IMLD: A Python-Based Interactive Machine Learning Demonstration
T. Capl, A. Kreitzer’, M. Miranda®, D. Vadimskyz and J. Picone'

1. Neural Engineering Data Consortium, Temple University, Philadelphia, Pennsylvania, USA
2. College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
{thao.cap, aaron.kreitzer, matthew.miranda, dakota.vadimsky, picone}@temple.edu

The related fields of machine learning and pattern recognition have enjoyed significant success in recent
years due to the impact of deep learning algorithms [1]. Pattern recognition is the automatic recognition of
regularities or trends in data. Machine learning, a closely related field that has evolved considerably in the
past two decades, refers to the ability of a machine to learn and adapt to data, improving a system’s ability
to detect patterns and perform inference. These methods are ubiquitous in engineering today impacting
diverse fields including signal and image processing, human language technology, bioinformatics, and
finance. The ISIP Machine Learning Demo (IMLD) is a tool used to introduce the basics of machine
learning using a highly interactive environment in which users can easily visualize the performance of an
algorithm. IMLD was first developed as a Java applet in the late-1990’s when Java applets were envisioned
as the future of interactive computing [2] and there was an emphasis on web-based educational tools [3].
The Institute for Signal and Information Processing, then located at Mississippi State University, developed
a suite of interactive demos to teach important concepts in signal processing [4].

However, today, due primarily to security issues, Java applets have fallen in disfavor and are no longer
being supported. Instead, it makes more sense to deliver such applications in Python, where the bulk of
machine learning research is being done. This allows the application to integrate a wider range of
algorithms. Hence, a major focus of this work, being conducted at the Neural Engineering Data Consortium
at Temple University, is the conversion of this application from Java to Python. However, as we will discuss
in this work, delivering a complex interactive application in Python is not as easy as one might think. Major
concerns include the stability of the graphical programming languages available and web accessibility.

A typical screenshot of the user interface o ISiB Machins Laarrig Demonsiration
iS Shown 11'1 Flgure 1' IMLD allOWS users IMLD File Edit View Classes Patterns Demo Algorithms Process
to create unique two-dimensional data sets

Train: Process Log:

100 Classes: added class 'Class0'
that can be easily visualized. Users can S e biincinls Sessinont Apas
choose from a wide selection of predefined - o somsosono
data sets such as multivariate Gaussian 0as { Shadl L0 2o DAy
data, draw custom data sets, or create a v0 | i
combination of the two. Data can be saved i ; g§:§§353'-235551
to a file or uploaded, allowing users to e - st
experiment with their own data sets and - b -
use IMLD as a reference implementation. oo e T oo ol eTo s e 100261200002 5013%
A set of standard algorithms are available Eue
including fully supervised approaches 100
such as Principal Components Analysis o
[5], unsupervised approaches such as K- .
MEANS clustering [6], and popular neural "
network algorithms such as multilayer ::
perceptrons [7]. The number of classes, oo]
classification modules, and other key 75]
parameters of the data generation are user

00 T T T T
—1.00 -0.75 -0.50 —0.25 0.00 025 050 0.5 100

defined. A dialog box is included that
displays step-by-step computations for the Figure 1. The IMLD user interface

IEEE SPMB 2021 December 4, 2021

T. Cap et al.: ISIP Machine Learning Demo Page 2 of 4

algorithm. Users can step through the algorithms or run them in their entirety. Decision surfaces are
rendered, and error rates are computed on the training and evaluation sets.

An overview of IMLD’s software architecture is shown in Figure 2. IMLD is dependent on a variety of
third-party libraries. Many third-party libraries were considered based on the wide variety of components
required to generate the applet. The following libraries were decided based on the specific needs of IMLD.
PyQTS5 is the framework used to create the front-end design of the application, chosen for its ability to
handle large quantities of data. The backend uses NumPy for calculations, Sklearn/Scipy for implementing
algorithms, and Matplotlib for interactive graphs. The software is organized into three major components:
the graphical user interface (GUI), data handler, and machine learning algorithms.

The first part of the architecture is the GUI, where three key modules handle the window design, events,
and parameters. The window module manages all the front-end design for the application. The module
includes the menu bar, input/output graphical displays, and output log. The menu bar holds all the
functionality for adding/deleting classes, choosing an algorithm, and giving users the option to either
import, export, or create test data. The two graphical displays allow users to click and drag their mouse to
create either point-like data or Gaussian-like data. The last section for this module is the output log which
records all interactions between users and the application, i.e., adding a class or choosing an algorithm. The
event module handles execution for the buttons displayed on the GUI. Lastly, the parameter module handles
all secondary user information and allows users to configure the data generators.

