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Abstract— Analyzing urodynamic study (UDS) tracings can 
be prone to error in the presence of artifacts and subjective 
due to lack of standardization in clinical UDS 
interpretation. As such, the diagnosis of patients 
undergoing UDS would greatly benefit from a standardized, 
automated method to assist clinicians in interpreting UDS 
tracings. In this work, we evaluated a machine learning 
framework for automatically classifying bladder events 
from single-channel vesical pressure recordings (𝑷𝑽𝑬𝑺) 
(𝑵 = 𝟔𝟎) into 4 possible classes: abdominal event (i.e., 
cough or Valsalva), voiding contraction, detrusor 
overactivity (DO) and no event. Wavelet multiresolution 
analysis of 𝑷𝑽𝑬𝑺 was used to extract time-frequency 
localized wavelet coefficient vectors which were segmented 
into 0.8 second segments with 55 statistical features per 
segment. Feature selection was subsequently applied for 
three classifier architectures: a k-nearest classifier (KNN), 
an artificial neural network classifier (ANN) and a support 
vector machine classifier (SVM). Each classifier was trained 
and evaluated using five-fold cross validation, from which 
we derived the sensitivity, specificity, F1 score and AUC for 
all four classes and the overall classification accuracy for 
each classifier. The KNN, ANN and SVM classifiers labeled 
7,861 0.8 second 𝑷𝑽𝑬𝑺 segments with 91.5%, 90.8% and 
82.4% accuracy, respectively. We have thus proposed the 
first framework for automated multi-event bladder 
classification using single-channel UDS data. 
 
Keywords— urodynamics, wavelet signal processing, bladder 
event classification 

I. INTRODUCTION 
Multi-channel urodynamics (UDS) is a diagnostic 
procedure that provides a functional assessment of lower 
urinary tract function. UDS provides qualitative and 
quantitative analyses of bladder relaxation and 
contractile behavior during retrograde bladder filling and 
voiding [1]. This information allows physicians to 
diagnose lower urinary tract dysfunction, including 
detrusor overactivity (DO), detrusor underactivity and 
urinary incontinence, among other diagnoses. Although 
UDS allows for precise calculation of several parameters 
with well-established guidelines, the interpretation of 
UDS traces can be subjective and variable. This is in part 
due to the presence of artifacts and technician-related 
errors [2] and may also be due to lack of standardization 
in clinical urodynamic interpretation [3]. An automated, 
standardized methodology for the detection and 
classification of bladder events in UDS tracings may 
allow physicians to focus on meaningful periods in the 
study, speed up interpretation, prevent errors, and 

improve consistency when analyzing UDS tracings.  

Typically, a multi-channel UDS study is conducted with 
two inserted pressure-sensing catheters: an intraurethral 
catheter which measures vesical pressure (𝑃𝑉𝐸𝑆), and a 
vaginal or rectal catheter which measures abdominal 
pressure (𝑃𝐴𝐵𝐷). The detrusor pressure is calculated as the 
difference between the two:  

𝑃𝐷𝐸𝑇 = 𝑃𝑉𝐸𝑆 − 𝑃𝐴𝐵𝐷  (1) 

𝑃𝐷𝐸𝑇  is evaluated by a clinician in the context of other 
pressure and flow tracings to interpret UDS tracings [1].  
However, using two sensors for recordings—especially 
during ambulatory urodynamics, which allows for longer 
periods of data recording—is a source of physical 
discomfort in patients due to the insertion of the catheters 
[4].  
Thus, there arises a need for a standardized, automated 
methodology for the interpretation of ambulatory UDS 
tracings using single-channel pressure data acquired 
using only an intravesical sensor. Prior work focused on 
automated binary DO detection using pattern 
recognition, modelling instances of DO as wave-shapes 
and making predictions based on the measured similarity 
of an unlabeled event to a bank of aggregated DO wave-
shapes [5]. Newer methods have built on automating DO 
classification by applying machine learning, extracting 
time-domain and frequency-domain features from 
windowed 𝑃𝐷𝐸𝑇  data for binary classification of DO from 
already-detected, yet unlabeled, events [6]. While such 
techniques rely on both sensors (𝑃𝑉𝐸𝑆 and 𝑃𝐴𝐵𝐷) for event 
detection and classification, detecting bladder 
contractions and pressure artifacts from single-channel 
data (𝑃𝑉𝐸𝑆) using wavelet multiresolution analysis and 
adaptive thresholding has also been investigated [7]. 
Here, we present a machine learning framework for 
classifying four classes of bladder events from single-
channel pressure recordings (Fig. 1). To our knowledge, 
this is the first example of multi-event classification from 
single-channel UDS pressure data. Section II describes 
the methodology for annotating and pre-processing the 
dataset, statistical feature extraction using wavelet 
multiresolution analysis, classification using different 
machine learning classifiers, and classifier evaluation 
and tuning. Section III discusses the performance of the 
classifiers and potential performance improvements for a 
real-time hardware implementation of the framework. 

