposed algorithm removes
them. The detection and removal of these occurrences
is done in three steps:

1) Scan the signal from the beginning of the recording
to the first minima, found in the first preprocessing
step. If the amplitude was never close to zero (greater
than -5 µV), it indicates that the recording started
during the first phase of the eye-blink, i.e., the
closing of the eyelid. This eye-blink is therefore
deleted.

2) For each minimum found at the first step, a matching
maximum, i.e., the opening of the eyelid, is found.
The proposed algorithm searches for the maximum
inside a window to the right of the minimum, where
the window’s size is chosen to be the minimum be-
tween the time to the next minima and 0.5 seconds.
This time frame is considered as the upper limit of
the eye-blink time. This step is also used as a sanity
check on the found minima. If the maximum inside
the window is smaller than a threshold of 15µV, this
eye-blink is removed.

3) Scan the signal from the last maximum to the end. If
the amplitude was never close to zero, i.e., smaller
than 5 µV, it indicates that the recording ended before
the eye-blink ended. This eye-blink is therefore
deleted.

II-B. Detection

Given the minima and maxima found in the previous
stage as reference points for the main eye-blink phases,
i.e., the closing and the opening of the eyelid, the deci-
sion on the beginning and end times of each eye-blink
is done similarly to the partial eye-blink removal step.
The beginning time of the eye-blink is selected as the
last time-point where the amplitude was close enough
to zero, i.e., greater than -5 µV, before the minimum
of the eye-blink. The end time is selected as the first
time-point where the amplitude was close enough to
zero, i.e., smaller than 5 µV, after the maximum of the
eye-blink. These time-points represent the beginning of
the eyelid closing and the end of the eyelid opening,
respectively.

The general pipeline of the proposed algorithm is de-

Figure 2. The proposed algorithm pipeline.

picted in Figure 2 and summarized in Algorithm 1.

Algorithm 1 Proposed eye-blink detection algorithm
Preprocessing:

1) Detect local minima on raw time-domain signal
with constrains:
• Minimum distance of 0.1 seconds between every

two peaks.
• Minima are at least 70µV below the baseline of

the signal (calculated as the mean of the signal).
2) Normalize the signal to zero mean.
3) Filter the signal twice using the following filters:

• Exponential moving average filter with α = 0.1.
• Standard moving average filter with 0.01 sec-

onds window length.
4) For each minima find its matching maxima and

remove partial eye-blinks that might occur in the
beginning or the end of the signal:
• Scan the signal from the beginning of the record-

ing to the first minima. If the amplitude never
got values greater than -5 µV, remove the eye-
blink.

• For each minimum point found, find a matching
maximum. Search for the maximum inside a
window to the right of the minimum, where
the window’s size is chosen to be the minimum
between the time to the next minimum point and
0.5 seconds. If the maximum inside the window
is smaller than a threshold of 15µV, this eye-
blink is removed.

• Scan the signal from the last maximum to the
end, if the amplitude was never smaller than 5
µV remove the eye-blink.

Detection:
1) For each minimum and it’s matching maximum

points found in the preprocessing step:
• Set the eye-blink beginning time as the last time-

point before the minimum where the amplitude
is greater than -5 µV.

• Set the eye-blink end time as the first time-
point after the maximum where the amplitude
is smaller than 5 µV.
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III. EXPERIMENTS

The data for all experiments was collected via MuseTM

2014 device. The EEG signals are recorded by 4 channel
electrodes, located at channels TP9, AF7, AF8 and TP10
at a sampling rate of 220 Hz. The proposed algorithm
uses the data from a single channel. TP9 and TP10
channels are more relevant to the task of eye-blink
detection as they are located closer to the eyes. Using
both these channels might be the trivial solution, and we
have considered that option, but decided to arbitrarily
select TP9 channel. The dataset consists of recordings
from 3 different test subjects, with a total recording time
of 200 seconds split over 12 sessions. Annotations of
the eye-blinks were manually made in order to ensure
correctness of results. Test subjects were requested to
blink naturally while performing no other actions during
recording session.

