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An open image database of Electroencephalogram (EEG) plays a vital role in developing deep learning 
algorithms for conducting research in EEG signal processing. This abstract presents the generation of “Big 
EEG Data” images for researchers to develop and test deep learning algorithms, especially using 
convolutional neural networks. The image database created in this work uses the Temple University 
Hospital (TUH) Electroencephalography Seizure Corpus (TUSZ) [1]. We have used ‘TUSZ v1.5.2’ 
database for the creation of the images [2].  

An EEG signal in its general form is considered as a time series data where the temporal information and 
spectral information play a crucial role in understanding the underlying characteristics of the signal. There 
are several deep learning techniques proposed for the analysis and classification of time series data. Apart 
from the prominent architectures in recurrent neural networks, researchers propose novel algorithms to 
address time-series data classification and prediction issues [3]–[5]. The studies suggested by Lotte et al. [6] 
reveal that the researchers are applying deep learning methodologies to detect and classify epileptic 
seizures. However, there is a need to improve the accuracy. Convolutional neural networks are very well 
matured to classify images into multiple classes. In this work, we propose to use the convolutional neural 
networks for the classification of EEG signals. The challenges here are the time series representation of the 
EEG signal itself. It may be noted that standard time-series deep learning architectures such as LSTM, 
RNN, etc., can work directly on the time series data, whereas CNN cannot be directly used on such data. 
Hence, we suggest converting the EEG signal to a set of images by extracting three characteristics of time-
sliced EEG signals. The methods proposed in 
this abstract do not directly represent EEG time-
domain signal in the image format, but the 
image representation of the values obtained 
while performing three transformation 
techniques as explained below.  

The conversion of time-series data such as EEG 
into an image is performed by obtaining 
properties such as mutual information and 
correlation between a set of successive samples 
in EEG signals and by obtaining the discrete 
cosine transform and hence spectrogram of 
EEG signals. Obtaining the mutual information 
and correlation coefficient values are done after 
converting the EEG signal of long duration into 
short-duration signals through time slicing 
based on ECG rhythms.  

The methodology adopted to convert the time 
series data into images is illustrated in Figure 1. 
The steps involved in the creation of an image 
database are: 

 
Figure 1. Block diagram of the methodology adopted 

 



1. Time-slicing of EEG data based on ECG rhythms; 
2. EEG image creation using rhythmic stacking; 
3. Images based on mutual information available in 

the successive block samples; 
4. Images based correlation information of time 

slices; 
5. Images based on spectrogram information of time 

slices. 

The underlying principle of our approach is the 
time-slicing of the EEG recordings based on the R 
peaks of the ECG signal. Different studies by 
Ako.M et al. [7] and Bhavsar et al. [8] provide an 
insight into the correlation between EEG activities 
and heart rate variability. Hence a time-slicing 
approach based on ‘r peaks’ was chosen to study 
the EEG patterns. The first algorithm makes the 
simple stacking of EEG patterns based on the ECG 
rhythms. The EEG recording available in the TUH 
Seizure Corpus is in the European data format (edf). 
Most of the recordings in this corpus contain 21-32 
channels per recording. In our algorithm, we have 
separated the ECG channel by extracting the label 
EKG-REF or equivalent label from ‘edf’ file. Later 
the sample index corresponding to ‘r peaks’ was 
obtained after finding the peaks. Since the time 
duration of all the channels is the same for one 
recording, we have sliced the EEG channels based 
on the ‘r peaks’ of the ECG waveform. Each such 
slice is now stacked together to form image data. 
The slicing procedure and sample of a resultant 
image is shown in Figure 2. To make the size 
(width) of the image the same, we introduced zero 
padding if there is a mismatch in the length of each 
segment due to variation in R-R interval. 

In the second algorithm, we used the entire channel 
recording without time slicing to obtain the 
spectrogram images. We use one image for each 
channel as indicated in Figure 3(a). The 
spectrogram uses the Short Time Fourier 
Transform, which is a useful transformation 
technique since it preserves both time and 
frequency domain characteristics [9]. The total 
number of images generated is based on the number 
of channels available in each ‘edf’ file. 

