Machine Learning for Automated Bladder Event Classification from Single-Channel Vesical Pressure Recordings

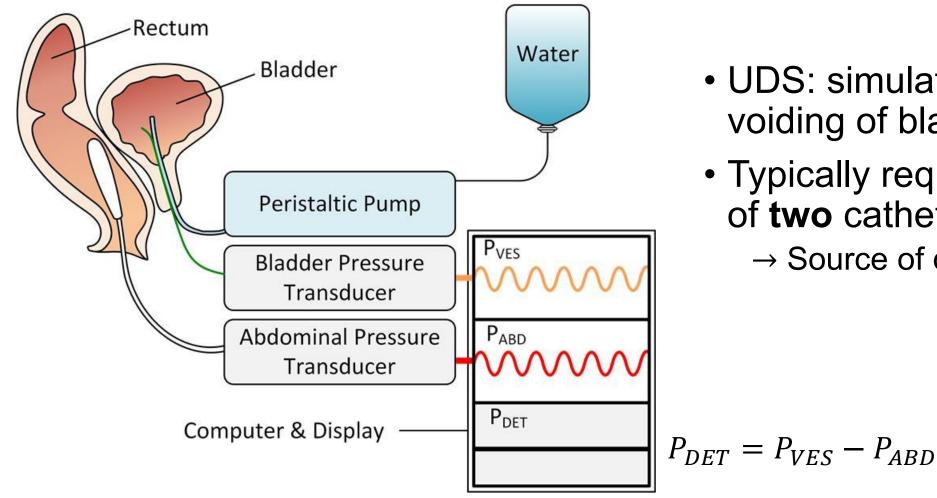
Vikram Abbaraju^{1,2}, Kevin Lewis³, Steve J.A. Majerus^{1,2}

¹Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH ²Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH ³Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH

IEEE SPMB 2022

- Urodynamics (UDS): assessment of urinary tract function
 - Diagnosis of urinary incontinence, detrusor overactivity
- Bladder contraction: emptying (voiding) of bladder
- Detrusor overactivity (DO): involuntary bladder contractions

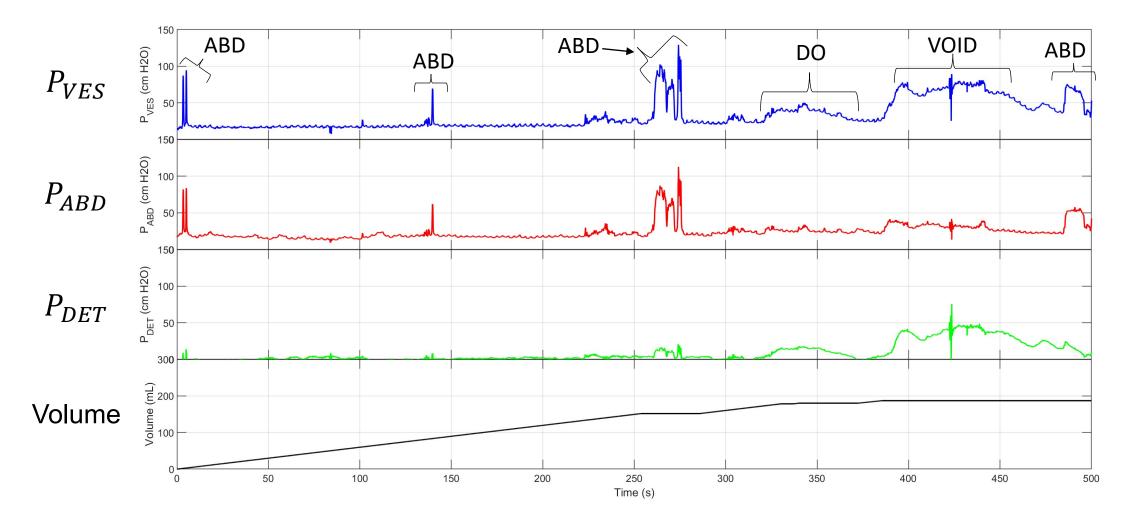
 \rightarrow Increased frequency of urinary urges



- UDS: simulate filling and voiding of bladder
- Typically requires insertion of **two** catheters

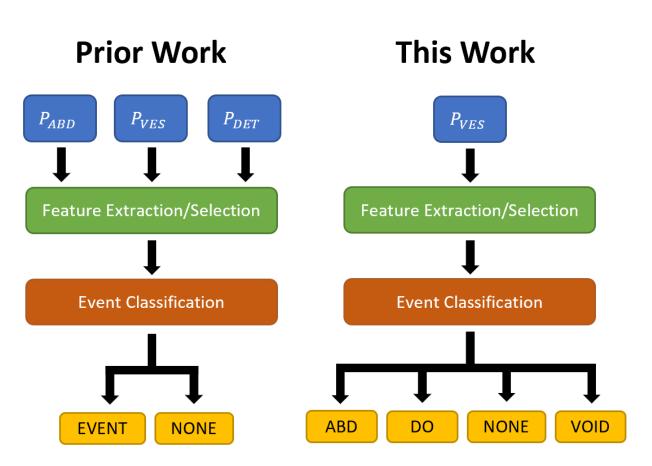
 \rightarrow Source of discomfort

- ABD \rightarrow abdominal event (cough, Valsalva)
- $DO \rightarrow$ detrusor overactivity (involuntary contraction)
- VOID \rightarrow voiding (voluntary contraction)

