
Calibration of Automatic Seizure Detection Algorithms

A. Borovac1,2, T. P. Runarsson1, G. Thorvardsson2 and S. Gudmundsson1

1. Faculty of Ind. Eng., Mech. Eng. and Comput. Sci., University of Iceland, Reykjavik, Iceland
2. Kvikna Medical ehf., Reykjavik, Iceland

{anb48, tpr, steinng}@hi.is, gardar@kvikna.com

Abstract— An EEG seizure detection algorithm employed
in a clinical setting is likely to encounter many EEG
segments that are difficult to classify due to the complexity
of EEG signals and small data sets frequently used to
train seizure detectors. The detectors should therefore
be able to notify the clinician when they are uncertain
in their predictions and they should also be accurate
for confident predictions. This would enable the clinician
to focus mainly on the parts of the recording where
confidence in predictions is low. Here we analyse the
calibration of neonatal and adult seizure detection algo-
rithms based on a convolutional neural network in terms
of how well the output seizure/non-seizure probabilities
estimate the corresponding empirical frequencies. We
found that the detectors turned out to be overconfident, in
particular when incorrectly predicting seizure segments as
non-seizure segments. The calibration of both detectors,
measured in terms of expected calibration error and
overconfidence error, was improved noticeably with the use
of Monte Carlo dropout. We find that a straightforward
application of dropout during training and classification
leads to a noticeable improvement in the calibration of
EEG seizure detectors based on a convolutional neural
network.

Keywords— electroencephalogram, automatic seizure detec-
tion, uncertainty, calibration

I. INTRODUCTION

Seizures are common in the neonatal period [1], as well
as in later stages of life [2]. Neonatal seizures should be
detected and treated promptly as they often have an un-
derlying brain injury [3]. In adulthood, the seizures may
have a major impact on the quality of life and can be life
threatening [4]. The current gold standard of seizure de-
tection is a video electroencephalogram (EEG) observed
by a human expert. Since EEG recordings frequently
span hours to days, are prone to artefacts [5] and have
high inter- and intra-patient variance [6, 7], scoring
EEG recordings is time-consuming and requires special
expertise that is not always available [8].

To speed up the analysis of EEG and make it more
widely available, a significant effort has gone into the
development of automated (neonatal) seizure detection
algorithms (SDAs) [9, 10]. Designing and training SDAs
with human-level performance is difficult for two main
reasons. First, there is usually only a small amount of
data available for training. Second, EEG signals are
complex which makes seizure annotation difficult; even
human experts with years of experience are often in

disagreement [11, 12]. As a result, it may be expected
that automatic classification would be difficult for some
of the EEG segments. Algorithms that output confi-
dence levels, in addition to seizure/non-seizure labels,
are therefore desirable [13, 14]. EEG segments where
confidence in prediction is low can then be passed on to
the clinician for review. Furthermore, by directing the
attention of the clinician to the parts of the recording
where uncertainty is highest, manual scoring becomes
more efficient.

Modern SDAs are based on deep neural networks
(DNNs) [9, 10]. Output class probabilities may be
interpreted as confidence estimates, where probabilities
close to one would indicate high confidence and prob-
abilities close to 1/2 would indicate low confidence in
the seizure/non-seizure predictions. To the best of our
knowledge, it has not been investigated how accurate
such confidence estimates are in this setting. A classifier
is considered to be well-calibrated if the confidence
estimates are close to the empirical frequencies. In [15,
16] confidence estimates for a support vector machine
classifier were obtained by a version of Platt scaling [17]
and Becher et al. [16] additionally estimated confidence
levels with trust scores [18].

Guo et al. [19] claim that DNNs are often poorly
calibrated and overconfident in their predictions, de-
spite achieving good classification performance. Hein
et al. [20] show that DNNs employing the ReLU acti-
vation function can be overconfident in predictions for
data far away from the training data. In recent years,
various methods have been proposed for improving
the calibration of DNNs [21, 22]. They include post-
processing methods such as isotonic regression [23],
conformal prediction [24] and Platt scaling [17], as well
as methods that modify the training process such as
mixup [25, 26], modelling probability distributions of
class probabilities with Dirichlet distributions [27] and
the use of dropout during training and prediction [28].