In the third algorithm, the correlation coefficient between each time-sliced segment was obtained. Cross-
correlation is a technique that estimates the correlation between two signals.  Cross-correlation accounts 
for time delays by shifting one of the two signals [10]. In our approach, the correlation is calculated between 
two slices, and a matrix is created using the correlation values between each slice. Hence for one channel, 

 
Figure 2. EEG Signals are slices and stacked as per r-r intervals 
of ECG signal 

 
Figure 3(a). Sample images of spectrogram of entire channel 

 
Figure 3(b). Sample images based on correlation coefficient 
between every EEG slices 

 

 
Figure 3(c). Sample images based on mutual information 
between every EEG slices 



if the number of slices is M, we get M 
correlation coefficient values for each slice. We 
get a total of M×M matrix of correlation 
coefficients. This matrix is further converted to 
image format. Hence for each recording, we got 
the number of images equivalent to the number 
of EEG channels. Similarly, in the fourth 
algorithm, the mutual information 
between every slice of each channel 
is obtained [11]. The mutual 
information matrix corresponds to 
each channel is converted to 
images. Figure 3(b) and Figure 3(c) 
shows the sample images generated 
using correlation coefficient and 
mutual information based 
algorithms. 

All the images obtained from these 
four algorithms have the same 
naming conventions as indicated in 
Figure 4 except for the algorithm 
name field. We have used complete 
TUEZ v1.5.2 resources for the 
creation of two master databases. In 
the first database, all the images 
were formed by implementing all 
four algorithms to entire EEG 
recordings irrespective of the 
seizure occurrence. The second 
database is created by implementing 
all four algorithms to the portion of 
the recording where seizure is 
identified. This was done by 
extracting the starting and ending 
time of occurrence of seizure. The 
details about the time record are 
provided in the documentation 
available in the TUSZ corpus. 

The number of images generated 
against each category is indicated in Table 1. The images created are categorically saved to different folders, 
corresponding to eight different classes, as shown in Table 2. The top-level folder contains the training and 
development folders named exactly as per the TUSZ naming conventions. Each of these folders has four 
subfolders which is named based on the image creation method adopted, such as Stacked, Spectrogram, 
Cross_Correlation, and Mutual_Information. Each of these folders contains seven subfolders which is 
named as per Table 2. Each of these folders is a seizure class. The typical filename in each of these folders 
is in the format as mentioned in Figure 4. The patient number, session ID, and session number fields are 
the same as in the original EEG file available in the EDF format in the TUSZ database. Using the same 
naming convention makes it easy for researchers to compare the deep learning algorithms with works that 

Table 2. Folder names corresponds to 
each class 

Folder 
Name 

Event Name 

FNSZ Focal Non-Specific Seizure 
GNSZ Generalized Non-Specific 

Seizure 
SPSZ Simple Partial Seizure 
CPSZ Complex Partial Seizure 
ABSZ Absence Seizure 
TNSZ Tonic Seizure 
TCSZ Tonic Clonic Seizure 
MYSZ Myoclonic Seizure 

 

Table 3. Training options selected 
for Alexnet architecture 

Solver sgdm 
Initial learning rate 0.0001 
Validation frequency 50 
Epochs 30 
Minimum batch size 128 
L2Regularization 0.0001 
Gradient Threshold 
Method 

L2Norm 

Momentum 0.9 

 

Table 1. Number of images generated under various classes 

  Seizure 

Category 

Stacked 

images 

 

Spectrogram 

Images 

Correlation 

based images 

Mutual 

information-

based 

images 

Train Dev Train Dev Train Dev Train Dev 
Im

ag
e 

D
at

a 
B

an
k
 1

 FNSZ 26179 2286 42577 4679 2627 1029 232 32 

GNSZ 6415 1644 10964 1592 356 438 121 104 

SPSZ 1179 96 1298 93 151 130 92 34 

CPSZ 4119 256 8797 1111 488 258 164 117 

ABSZ 1056 192 1573 192 84 100 257 111 

TNSZ 279 95 486 589 248 498 215 99 

TCSZ 494 409 900 506 273 348 278 101 

MYSZ 64 32 64 32 64 32 125 10 

Total 39785 5010 66659 8794 4291 2833 1484 608 

Im
ag

e 
D

at
a 

B
an

k
 2

 FNSZ 1600 1568 672 1568 1582 - 704 - 

GNSZ 7250 2680 6416 2622 3001 - 526 - 

SPSZ 38155 9156 38565 8787 32515 - 950 - 

CPSZ 11199 4880 9052 4751 7741 - 786 - 

ABSZ 64 - - 32 64 - 64 - 

TNSZ 1462 96 1277 93 1433 - 117 - 

TCSZ 907 550 420 537 907 - 315 - 

MYSZ 540 1408 485 1364 540 - 247 - 

Total 61177 20338 56887 19754 47783 0 3709 0 

 

 
Figure 4. Description of filename 

 

 



directly use the TUSZ data. The images are cropped to remove the axis information which is generated 
while implementing the algorithms. 