Another part of the application is the data handler. One of the features that the Python version of IMLD
enhances from the Pattern Recognition Applet written in Java is the software that allows users to generate
data. The tool provides two underlying mechanisms of the generation of the data: generation by drawing
points or generation using a functional form such as a Gaussian distribution. The training and evaluation
sets are generated independently in separate windows so that a wide range of machine learning scenarios

Data Generation —*———— GUI e Algorithms
L ¥ J' v ¥ ¥ Jr ¥
m Load Data .~ Damo <— Paramaters wWindows Evant Loon Model < - — c_mfl:':‘
1’ 2/4 L
™ Gaussian ¥ SV
Draw Data Main) ﬂcl':;ll::::
Window -
2/4
Ellipses i MLP
L i Plat Decision
Gaussian Single Surface
Paints Points Toroidal —»Process Log LECA
l] |
¥in-Ya Calculate / Display
g + Ervoea KMM

« Training /Eval _
% Save Data * Wind 4

Kmeans

Figure 2. The IMLD software architecture

IEEE SPMB 2021 December 4, 2021

T. Cap et al.: ISIP Machine Learning Demo Page 3 of 4

(e.g., generalization) can be evaluated. A dictionary stores the data where the key is the name of the class
added, and the value is an array that holds the class color and an array of x and y coordinates.

Newly created data can be exported into a CSV file where comment fields are used to hold class names and
class color, while each line holds the x and y coordinates. This is a simple format we have used for our
machine learning class that makes it easy for novice programmers to interface to the data. It was also a
preferred format based on a survey we conducted with the user community. The application also allows
CSV files to be imported for further study and modification.

IMLD supports the configuration of data sets and analysis parameters through drop-down menus. Class,
Color, and Scale are all tools that allow users to uniquely configure their data. While adding a new class,
users are prompted to add a name, and then choose from over the 150 colors options. Once set, users can
now draw data points. Users can add a new class at any time by navigating to the Classes menu and adding
another class. The Scale of the data can also be managed through the Classes tool while in the Classes
menu. Users can at any time choose which of the added classes they would like to delete.

Users can also choose from a selection of prestored, or canned, demos that include classic machine learning
datasets such as overlapping Gaussian distributions. toroidally shaped distributions that cannot be classified
with a linear classifier, and a yin-yang distribution that requires a nonlinear decision surface. Finally, after
creating the data, users can choose the algorithm under the algorithm section and select the ‘run’ or ‘run by
step’ options to start classification.

Currently, IMLD does not allow users to insert their own algorithms. In the future, we plan to implement a
method by which users can do this. This feature would significantly enhance the educational capacity of
IMLD, as users will not be restricted to the algorithms offered only by the tool.

IMLD is an educational tool with the ability to walk users through a step-by-step process to visualize
various machine learning algorithms. It has been used by a machine learning class we have been teaching
since the late 1990’s (Attps.//www.isip.piconepress.com/courses/temple/ece_8527/). It is easily installed on
a platform that includes Anaconda v3 and Python v3.7 or later. The source code is available from the course
web site at: https://www.isip.piconepress.com/courses/temple/ece 8527/resources/imld/. A detailed user
manual demonstrating use of the tool and instructional videos are also available. A demonstration will be
provided at the symposium.

ACKNOWLEDGMENTS

Research reported in this publication was most recently supported by the National Science
Foundation’s Industrial Innovation and Partnerships (IIP) Research Experience for Undergraduates award
number 1827565. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the official views of any of these organizations.
Open source libraries that were used to develop the IMLD are: NumPy v1.15.4, PyQTS5 v5.13.1, SkLearn
v0.20.0, Scipy v1.1.0, and Matplotlib v3.0.2.

REFERENCES

[1] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Miiller, “Explaining Deep Neural
Networks and Beyond: A Review of Methods and Applications,” Proceedings of the IEEE,
vol. 109, no. 3, pp. 247278, 2021. https://ieeexplore.iece.org/document/9369420.

2] D. May and J. Picone, “The ISIP Pattern Recognition Applet,” Institute for Signal and Information
Processing, College of Engineering, Mississippi State University, 2002. [Online]. Available:
https://www.isip.piconepress.com/projects/speech/software/demonstrations/applets/util/pattern_r
ecognition/current/. [Accessed: 05-Jul-2021].