Machine Learning for Automated Bladder Event Classification  
from Single-Channel Vesical Pressure Recordings 
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Fig. 1. While prior work focused on single-event detection or binary 
classification from multiple pressure channels (left), we focused on 
four-class bladder event classification using single-channel vesical 
pressure recordings (right). 

II. METHODOLOGY 
A. Dataset Preparation 
60 UDS tracings sampled at 10 Hz were obtained from 
34 human subjects with overactive bladder or neurogenic 
urinary incontinence through urodynamic testing 
conducted at the Louis Stokes Cleveland Department of 
Veteran Affairs Medical Center and the Cleveland Clinic. 
Anonymized data were harvested from previous studies 
and were IRB exempt. Each tracing included 𝑃𝑉𝐸𝑆, 𝑃𝐴𝐵𝐷 , 
𝑃𝐷𝐸𝑇 , volume and flow information and was analyzed by 
a blinded urologist to annotate abdominal events (ABD), 
voiding contractions (VOID), and detrusor overactivity 
(DO) (Fig. 2). Noisy 𝑃𝑉𝐸𝑆 segments, typically found 
towards the start or end of a tracing and caused by 
catheter motion, were discarded from each tracing. 

B. Wavelet-Based Feature Extraction 

DO events and voiding contractions were usually 
represented as low-frequency rises and falls, while 
abdominal artifacts contained high-frequency spikes in 
pressure. While the fast Fourier transform (FFT) and 
short-time Fourier transform (STFT) are typically used to 
determine the frequency content of a time-varying signal, 
they suffer from the trade-off between time and 
frequency resolution. The discrete wavelet transform 
(DWT) was therefore used for improved temporal 
localization of frequency content in non-stationary 
signals. Previously, the Daubechies 4 wavelet was shown 
to be useful for extracting time-frequency localized 
information from 𝑃𝑉𝐸𝑆 data [7]. 

The five-level discrete wavelet transform (DWT) using 
the Daubechies 4 wavelet was applied on the entire 𝑃𝑉𝐸𝑆 
signal in each tracing, resulting in five sets of detail and 
approximation coefficients for each tracing. Each set of 
coefficients was subsequently upsampled by a 2n factor 
using spline interpolation, where n denotes the transform 
level, to retain the original time scale of the 𝑃𝑉𝐸𝑆 tracing. 
The result was 10 wavelet coefficient vectors per 𝑃𝑉𝐸𝑆 
tracing (Fig. 3). Each 𝑃𝑉𝐸𝑆 tracing was split into non-
overlapping segments of 0.8 seconds in length (8 𝑃𝑉𝐸𝑆 
samples),  and each 𝑃𝑉𝐸𝑆 segment was then labeled with 
one of four possible class labels, depending on which 
event was present in the segment: ‘ABD’, ‘VOID,’ ‘DO’ 
or ‘NONE’ (if no event was present). 

In prior work in classifying time-varying physiological 
signals such as ECG and EEG using machine learning, 
statistical properties of wavelet coefficients such as the 
mean, maximum, Shannon entropy, power, etc. were 
used as features in classifiers [8-9]. Adopting this 

 
Figure 2. Typical UDS tracing with annotations. The annotations were performed using information from all three pressure channels:  
𝑃𝑉𝐸𝑆, 𝑃𝐴𝐵𝐷  and 𝑃𝐷𝐸𝑇. Our work focused on extracting features and making predictions solely from 𝑃𝑉𝐸𝑆. 
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approach for vesical pressure, for each 𝑃𝑉𝐸𝑆 segment, the 
maximum, mean absolute value (MAV), median and 
Shannon entropy from each of the 10 wavelet coefficient 
vectors was computed, resulting in 40 features for each 
𝑃𝑉𝐸𝑆 segment. Furthermore, for each 𝑃𝑉𝐸𝑆 segment, the 
cross-correlation between approximation coefficients 
and corresponding detail coefficients in each DWT level 
was calculated, resulting in five cross-correlation vectors 
for each 𝑃𝑉𝐸𝑆 segment. The maximum, mean and median 
from each cross-correlation vector were also computed, 
resulting in 15 additional features for each 𝑃𝑉𝐸𝑆 segment. 