Authors have tested these images for classification 
accuracy using convolutional neural networks 
architectures. Since images pertaining to each class is 
available in separate folders, standard Alexnet 
architecture,  Resnet18 architecture, and GoogleNet 
architecture were used for testing the classification 
accuracy [12][13]. We have implemented the 
architecture for multiclass problems (7-Class) by 
changing parameters in the fully connected layer of CNN 
architecture, such as the number of output classes. As 
indicated in Table 1, the number of images per class is 
not balanced. This is due to the insufficient recordings 
available in the corpus for a particular type of seizure 
(e.g., Myoclonic Seizure). Due to the imbalance in the 
data, other than validation accuracy, we have calculated 
F1-Score and Specificity. The values of training options 
(hyperparameters) used for training the Alexnet 
architecture are listed in Table 3. Similar training options 
were provided for the other two architectures as well. 
Figure 5 shows the training progress upon training 
Alexnet architecture with mutual information based 
images. The confusion matrix obtained for the same 
database (mutual information based images) are shown 
in Figure 6. Similarly, all four image databases were 
tested with three CNN architectures. The results obtained 
in each case are tabulated in Table 4.  

The performance of these methods is compared with 
similar works performed on the TUH database by other 
authors. Golmohammadi et al. used gated recurrent units 
(CNN/GRU) and LSTM models on TUH Seizure data for 

 
Figure 6. Confusion matrix for mutual information 

image based classification 

 
Figure 5. Training Progress of mutual information based images with AlexNet architecture 

 
 

Table 4. Performance parameters 

Spectrogram Images 
(AlexNet) 

F1 - Score 97.47 
Accuracy 97.15 
Specificity 99.51 

Correlation Coefficient based  
Images (ResNet-18) 

F1 - Score 93.64 
Accuracy 93.45 
Specificity 98.88 

Mutual information based 
Images (ResNet-18) 

F1 - Score 97.95 
Accuracy 97.89 
Specificity 99.62 

Stacked Images (ResNet-18) 
F1 - Score 95.64 
Accuracy 95.50 
Specificity 99.24 

 



classification and achieved specificity of 97.1 % and 91.49 %, respectively [14]. L. Wei and A. Mooney 
presented the XGBoost-based method to detect seizures from TUH Corpus. They have achieved an 
accuracy of 67.01% while training and 58.85% during validation [15]. For the abnormal dataset from the 
TUH EEG corpus, S Roy et al. applied 1D-CNN-RNN and could achieve an accuracy of 82.27% [16]. 
Yildirim et al. proposed a 1D CNN model to classify the normal and abnormal EEG signal from the TUH 
EEG corpus and achieved an F1-Score of 78.92 and an accuracy of 79.34% [17]. In several performance 
parameters, our proposed methods have shown better results for the training dataset. 

In this abstract, we have discussed the generation of an image database from TUSZ v1.5.2 using four 
techniques. The EEG time-domain signal extracted from the ‘edf’ file is converted into images based on 
four properties of the time-sliced EEG signal. The image database is tested for classification accuracy using 
convolutional neural networks. The highest accuracy of 97.89% has been achieved when trained ResNet 
architecture with images based on mutual information. The accuracy achieved is for seven classes. The 
image database serves as a valuable resource for training deep learning networks. 
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RESULTS AND DISCUSSIONS

Figure 6 shows the training progress upon training Alexnet
architecture with mutual information-based images. The confusion 
matrix obtained for the same database (mutual information-based 
images) is shown in Figure 6. Similarly, all four image databases 
were tested with three CNN architectures. 
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ABSTRACT

• An open image database of Electroencephalogram (EEG) plays a 
vital role in developing deep learning algorithms for conducting 
research in EEG signal processing. 

• This abstract presents the generation of “Big EEG Data” images 
for researchers to develop and test deep learning algorithms, 
especially using convolutional neural networks. 

• The image database created in this work uses the Temple 
University Hospital (TUH) Electroencephalography Seizure 
Corpus (TUSZ). We have used ‘TUSZ v1.5.2’ database for the 
creation of the images. 