In this work, we analyse the calibration of an SDA
based on a convolutional neural network and show
that the detector is overconfident in its predictions,
in particular for seizure segments. The calibration is
improved noticeably, without degrading classification
performance, by using a simple dropout strategy. The
analysis is done on publicly available neonatal and adult
EEG data sets.
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II. METHODS

Data

The neonatal EEG was taken from a data set with
79 recordings [29] and processed as described in [30].
Briefly, the recordings were recorded with 19 electrodes
with a common reference and from these signals, a
bipolar longitudinal (double banana) montage with 18
channels was derived. The same montage was used by
the human experts annotating the recordings [29]. The
recordings were cut into 16 sec long segments with
12 sec overlap [31]. We included only segments where
all three human annotators were in agreement [30].
Each signal was filtered with a 6th order Chebyshev
Type 2 filter with band-pass 0.5 – 16 Hz and down-
sampled from 256 Hz to 32 Hz [31]. This frequency
band was selected since the cortical activity of neonates
normally lies in this range [32–34]. The signals were
then normalised to mean zero and standard deviation
one [35–37]. Approximately 10 % of the segments
contain seizures.

The adult EEG was taken from the TUH EEG seizure
corpus, version 1.5.4 [38]. The set of recordings with
averaged reference was used together with a bipolar
temporal central parasagittal montage with 22 channels.
The same montage was used by the human experts
annotating the recordings. The training, validation and
test sets contain recordings from 297, 41 and 41 pa-
tients, respectively. The pre-processing was similar to
the neonatal data. Labelled signals were included if the
manual annotation had a confidence value of one. The
signals were cut into 16 sec long segments. There is an
overlap of 12 sec for the seizure segments to make the
set of seizures larger. The signals were filtered with a 0.5
– 25 Hz band-pass filter [39], down-sampled to 50 Hz
and normalised in the same way as before. The fraction
of segments containing seizures in the three data sets is
12 %.

Seizure Detection Algorithm

The SDA from [40] was used for both data sets in
a binary setting (seizure/non-seizure). The detector is
based on a DNN that uses multi-channel EEG as in-
put. The network extracts features from each channel
separately with a convolutional neural network [41] and
combines the feature vectors into a single feature vector
with an attention layer [42]. This is followed by a fully
connected layer with two output nodes and a softmax
activation function which provides confidence estimates
for the classification. Because of the difference in sam-
pling rates, the input size differs between the neonatal
and adult data sets, resulting in a different number
of features extracted from each channel (24 for the
neonatal EEG vs. 44 for the adult EEG). Consequently,
the numbers of parameters in the attention and fully
connected layers are different. The neonatal detector has

29352 learnable parameters while the adult detector has
29712.

The training of the detector followed [30]. The neonatal
(adult) detector was trained for 30 (50) epochs with
the Adam optimizer, with an initial learning rate of
0.001 which was then halved every 10 epochs. Mini-
batches were of size 128. Since the data sets were highly
imbalanced, each mini-batch was balanced, i.e. there
were 64 seizure segments and 64 non-seizure segments
in each mini-batch. Hence, each epoch contained all
the available seizure segments and an equal number of
randomly selected non-seizure segments.