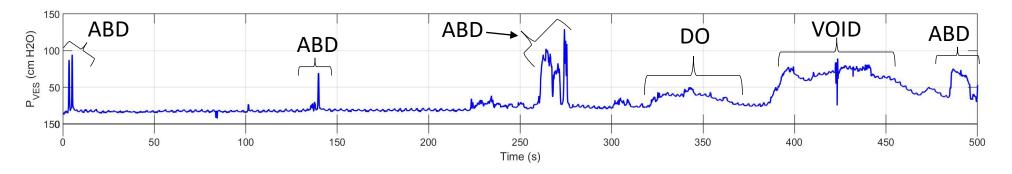


- Interpretation of UDS traces: subjective and variable
- Need a standardized, **automated** methodology for UDS annotation/interpretation from **single-catheter data**

- Prior work
 - Multiple pressure channels
 - Single event classification
- Our work
 - Single-channel data (P_{VES})
 - Multi-event classification
 - Supervised machine learning



- ABD \rightarrow abdominal event (cough, Valsalva)
- $DO \rightarrow$ detrusor overactivity (involuntary contraction)
- VOID \rightarrow voiding (voluntary contraction)



- Isolated P_{VES}
- Goal: reproduce annotations from this single channel of data using supervised machine learning

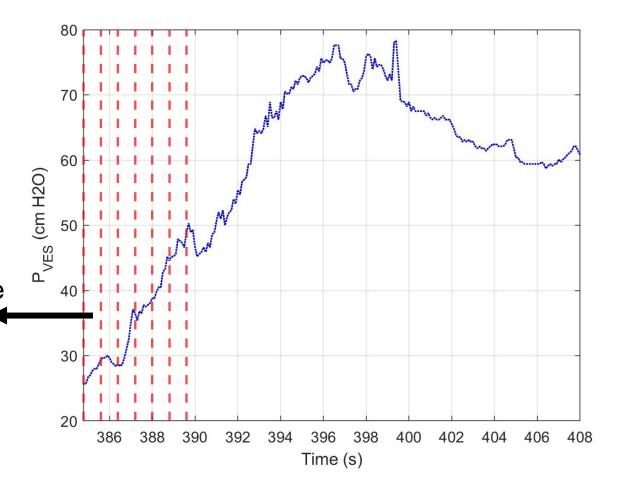
Dataset Preparation

- Anonymized data obtained from previous studies
 - Louis Stokes Cleveland VA Medical Center and Cleveland Clinic
- 60 UDS tracings sampled at 10 Hz
 - From 34 human subjects with overactive bladder or neurogenic urinary incontinence
- Noisy segments discarded
- Annotated with assistance of urologist

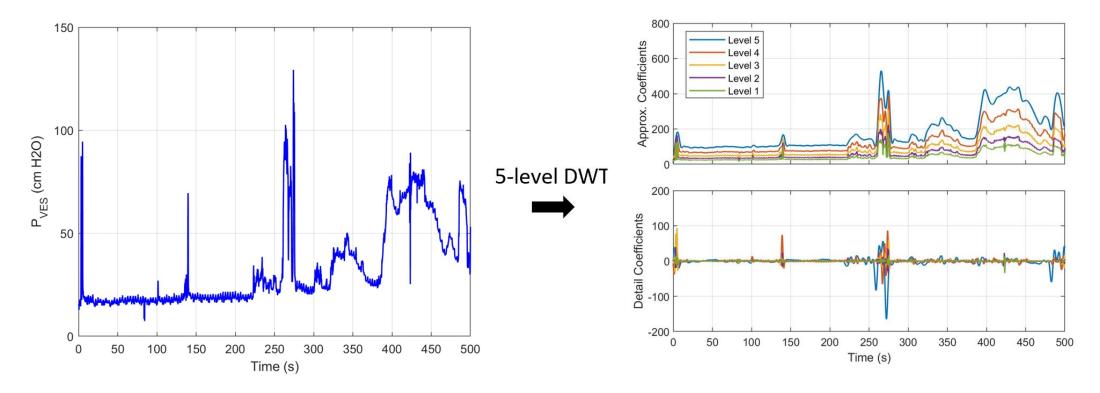
Data Segmentation

- *P*_{VES} segmented into 0.8-second intervals
 - Increased range of values for deriving more statistical features
 - Maintained time precision; relevant for real-time inference

