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Introduction

• Urodynamics (UDS): assessment of urinary tract function
• Diagnosis of urinary incontinence, detrusor overactivity

• Bladder contraction: emptying (voiding) of bladder
• Detrusor overactivity (DO): involuntary bladder contractions

→ Increased frequency of urinary urges



Introduction

• UDS: simulate filling and 
voiding of bladder

• Typically requires insertion 
of two catheters
→ Source of discomfort

𝑃𝐷𝐸𝑇 = 𝑃𝑉𝐸𝑆 − 𝑃𝐴𝐵𝐷



Introduction

𝑃𝑉𝐸𝑆

𝑃𝐴𝐵𝐷

𝑃𝐷𝐸𝑇

Volume

• ABD → abdominal event (cough, Valsalva)
• DO → detrusor overactivity (involuntary contraction)
• VOID → voiding (voluntary contraction)

ABD
ABD ABDVOIDDOABD



Introduction

• Interpretation of UDS traces: subjective and variable
• Need a standardized, automated methodology for UDS 

annotation/interpretation from single-catheter data



Introduction

• Prior work
• Multiple pressure channels
• Single event classification

• Our work
• Single-channel data (𝑷𝑽𝑬𝑺)
• Multi-event classification
• Supervised machine 

learning



• Isolated 𝑃𝑉𝐸𝑆
• Goal: reproduce annotations from this single channel of data 

using supervised machine learning

ABD
ABD ABDVOIDDOABD

• ABD → abdominal event (cough, Valsalva)
• DO → detrusor overactivity (involuntary contraction)
• VOID → voiding (voluntary contraction)Methodology



• Anonymized data obtained from previous studies
• Louis Stokes Cleveland VA Medical Center and Cleveland Clinic

• 60 UDS tracings sampled at 10 Hz
• From 34 human subjects with overactive bladder or neurogenic urinary 

incontinence
• Noisy segments discarded
• Annotated with assistance of urologist

Methodology
Dataset Preparation



Methodology

• 𝑃𝑉𝐸𝑆 segmented into 0.8-second 
intervals

• Increased range of values for 
deriving more statistical features

• Maintained time precision; relevant 
for real-time inference

Data Segmentation

Label 𝑃𝑉𝐸𝑆 interval based on presence 
of event: ABD, DO, NONE or VOID



Methodology

• Discrete wavelet transform (DWT) using Daubechies 4 wavelet
• Allows for time-frequency localization in non-stationary signals

Wavelet-Based Feature Extraction



Methodology
Wavelet-Based Feature Extraction

Compute max, MAV, 
median, Shannon entropy 
from approx. coefficient segment

Compute max, mean, median
from cross-correlation segment 
between approx./detail coefficients

Compute max, MAV, 
median, Shannon entropy 
from detail. coefficient segment



Methodology

• Total number of features: 55
• Based off wavelet-based feature extraction for common bio-signal 

classification tasks (ECG, EEG, EMG)
• Relief-F method: identified 𝑚 most relevant features

• K-nearest neighbors approach
• 𝑚 varied for each classifier architecture

Dimensionality Reduction through Feature Selection



Methodology
Classifier Selection



Methodology
Full Algorithm
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Methodology
Test Procedure & Performance Metrics

• Dataset: 7,861 0.8-second events
• Balanced between all four classes

• Performed five-fold cross-validation



Results and Discussion
KNN ANN SVM-RBF



Results and Discussion

• KNN: high sensitivity to “DO” and “VOID”
→ Most successful with these events

• ANN classifier: most effectively 
generalized to all four classes

• More balanced sensitivity scores
• Highest ROC AUC’s for all four classes

• Future work
• Take advantage of memory: RNN/LSTM
• Real-time hardware implementation of neural 

network approach

Classifier Accuracy

KNN 91.49%

ANN 90.83%

SVM-RBF 82.41%



Results and Discussion

SUMMARY OF RELATEDWORKS



Conclusion

• First supervised machine learning framework for classifying 
multiple bladder events

• Three classifiers with accuracy ranging from ~82% to ~91%
• Demonstrated efficacy of this approach using single-channel 

vesical pressure data
• Can aid in automated UDS interpretation while reducing number 

of catheters 
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