Dropout

Dropout is a simple and widely used regularization tech-
nique for improving the generalisation of DNNs [43].
With dropout, nodes are omitted at random from the
network with fixed probability p during training, to-
gether with their connections. This prevents hidden
nodes in the network from relying too much on other
hidden nodes to correct their mistakes, which in turn
reduces overfitting. In the typical setting (standard
dropout), dropout is only used during training in order
to reduce the amount of computations in the testing
phase. In Monte Carlo dropout, T forward passes are
performed with dropout enabled in the prediction phase
and the predictions are averaged. It has been observed
empirically that this can give a slight improvement
in prediction accuracy over simple dropout. Due to
the extra computational cost, Monte Carlo dropout is
infrequently used for this purpose but it has the ad-
ditional benefit of providing probability estimates that
are better calibrated than those obtained with standard
dropout [44]. The connection between Monte Carlo
dropout and model uncertainty is provided in [28] where
Monte Carlo dropout is interpreted as approximate
Bayesian inference in deep Gaussian processes. Dropout
with probability p = 0.1 was used for all nodes in the
convolutional and attention layers (the nodes in the input
layer were excluded) but for the nodes in the fully
connected layer p= 0.5 [28, 43]. The average of T = 10
softmax predictions was used to obtain final probability
estimates (averaging over a larger number of predictions
gave similar results).

Performance Evaluation

The classification performance of the SDAs was eval-
uated with the area under the curve (AUC), sensitivity
(SE) and specificity (SP).

The confidence of a single prediction is defined as
the highest softmax output of the detector. For binary
classification tasks, the confidence values, therefore, lie
between 0.5 and 1. The calibration was evaluated with
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the expected calibration error [19],

ECE =
K

∑
k=1

|Bk|
N

|acc(Bk)− conf(Bk)|, (1)

and overconfidence error which gives high weight to
confident but wrong predictions, a situation that is of
particular concern in medical applications [25],

OE =
K

∑
k=1

|Bk|
N

conf(Bk) ·max(conf(Bk)− acc(Bk),0),

(2)

where the confidence values have been partitioned into
K equally sized bins (here K = 5), Bk is the set of
segments where the confidence level falls into bin k,
|Bk| is the number of segments in bin k, acc(Bk) is
the portion of correctly classified segments in bin k,
conf(Bk) is the average confidence of segments in bin
k and N is the total number of segments.

Leave-one-subject-out cross-validation was used for the
evaluation of the neonatal SDA. The adult SDA was
evaluated on a separate test set.

III. RESULTS AND DISCUSSION

Detectors employing Monte Carlo dropout are referred
to as calibrated in the following and they are compared
to detectors that were trained without using any dropout
during training and prediction (not calibrated).

Table 1 shows the performance of the neonatal and adult
SDAs on the two data sets, averaged across patients
with seizures. Inter-patient variability is quite high, in

Table 1. Mean area under the curve (AUC), sensitivity (SE)
and specificity (SP) across the patients with at least one seizure
segment. The standard deviations are shown in parentheses.

Neonatal SDA AUC SE [%] SP [%]
Uncalibrated 0.90 (0.15) 76.02 (29.91) 93.80 (14.54)
Calibrated 0.93 (0.11) 78.39 (28.65) 95.24 (10.09)
Adult SDA
Unalibrated 0.90 (0.14) 66.47 (32.15) 95.70 (4.85)
Calibrated 0.89 (0.16) 70.27 (32.29) 93.63 (7.05)

particular for the sensitivity metric. The variability of
the specificity metric is lower for the adult SDA. This
indicates that there are some patients that are difficult
to classify in both data sets and for those, it would
be preferred to obtain uncertain predictions rather than
certain incorrect predictions. Such property of a detector
may in the future also increase the trust of the clinicians
using the system [13, 14].

While the SDA architecture was designed for neonatal
EEG it nevertheless gives fairly good results on the adult
data set. For comparison, the best DNN architecture (out
of 15 tested) reported in [45] has an AUC of 0.92, sen-
sitivity 83 % and specificity 85 % on the TUH data set,
with the caveat that [45] used a slightly different testing

procedure. Detectors with high specificity (e.g., above
90 %) are often preferred in the online clinical setting
to avoid frequent disruption due to false detections.

Table 1 shows that the classification performance (in
terms of AUC, sensitivity and specificity) of the cali-
brated neonatal SDA is marginally better than for the
uncalibrated detector, while the adult uncalibrated and
calibrated SDAs perform similarly. This is in line with
previous studies which applied Monte Carlo dropout for
the classification of (medical) images [46–48].