The proposed algorithm was tested on an In-
tel® CoreTM i7 CPU with 4 GB RAM. MuseIO was
used as the driver for transferring the data from MuseTM

headband to the computer, and MuseLab was used as
the interface software. The algorithm was written and
tested using MathWorks® MATLAB 2015a.

IV. RESULTS AND DISCUSSION

The proposed algorithm achieves 100% accuracy in
detecting eye-blinks in the dataset, without any occur-
rences of false positives, i.e., no false detection of eye-
blinks that did not occur. Figure 3 shows a visualization
of the proposed algorithm output on one segment from
the dataset, over the raw signal.

As seen in the figure, the proposed algorithm accurately
detects the beginning and end times of each eye-blink,
including eye-blinks that are in proximity to one an-
other.

Comparing to other eye-blink detection methods [2,
3, 12, 13], the proposed algorithm achieves superior
results, while employing a low complexity, unsuper-
vised scheme which is applicable in real-time and
uses minimal hardware (a single EEG channel). The
proposed algorithm is not affected by the generalization
problem and is usable in dark lighting conditions, unlike
other methods [2]. Other work required designated
hardware [3], including magnets which must be placed
on the subject’s eyelids. The proposed algorithm utilizes
a consumer off-the-shelf product that is conveniently
put on the subject’s forehead. While previous work
had an assumption on the consistency of eye-blink
patterns [12], the proposed algorithm does not rely on
any assumptions regarding the regularity of eye-blink
patterns.

For conducting a relevant comparison of the proposed
algorithm results, two additional algorithms have been

Figure 3. An example of the proposed algorithm output. A
red line indicates an inferred eye-blink start time, and the
consecutive green line indicates the inferred end time for the
same eye-blink.

tested using our dataset: MuseTM automatic eye-blink
detection algorithm, and a frequency-domain based
method [13] for drowsiness detection. The latter de-
pends on the selection of short-time Fourier transform
(STFT) parameters and the estimated eye-blink fre-
quency. Results are summarized in Table 1.

As seen in the table, the proposed algorithm achieves
superior results in both accuracy and false positive rates.
MuseTM eye-blink detection algorithm presents a large
rate of false positives, mainly due to falsely detecting
one eye-blink as several eye-blinks, i.e., making dupli-
cate detections. It can also be seen that the drowsiness
detection algorithm [13] is more robust in terms of
false positives than MuseTM algorithm. The drowsiness
detection algorithm [13] detection accuracy is lower
than other methods on our dataset. This accuracy result
was achieved after experimenting with the eye-blink
estimated frequency which is required as input to the
algorithm. It is possible that other values might achieve
higher accuracy. Nevertheless, the proposed algorithm
obtains 100% accuracy and zero false positive on the
same dataset, without the need to choose input param-
eters.

Table 1. Results comparison of the proposed algorithm and
two other algorithms

False positive
Algorithm Accuracy (%) of total

MuseTM 96.8% 24 (18%)
Drowsiness Detection [13] 72.3% 14 (11%)

Proposed 100% 0 (0%)

V. CONCLUSIONS

In this work, we have developed an accurate eye-blink
detection algorithm from EEG signals acquired from a
single sensor channel. The proposed method can work
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with any commercial off-the-shelf EEG sensor, and
is based on several fast deterministic operations. This
renders the proposed algorithm usable in real-time, low-
resource applications. The algorithm is not data-driven
and makes very few assumption on the input signal. This
might allow for better generalization to new test subjects
and more challenging eye-blink detection cases. The
proposed dataset was obtained as a preliminary proof-
of-concept, and the proposed algorithm achieves a rate
of 100% accuracy in eye-blink detection, as well as zero
false positives.

Future work should include testing the algorithm on
a larger, more diverse dataset. Moreover, applying dy-
namic detection thresholds as well as combining results
from two sensors. More sensors might achieve more ro-
bust detection capabilities and could demonstrate better
performance. Another possible research direction would
be to use the algorithm as a preliminary step for other
applications which require the eye-blinks detection,
such as human identity verification based on EEG eye-
blink signals.
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