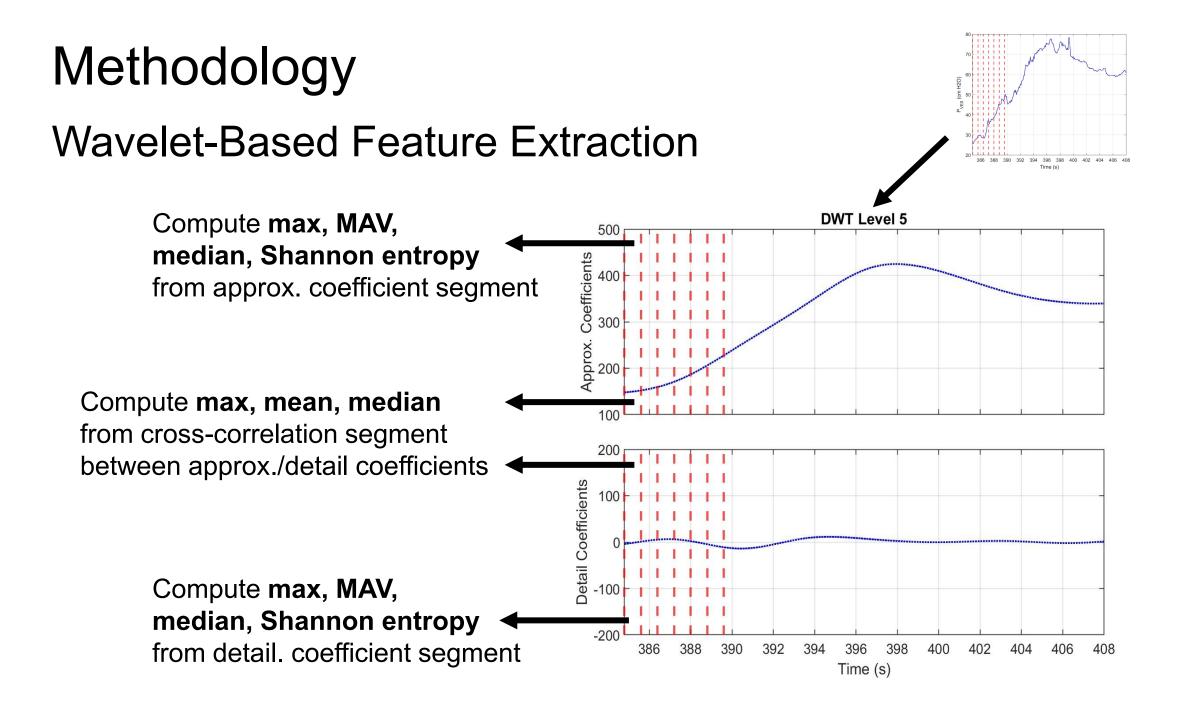
Label P_{VES} interval based on presence of event: ABD, DO, NONE or VOID



Wavelet-Based Feature Extraction



- Discrete wavelet transform (DWT) using Daubechies 4 wavelet
 - Allows for time-frequency localization in non-stationary signals



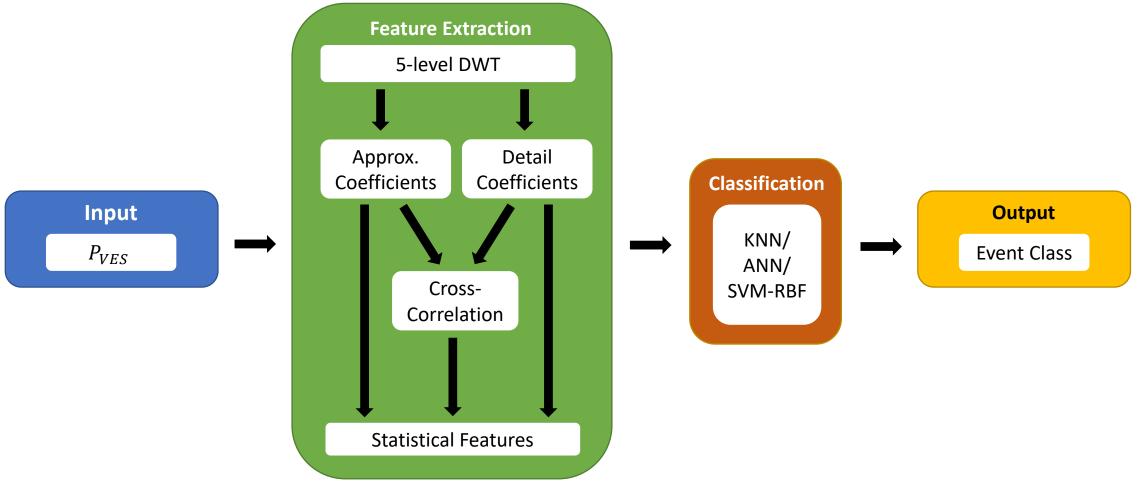
Dimensionality Reduction through Feature Selection

