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Introduction

* Urodynamics (UDS): assessment of urinary tract function
 Diagnosis of urinary incontinence, detrusor overactivity

 Bladder contraction: emptying (voiding) of bladder

 Detrusor overactivity (DO): involuntary bladder contractions
— Increased frequency of urinary urges
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Introduction

* Interpretation of UDS traces: subjective and variable

* Need a standardized, automated methodology for UDS
annotation/interpretation from single-catheter data



Introduction
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» DO — detrusor overactivity (involuntary contraction)
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» Goal: reproduce annotations from this single channel of data
using supervised machine learning



Methodology

Dataset Preparation

* Anonymized data obtained from previous studies
* Louis Stokes Cleveland VA Medical Center and Cleveland Clinic

« 60 UDS tracings sampled at 10 Hz

* From 34 human subjects with overactive bladder or neurogenic urinary
Incontinence

* Noisy segments discarded
« Annotated with assistance of urologist

“ AP Teenrer E: Cleveland Clinic



Methodology

Data Segmentation
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Methodology

Wavelet-Based Feature Extraction
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 Discrete wavelet transform (DWT) using Daubechies 4 wavelet
 Allows for time-frequency localization in non-stationary signals
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Wavelet-Based Feature Extraction
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Methodology

Dimensionality Reduction through Feature Selection

e Total number of features: 55

» Based off wavelet-based feature extraction for common bio-signal
classification tasks (ECG, EEG, EMG)

* Relief-F method: identified m most relevant features

« K-nearest neighbors approach
 m varied for each classifier architecture



Methodology

Classifier Selection

Classifier Hyperparameters Number of
Features
k-Nearest Neighbors _
(KNN) k=1 12
Artificial Neural Network  Hidden layers: 2 x 100 neurons/layer 55
(ANN) Activation: ReLU
Support Vector Machine  Kernel: Radial Basis Function (RBF) 19

(SVM)

Yy = 0.94




Methodology
Full Algorithm
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Methodology

Test Procedure & Performance Metrics

Sensitivity (Recall) =

TP+ FP
« Dataset: 7,861 0.8-second events o TN
Specificity =
 Balanced between all four classes TN + FP
* Performed five-fold cross-validation o TP
Precision =
TP + FP

1 = 2 X (Precision X Recall)

Precision + Recall



Results and
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Results and Discussion

 KNN: high sensitivity to "DO” and “VOID”

Classifier Accuracy — Most successful with these events

KNN 91.49% * ANN classifier: most effectively

generalized to all four classes

ANN 90.83% e
i * More balanced sensitivity scores

SVM-RBF 82.41%  Highest ROC AUC's for all four classes

* Future work
« Take advantage of memory: RNN/LSTM

» Real-time hardware implementation of neural
network approach



Results and Discussion

SUMMARY OF RELATED WORKS

Work Year Channels Feature Extraction Classification Classes Findings

R. Karam et al. 2016 1 5-level DWT Adaptive 2 97% true positive rate

[7] thresholding

H.-H. S. Wang 2020 3 Wave-shape Dynamic time 2 81.35% accuracy, 0.84 ROC AUC

ctal. [5] manifold model warping

K.T. Hobbs et 2021 3 Windowed SVM-RBF 2 0.91 ROC AUC

al. [6] _timedreg—analbysis

Proposed 2022 1 S5-level DWT KNN, ANN, 4 91.49%, 90.83%, 82.41% accuracies,
SVM-RBF ROC AUCs ranging 0.91-0.99




Conclusion

* First supervised machine learning framework for classifying
multiple bladder events

 Three classifiers with accuracy ranging from ~82% to ~91%

» Demonstrated efficacy of this approach using single-channel
vesical pressure data

« Can aid in automated UDS interpretation while reducing number
of catheters
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