 
Fig. 3. Application of 5-level DWT on 𝑃𝑉𝐸𝑆 tracing, resulting in 10 total 
wavelet coefficient vectors. The approximation and detail coefficients 
localized frequency content in 𝑃𝑉𝐸𝑆. 

Thus, 55 features were computed for each 8-sample 𝑃𝑉𝐸𝑆 
segment in each of the 60 𝑃𝑉𝐸𝑆 tracings  
(Fig. 4). The 𝑁𝑖 x 55 feature vectors from each 𝑃𝑉𝐸𝑆 
tracing, where 𝑁𝑖 denotes the number of 𝑃𝑉𝐸𝑆 segments 
in the 𝑖𝑡ℎ  𝑃𝑉𝐸𝑆 tracing, were combined to form an initial 
single 53,496 x 55 feature matrix. 

C. Dimensionality Reduction through Feature Selection 
Feature selection was applied to reduce the training time 
and overfitting of the classifiers [8-9]. The most relevant 
features from the feature matrix were identified using the 
ReliefF algorithm, which assigns weights to features 

using a nearest-neighbors approach [10]. ReliefF rewards 
features with large differences for observations of 
different classes and penalizes features with large 
differences for observations of the same class [10]. This 
technique identified the 𝑚 highest-ranked features, 
where 𝑚 denotes the number of features chosen for each 
classifier architecture. 

 
Fig. 4. Example of segmentation of 𝑃𝑉𝐸𝑆 and statistical feature 
extraction from fifth level of the DWT. This process was performed 
for all five DWT levels, resulting in 55 features for each 𝑃𝑉𝐸𝑆 
segment. 

D. Classifier Selection and Training 
The majority (~78%) of the initial dataset was made up 
of observations belonging to the ‘NONE’ class, followed 
by ~15% of observations belonging to ‘VOID.' To 
balance the dataset and limit bias during training and 
cross-validation, observations from each of the four 
classes were randomly chosen such that each class 
represented ~25% of the observations. Using this 
approach, the final dataset comprised of 7,861 total 
observations: 1,861 ‘ABD’ events, 2,000 ‘DO’ events, 
2,000 ‘NONE’ events, and 2,000 ‘VOID’ events. 

Three initial classifier models for the machine learning 
framework were evaluated: 1) a k-nearest neighbors 
classifier (KNN) with 𝑘 = 1; 2) an artificial feed-forward 
neural network classifier (ANN) with a 10-neuron hidden 
layer activated using the ReLU function; 3) a support 
vector machine classifier with the radial basis function 
kernel (SVM-RBF), 𝐶 = 1 and 𝛾 = 1. The initial 
hyperparameters for the ANN and SVM-RBF classifiers 
were chosen based on prior work in physiological signal 
classification using DWT-based features [8-9]. The 𝑘 
value for the KNN classifier was chosen based on initial 
testing with the 7,861 x 55 feature matrix, which showed 
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that using a single neighbor resulted in strong 
classification accuracy. Each classifier was trained and 
evaluated using 5-fold cross validation. 

E. Classifier Tuning and Performance Metrics 

Each classifier was evaluated on overall classification 
accuracy (# of correctly predicted 𝑃𝑉𝐸𝑆 segment labels). 
Throughout the framework development and testing 
process, the hyperparameters and the number of features 
for each classifier were adjusted to improve performance 
(Fig. 5). For instance, ReliefF was applied to select the 
12 most relevant features for the KNN and SVM-RBF 
classifiers; testing showed that there was no increase in 
classification accuracy when more than 12 features were 
used for these two classifiers. Furthermore, setting 𝛾 =
0.94 improved performance of the SVM-RBF classifier. 
For the ANN classifier, adding a second hidden layer, 
increasing the number of neurons in each hidden layer to 
100, and including all 55 features substantially increased 
classification accuracy. The final architectures for all 
three classifiers that were tested are shown in Table I. 