Even though the performance of the uncalibrated and
calibrated SDAs are similar in terms of the average
AUC, sensitivity and specificity metrics, they can differ
considerably in predictions on individual recordings.
Figure 1 shows predictions for a single neonatal record-
ing. Since the prediction confidence corresponds to the

Expert
annotations

Consensus seizure

Seizure

Uncalibrated

Calibrated

0 0.2 0.4 0.6 0.8 1

Predicted seizure probability

Figure 1. An example of predictions made by the uncalibrated
and calibrated neonatal SDAs for a 56 min long neonatal
recording. The recording contains seven seizures where all
three human experts were in agreement and three additional
seizures were labelled by at least one of the experts.

highest softmax output, the confident seizure predictions
have a seizure probability close to one and confident
non-seizure predictions have a seizure probability close
to zero. The detector without calibration is confident
in false seizure predictions for a big portion of the
recording, but the predictions of the calibrated SDA
which have high seizure probability are in agreement
with the three human annotators that labelled the data
set. Three out of seven consensus seizures are clearly
detected and two additional seizures can quickly be
identified by inspecting the areas with high uncertainty
(figure 1), i.e. with seizure probability around 0.5.

The calibration of the SDAs is further analyzed in
figure 2. The uncalibrated neonatal (adult) detector
predicts about 93 % (83 %) of the examples with
confidence close to one. The reliability diagrams for this
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Figure 2. Neonatal (a) and adult (b) SDAs without calibration
(left) and with calibration (right). Confidence histograms
(black) show the fraction of predictions with a given confi-
dence value and reliability diagrams (grey) show the expected
accuracy as a function of confidence value. Deviations from
the dashed lines represent miscalibration. Accuracy (ACC),
sensitivity (SE), specificity (SP), expected calibration error
(ECE) and overconfidence error (OE).

case show that the confidence levels do not reflect the
true accuracy, as indicated by deviation from the dashed
lines. The deviation is clearly lower when calibration is
applied and this is also reflected in the expected cali-
bration error. In addition, the uncalibrated detectors are
overconfident in their predictions, seizure predictions in
particular, which results in a high overconfidence error.
The error drops to 0.01 % and 0.0 % for the calibrated
neonatal and adult detectors, respectively. Low overcon-

fidence error would consequently allow the user to trust
predictions with a high (e.g., > 0.9) confidence level.
In other words, highly confident predictions are almost
always correct and the risk of false detection or a missed
detection is low.

Figure 3 illustrates the relationship between classifier
performance and mean confidence levels for individual
patients in the adult data set. The calibrated SDA
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Figure 3. Each dot represents a patient from the adult data
set. Mean seizure (non-seizure) confidence is the average
confidence level of segments predicted as seizures (non-
seizures). These two values are estimates for sensitivity (SE)
and specificity (SP).

estimates for sensitivity and specificity are closer to
the true values (dashed lines) and more importantly, the
confidence estimates for the difficult examples are much
lower than for the patients on which the SDA performs
almost perfectly. Similar observations are made also on
the neonatal data (data not shown).

IV. CONCLUSION

In this work, we have shown that an SDA based
on a DNN architecture optimised for neonatal seizure
detection, can be retrained on adult EEG data to provide
a reasonably accurate classifier for adult EEG. However,
despite good classification performance, neonatal and
adult detectors were overconfident in the predictions
which may reduce user trust [13, 14]. Our results
demonstrate that dropout [28] improves calibration, in
particular for the seizure segments. A well-calibrated
detector can notify the user when it is not confident in
its predictions and leave the decision to the user. This
allows the user to focus quickly on the parts of the
recording where the automatic detection is uncertain.
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As suggested in [46, 47] Monte Carlo dropout may
not perform well in case of a distribution shift. In our
case, the shift can be attributed to the different age
groups, recording equipment and protocols. Therefore,
further research is needed to investigate the influence of
a distribution shift on the calibration of an SDA.

Dropout may also be combined with mixup training [25]
and post-processing schemes such as Platt scaling [17]
in the future. More work is also needed to find out how
to present the output of calibrated detectors in intuitive
and informative ways in the clinical setting.
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