IEEE SPMB 2021 December 4, 2021

T. Cap et al.: ISIP Machine Learning Demo Page 4 of 4

[3]

[4]

[5]

[6]

[7]

J. Picone, R. Duncan, and J. Hamaker, “Internet-Accessible Speech Recognition Technology,” in
O’Reilly Open Source Convention, 2001. Attp://www.isip.piconepress.com/publications/confer
ence_presentations/2001/oscon/software/.

J. Picone, “Internet-Accessible Technology Demonstrations,” Institute for Signal and Information
Processing, College of Engineering, Mississippi State University, 2000. [Online]. Available:
https://www.isip.piconepress.com/projects/speech/software/demonstrations/. [Accessed: 05-Jul-
2021].

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York City, New York, USA:
John Wiley & Sons, Inc, 2001. https://www.wiley.com/en-us/Pattern+Classification%2C+2""+
Edition-p-9780471056690.

K. Mallapragada, R. Jin, and A. Jain, “Non-parametric Mixture Models for Clustering BT -
Structural, Syntactic, and Statistical Pattern Recognition,” E. R. Hancock, R. C. Wilson, T.
Windeatt, 1. Ulusoy, and F. Escolano, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 334-343. https://link.springer.com/chapter/10.1007/978-3-642-14980-1 32.

C. Bishop, Pattern Recognition and Machine Learning, 2™ ed. New York, New York, USA:
Springer, 2011. https://www.springer.com/us/book/9780387310732.

IEEE SPMB 2021 December 4, 2021

USER INTERFAGE SOFTWARE ARCHITECTURE

SIP MACHINE .

User
The Menu Ribbon at the top of the IMLD main window contains the basic functions that allow users to create [=]
LEA RN I NG D E MU and manipulate data. For example, under the File option, users can load and store data. Users can add and 7
delete classes, change the parameters of the data generators, select prestored demos, and, of course, select) (>
specific algorithms. Data Generation —<€——— GuI —>L Algorithms }
ABSTRACT --IHLD-Fr!ﬂ Edit View Classes Pattmnlﬁl;::;m;::sﬁ::::“ 4‘— / ' { - J . 'LJ . ; - X - . ; ‘} . 1 4‘
Machine learning (ML) is a field that has evolved considerably in the past two decades. ML PR as | Glasses | |LovdData. L amo [+ Parsmeters || Windows | | Evant ooy @* E [sigorithm
refers to the ability of a machine to learn and adapt to data, improving a system’s ability Ciasses: saded cass Class0 . . 7N . J, —I ==
to detect patterns and perform inference. These methods are ubiquitous in engineering Aocehira: Clase Sependent Princisle Compsnent Anstysts h“"‘."]“"') . — Window — ("'“‘T'“J .
today impacting diverse fields including signal and image processing, human language HRASAEPEREN Classd: (023202478 019571692) R T (e [.-..'.....d.....] =9
technology, bioinformatics, and finance. ol (s 5 7005t i | “poite” | | Poies Toroidal e o — l‘“’"" Loa
RO O e | g = T s |
The ISIP Machine Learning Demo (IMLD) is a tool used to introduce the basics of ML using AR TN . Tt o) o M trrors =
a highly interactive environment in which users can easily visualize theperf mance of an 00 [I——_ B = Kmeans
algorithm. IMLD enhances ML education by providing an environment in which students T T TR T | nee R n MaT 4060 a8
can easily visualize data and algorithm performance. > e Fe e ——— A user's typical interaction with IMLD is shown in the flow chart above.
o The program is specifically engineered to allow users to add their own
FEATURES . NIRRT demos and algorithms.
20l Generate Data [/ Customize Data o) SR BN : The model module takes in four different inputs which consist of the
0504 ol algorithm the user has chosen, the input display, the output display, and
Users can select from a number of Users can augment existing data sets using s S it the process log. The model APl is structured in a way to accept any
well-known data sets (e.g. overlapping freehand drawing tools, and can also customize %o -a7s 030075 a0 azs 030 o073 100 algorithm and store the results of the prediction, map out the correct
Gaussian distributions), or can create the parameters of several available data ‘ ——— = decision surface and present both training and evaluation error. The only
custom data sets using freehand generators. Data generators allow users to requirement the model class has for its algorithms is that it contains
drawing tools. create historically important data sets. . . certain key functions such as prediction, classification, and data extraction.
Train and Eval Window Process Log
E Import/Export Data .. Analyze Data The data input windows are where users can load The Process Log keeps the user updated on their own The default behavior of the data generators can be configured from
o 2 P data files, generate demonstration data sets, and actions within IMLD as well as the actions taken by the external parameter files,
Users can alsoevaluate data seks of Users can apply popular ML algorithms to their draw their own data using a freehand drawing tools program once a classification process is started. The log
interest by importing them into the data. Algorithms can be trained on the data or using a Gaussian-like paint brush. Users can adjust will display the steps of the selected algorithm, the error These design decisions allow educators to modify the program to suit
tool using a CSV file format. Data can appearing in the "Train" window, and evaluated the limits of these windows separately. These window rate of the classification process, and warning messages their specific needs, and allow students to test various algorithms on
be exported as well, making the tool on unseen data appearing in the "Eval” window. limits will be saved with the data files so that future when the user performs actions that are either out of their own data sets, thereby replicating important industry baselines.
an ideal way to generate unique and Key parameters of each algorithm can be adjustments are automatically made upon loading. order or disallowed by the program. This alleviates the need to write code and enables efficient
interesting data sets. adjusted and manually optimized. rapid prototyping.
SUMMARY
DEMONSTRATION DATA SETS pv— pr— e ol PERFORMANCE IMLD is an educational tool with the ability to walk users through a
N . nE =) e - - step-by-step process to visualize various machine learning algorithms. It
IMLD h . ¢ For small data sets, such as those provided in the prestored demos, IMLD runs instantly. has been used by a mq‘chlpe learning class we have be‘en teaching since
supports the generation o o the late 1990’s. It is easily installed on a platform that includes Anaconda
siuerulfrreprogrc;mmed‘dn:::tc:: Waks IMLD has also been designed to handle large data sets and can comfortably handle up to 10M v3 and Python v3.7, The application is available at www.isip.piconepress.
that reflect popular statistica data points using slightly under 6 GBytes of memory and 10 mins of CPU time. com/courses/temple/ece_8527/resources/imld. A detailed user manual
models in the field of ML (e.g., a - - | demonstrating use of the tool and instructional videos are also available.