TABLE I. FINAL CLASSIFIER ARCHITECTURES 

 

Furthermore, for each classifier, the specificity, 
sensitivity and F1 score for each class was calculated as  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

𝐹1 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

where 𝑇𝑃, 𝐹𝑃, 𝑇𝑁 and 𝐹𝑁 represented the true positives, 
false positives, true negatives, and false negatives, 
respectively. Furthermore, for each classifier, the 
receiver operating characteristic (ROC) and the area 
under the ROC curve (AUC) were calculated. 

III. RESULTS AND DISCUSSION  

The overall accuracy and the per-class performance 
metrics for the three machine learning classifiers were 
calculated (Fig. 6 and Table I). Although KNN classifier 
performed the best in terms of overall classification 
accuracy, the ANN classifier’s performance was 
comparable to the KNN in terms of sensitivity, 
specificity and F1 scores for the four classes. 
Furthermore, the ANN classifier achieved the best ROC  

 
AUC for all four classes. The high sensitivity of the KNN 
classifier for ‘DO’ suggests that it most effectively 
detected these events in this class, but the ANN 
generalized more effectively to all four classes of events. 

Despite achieving upwards of 82% overall classification 
accuracy across all 3 classifiers, there was room for better 
performance. In this study, each 0.8 second-long 𝑃𝑉𝐸𝑆 
segment was treated as an independent event; the full 
length of bladder events, which can range from 5 seconds 
for an abdominal artifact to 100 seconds for a voiding 
contraction, was not considered. This approach had its 
advantages, as the three classifiers labeled short time 
segments without relying on memory. However, using 
temporal information based on previous segments would 
improve performance. For instance, recurrent neural 
networks (RNNs), and specialized RNNs, such as the 
long short-term memory (LSTM) can combat the 
vanishing gradient prevalent in neural networks with 
large hidden layers. For example, LSTMs have achieved 
promising results in ECG signal classification [11]. 

While the classifiers performed well at classifying the 
different types of bladder events (‘ABD,’ ‘DO,’ and 
‘VOID’), they were not as adept at distinguishing these 
events from ‘NONE’ segments, i.e., noise. 

 
Fig. 5. Flow of bladder event classification framework with 
underlying steps from 𝑃𝑉𝐸𝑆 input to event class output. During 
classifier testing and tuning, feedback from the output was used to 
iterate on feature selection and classifier hyperparameters to 
optimize classification performance. 
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Fig. 6. Summary of prediction results using five-fold cross validation of all three classifiers. The confusion matrices (top) show the true positives, 
false positives, true negatives, and false negatives per class for each classifier. The ROC curves (bottom) indicate the trade-off between sensitivity 
and specificity per class for each classifier. 

TABLE II. SUMMARY OF RESULTS FOR MULTI-CLASS CLASSIFICATION 

 

 

 

TABLE III. SUMMARY OF RELATED WORKS 
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Future work could include a two-stage filtering process: 
1) a “coarse” filter that separates useful 𝑃𝑉𝐸𝑆 data from 
noise and detects the onset of a bladder event; 2) a “fine” 
classifier that uses wavelet-based features and temporal 
information from both current/past states to classify the 
event of the current 𝑃𝑉𝐸𝑆 segment being processed. 
Coarse detection was previously demonstrated through 
adaptive thresholding and adaptive sampling techniques 
[7, 11]. The fine classification step would rely on a 
machine learning classifier as presented in this work. 

IV. CONCLUSION 
A novel supervised machine learning framework for 
predicting UDS tracing segments from single-channel 
𝑃𝑉𝐸𝑆 data was demonstrated. Three machine learning 
classifiers, using statistical features extracted using the 
DWT, were capable of classifying 𝑃𝑉𝐸𝑆 segments at 
accuracies ranging from ~82% for an SVM-based 
classifier to ~91% for a KNN-based classifier. This work 
showed the efficacy of a machine learning approach for 
automated bladder event classification using only a 
single catheter line; this may prove useful for aiding in 
UDS interpretation and in reducing the number of 
catheters required for UDS in some patients. Future work 
will include a two-step event detection/classification 
process and implementing the framework in hardware as 
a real-time algorithm.  
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