- Total number of features: 55
 - Based off wavelet-based feature extraction for common bio-signal classification tasks (ECG, EEG, EMG)
- Relief-F method: identified m most relevant features
 - K-nearest neighbors approach
 - m varied for each classifier architecture

Classifier Selection

Classifier	Hyperparameters	Number of Features	
<i>k</i> -Nearest Neighbors (KNN)	k = 1	12	
Artificial Neural Network (ANN)	Hidden layers: 2 x 100 neurons/layer Activation: ReLU	55	
Support Vector Machine (SVM)			

Full Algorithm

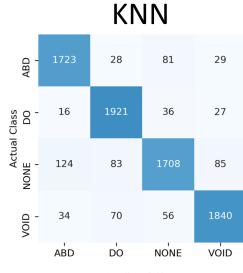


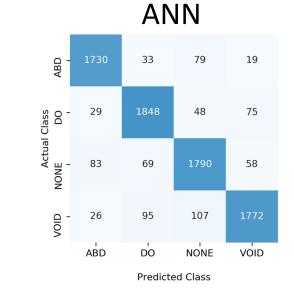
Test Procedure & Performance Metrics

- Dataset: 7,861 0.8-second events
 - Balanced between all four classes
- Performed five-fold cross-validation

Sensitivity (Recall) = $\frac{TN}{TP + FP}$ $Specificity = \frac{TN}{TN + FP}$ $Precision = \frac{TP}{TP + FP}$ $F1 = \frac{2 \times (Precision \times Recall)}{Precision + Recall}$

Results and Discussion





1.0

0.8

0.6

0.4

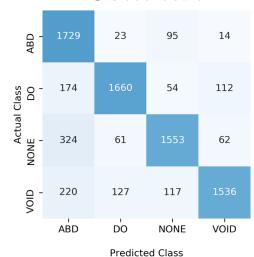
0.2

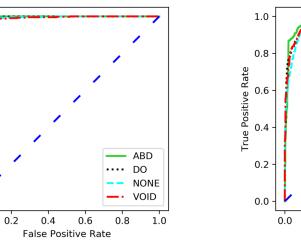
0.0

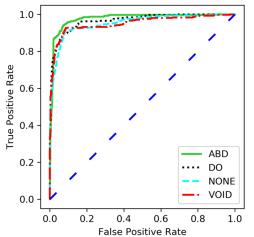
0.0

True Positive Rate

SVM-RBF







1.0 0.8 True Positive Rate 7.0 9.0 9.0 ABD 0.2 •••• DO NONE - VOID 0.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Results and Discussion

Classifier	Accuracy		
KNN	91.49%		
ANN	90.83%		
SVM-RBF	82.41%		

- KNN: high sensitivity to "DO" and "VOID"
 → Most successful with these events
- ANN classifier: most effectively generalized to all four classes
 - More balanced sensitivity scores
 - Highest ROC AUC's for all four classes
- Future work
 - Take advantage of memory: RNN/LSTM
 - Real-time hardware implementation of neural network approach

Results and Discussion

SUMMARY OF RELATED WORKS

Year	Channels	Feature Extraction	Classification	Classes	Findings
2016	1	5-level DWT	Adaptive thresholding	2	97% true positive rate
2020	3	Wave-shape manifold model	Dynamic time warping	2	81.35% accuracy, 0.84 ROC AUC
2021	3	Windowed time/freq. analysis	SVM-RBF	2	0.91 ROC AUC
2022	1	5-level DWT	KNN, ANN, SVM-RBF	4	91.49%, 90.83%, 82.41% accuracies, ROC AUCs ranging 0.91-0.99
	2016 2020 2021	2016 1 2020 3 2021 3	201615-level DWT20203Wave-shape manifold model20213Windowed time/freq. analysis	201615-level DWTAdaptive thresholding20203Wave-shape manifold modelDynamic time warping20213Windowed time/freq. analysisSVM-RBF202215-level DWTKNN, ANN,	201615-level DWTAdaptive thresholding220203Wave-shape manifold modelDynamic time warping220213Windowed time/freq. analysisSVM-RBF2202215-level DWTKNN, ANN,4

Conclusion

- First supervised machine learning framework for classifying multiple bladder events
- Three classifiers with accuracy ranging from ~82% to ~91%
- Demonstrated efficacy of this approach using single-channel vesical pressure data
- Can aid in automated UDS interpretation while reducing number of catheters

Questions?

vxa112@case.edu

IEEE SPMB 2022