two-class problem involving data
shaped as a toroid). These data
sets require advanced ML

IMLD has been tested on Windows, Mac and Linux platforms and is designed to on any platform

supporting Python and PyQT. ABKNUWLEDBEMENTS

algorithms capable of modeling 7 & Research reported in this publication was most recently supported by the

nonlinear decision surfaces. = ‘“EEssswsws EESSESSEL eassewwes o w BRI AR Se National Science Foundation’s BIndustrial Innovation and Partnerships (lIP)
. . . . Research Experience for Undergraduates award number 1827565. Any

These data sets can be adjusted by the user through dialog boxes that allow control of basic IMLD Runtime SpeCIflcatlons (Loadlng Data) opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the official
views of any of these organizations. Open Source libraries that were used to

6000.00 600 develop the IMLD are: NumPy v1.15.4, PyQT5 v5.13.1, SkLearn v0.20.0,
Scipy v1.1.0, and Matplotlib v3.0.2.

4000.00 400 REFERENCES

D. May and). Picone, “The ISIP Pattern Recognition Applet,” Institute for

statistical parameters (e.g., mean and covariance) and the degree of overlap between the w Time (s) == Memory (MiB)
classes. The default parameters can be adjusted by editing an external parameter file.

ALGORITHMS

IMLD consolidates all of its available alogorithms into

Memory (MiB)

a class P?mi’-‘d “imld_moc_iel". T-his class loads data into 2000.00 200 Signal and Information Processing, College of Engineering, Mississippi State
the training and EUCI!UCItIDH windows, and eﬁecutes University, 2002. [Online]. Available: https://www.isip.piconepress.com/
a user-selected algorithm on the corresponding data. projects/speech/software/demonstrations/applets/util/pattern_recognition/
) 0.00 0 current/. [Accessed: 05-Jul-2021].
IMLD supports most Python-based machine learning :
.) . . ek(L 6”3 %H h exﬁ eke eﬁ"l - 3
algorithms. Users can easily incorporate new ‘\9% \gﬁ \gﬁ _\9% \9‘0 \g‘b J. Picone, R. Duncan, and). Hamaker, “Internet-Accessible Speech

algorithms by following a relatively simple API Recognition Technology,” in O'Reilly Open Source Convention, 2001.

that all algorithms use.

4 & 4 § 3

Number of Data Points

J. Picone, “Internet-Accessible Technology Demonstrations,” Institute for
Signal and Information Processing, College of Engineering, Mississippi State
University, 2000. [Online]. Available: https://www.isip.piconepress.com/
projects/speech/software/demonstrations/. [Accessed: O5-Jul-2021].

T. CAP, A. KREITZER, M. MIRANDA, D. VADIMSKY, AND J. PICONE S

	abstract_v07
	poster_v08

