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The related fields of machine learning and pattern recognition have enjoyed significant success in recent 
years due to the impact of deep learning algorithms [1]. Pattern recognition is the automatic recognition of 
regularities or trends in data. Machine learning, a closely related field that has evolved considerably in the 
past two decades, refers to the ability of a machine to learn and adapt to data, improving a system’s ability 
to detect patterns and perform inference. These methods are ubiquitous in engineering today impacting 
diverse fields including signal and image processing, human language technology, bioinformatics, and 
finance. The ISIP Machine Learning Demo (IMLD) is a tool used to introduce the basics of machine 
learning using a highly interactive environment in which users can easily visualize the performance of an 
algorithm. IMLD was first developed as a Java applet in the late-1990’s when Java applets were envisioned 
as the future of interactive computing [2] and there was an emphasis on web-based educational tools [3]. 
The Institute for Signal and Information Processing, then located at Mississippi State University, developed 
a suite of interactive demos to teach important concepts in signal processing [4]. 

However, today, due primarily to security issues, Java applets have fallen in disfavor and are no longer 
being supported. Instead, it makes more sense to deliver such applications in Python, where the bulk of 
machine learning research is being done. This allows the application to integrate a wider range of 
algorithms. Hence, a major focus of this work, being conducted at the Neural Engineering Data Consortium 
at Temple University, is the conversion of this application from Java to Python. However, as we will discuss 
in this work, delivering a complex interactive application in Python is not as easy as one might think. Major 
concerns include the stability of the graphical programming languages available and web accessibility. 

A typical screenshot of the user interface 
is shown in Figure 1. IMLD allows users 
to create unique two-dimensional data sets 
that can be easily visualized. Users can 
choose from a wide selection of predefined 
data sets such as multivariate Gaussian 
data, draw custom data sets, or create a 
combination of the two. Data can be saved 
to a file or uploaded, allowing users to 
experiment with their own data sets and 
use IMLD as a reference implementation. 
A set of standard algorithms are available 
including fully supervised approaches 
such as Principal Components Analysis 
[5], unsupervised approaches such as K-
MEANS clustering [6], and popular neural 
network algorithms such as multilayer 
perceptrons [7]. The number of classes, 
classification modules, and other key 
parameters of the data generation are user 
defined. A dialog box is included that 
displays step-by-step computations for the 

 
Figure 1. The IMLD user interface 
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algorithm. Users can step through the algorithms or run them in their entirety. Decision surfaces are 
rendered, and error rates are computed on the training and evaluation sets. 

An overview of IMLD’s software architecture is shown in Figure 2. IMLD is dependent on a variety of 
third-party libraries. Many third-party libraries were considered based on the wide variety of components 
required to generate the applet. The following libraries were decided based on the specific needs of IMLD. 
PyQT5 is the framework used to create the front-end design of the application, chosen for its ability to 
handle large quantities of data. The backend uses NumPy for calculations, Sklearn/Scipy for implementing 
algorithms, and Matplotlib for interactive graphs. The software is organized into three major components: 
the graphical user interface (GUI), data handler, and machine learning algorithms. 

The first part of the architecture is the GUI, where three key modules handle the window design, events, 
and parameters. The window module manages all the front-end design for the application. The module 
includes the menu bar, input/output graphical displays, and output log. The menu bar holds all the 
functionality for adding/deleting classes, choosing an algorithm, and giving users the option to either 
import, export, or create test data. The two graphical displays allow users to click and drag their mouse to 
create either point-like data or Gaussian-like data. The last section for this module is the output log which 
records all interactions between users and the application, i.e., adding a class or choosing an algorithm. The 
event module handles execution for the buttons displayed on the GUI. Lastly, the parameter module handles 
all secondary user information and allows users to configure the data generators. 

Another part of the application is the data handler. One of the features that the Python version of IMLD 
enhances from the Pattern Recognition Applet written in Java is the software that allows users to generate 
data. The tool provides two underlying mechanisms of the generation of the data: generation by drawing 
points or generation using a functional form such as a Gaussian distribution. The training and evaluation 
sets are generated independently in separate windows so that a wide range of machine learning scenarios 

 
Figure 2. The IMLD software architecture 
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(e.g., generalization) can be evaluated. A dictionary stores the data where the key is the name of the class 
added, and the value is an array that holds the class color and an array of x and y coordinates. 

Newly created data can be exported into a CSV file where comment fields are used to hold class names and 
class color, while each line holds the x and y coordinates. This is a simple format we have used for our 
machine learning class that makes it easy for novice programmers to interface to the data. It was also a 
preferred format based on a survey we conducted with the user community. The application also allows 
CSV files to be imported for further study and modification. 

IMLD supports the configuration of data sets and analysis parameters through drop-down menus. Class, 
Color, and Scale are all tools that allow users to uniquely configure their data. While adding a new class, 
users are prompted to add a name, and then choose from over the 150 colors options. Once set, users can 
now draw data points. Users can add a new class at any time by navigating to the Classes menu and adding 
another class. The Scale of the data can also be managed through the Classes tool while in the Classes 
menu. Users can at any time choose which of the added classes they would like to delete. 

Users can also choose from a selection of prestored, or canned, demos that include classic machine learning 
datasets such as overlapping Gaussian distributions. toroidally shaped distributions that cannot be classified 
with a linear classifier, and a yin-yang distribution that requires a nonlinear decision surface. Finally, after 
creating the data, users can choose the algorithm under the algorithm section and select the ‘run’ or ‘run by 
step’ options to start classification. 

Currently, IMLD does not allow users to insert their own algorithms. In the future, we plan to implement a 
method by which users can do this. This feature would significantly enhance the educational capacity of 
IMLD, as users will not be restricted to the algorithms offered only by the tool. 

IMLD is an educational tool with the ability to walk users through a step-by-step process to visualize 
various machine learning algorithms. It has been used by a machine learning class we have been teaching 
since the late 1990’s (https://www.isip.piconepress.com/courses/temple/ece_8527/). It is easily installed on 
a platform that includes Anaconda v3 and Python v3.7 or later. The source code is available from the course 
web site at: https://www.isip.piconepress.com/courses/temple/ece_8527/resources/imld/. A detailed user 
manual demonstrating use of the tool and instructional videos are also available. A demonstration will be 
provided at the symposium. 
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