SEGMENTATION OF EEG SIGNALS

The underlying principle in this approach is the time-slicing of the 
EEG recordings based on the R peaks of the ECG signal. The ECG 
channel is separated by extracting the label EKG-REF or equivalent 
label from ‘edf’ file. Later the sample index corresponding to ‘r 
peaks’ was obtained after finding the peaks. Since the time 
duration of all the channels is the same for one recording, we have 
sliced the EEG channels based on the ‘r peaks’ of the ECG 
waveform. 

EEG IMAGE DATASTORE

NEED OF IMAGE REPRESENTATION

• An EEG signal is generally represented as a time-domain. The 
temporal information and spectral information play a crucial 
role in understanding the underlying characteristics of the 
signal. 

• It may be noted that standard time-series deep learning 
architectures such as LSTM, RNN, etc., can work directly on the 
time series data.

• Convolutional neural networks are very well matured to classify 
images into multiple classes. In this work, we propose to use 
the convolutional neural networks directly for the classification 
of EEG signals. The challenge is that CNN cannot be used on 
time series data.

• We suggest converting the EEG signal to a set of images by 
extracting three characteristics of time-sliced EEG signals.

IMAGE VALIDATION USING CNN

The images were tested for the classification accuracy using three 
CNN architectures; Alexnet, Resnet18, and GoogleNet. All three
pre-trained networks were tuned to match the multiclass 
requirement (7-Class) by changing parameters in the fully 
connected layer in each architecture. As indicated in Table 1, the 
number of images per class is not balanced. This is due to the 
insufficient recordings available in the corpus for a particular type 
of seizure (e.g., Myoclonic Seizure). Due to the imbalance in the 
data, other than validation accuracy, we have calculated F1-Score 
and Specificity. 

Figure 6 shows the training progress upon training Alexnet
architecture with mutual information-based images. The confusion 
matrix obtained for the same database (mutual information-based 
images) is shown in Figure 6. Similarly, all four image databases 
were tested with three CNN architectures. 

CONCLUSION

In this abstract, we have discussed the generation of an image 
database from TUSZ v1.5.2 using four techniques. The images are 
tested for classification accuracy using CNN. The highest accuracy 
of 97.89% has been achieved when trained ResNet architecture 
with images based on mutual information. The accuracy achieved 
is for seven classes. The image database serves as a valuable 
resource for training deep learning networks.

TIME SERIES TO IMAGES

• The conversion of time-series data such as EEG into an image is 
performed by obtaining properties such as mutual information 
and correlation between a set of successive samples in EEG 
signals and by getting the discrete cosine transform and hence 
spectrogram of EEG signals. Obtaining the mutual information 
and correlation coefficient values are done after converting the 
EEG signal of long duration into short-duration signals through 
time slicing based on ECG rhythms. 

• The methodology adopted to convert the time series data into 
images is illustrated in Figure 1.

Each such slice is now 
stacked together to form 
image data. The slicing 
procedure and sample of 
a resultant image is 
shown in Figure 2. 
To make the size (width) 
of the image the same, 
zero-padded the 
sequence if there is a 
mismatch in the length of 
each segment due to 
variation in R-R interval.
The first algorithm 
created this image 
database which is a direct 
representation of 
amplitude values in the 
color-coded form.

IMAGE CREATION USING SPECTROGRAM, CORRELATION 
COEFFICIENT AND MUTUAL INFORMATION

In the second algorithm, the entire channel recording without 
time-slicing is used to obtain the spectrogram images. The 
spectrogram uses the Short Time Fourier Transform, which is a 
useful transformation technique since it preserves both time and 
frequency domain characteristics. The total number of images 
generated is based on the number of channels available in each 
‘edf’ file. In the third algorithm, the correlation coefficient 
between each time-sliced segment was obtained. Cross-
correlation is a technique that estimates the correlation between 
two signals. Cross-correlation accounts for time delays by shifting 
one of the two signals. In our approach, the correlation is 
calculated between two slices, and a matrix is created using the 
correlation values between each slice. Hence for one channel, if 
the number of slices is M, we get M correlation coefficient values 
for each slice. 

We get a total of M×M 
matrix of correlation 
coefficients. This matrix 
is further converted to 
image format
Similarly, in the fourth 
algorithm, the mutual 
information between 
every slice of each 
channel is obtained. 
The mutual 
information matrix 
corresponds to each 
channel is converted to 
images.

The number of images generated against each category is 
indicated in the table below. The images created are categorically 
saved to different folders, corresponding to eight different seizure 
classes, as shown in Figure 4.

Figure 2. Slicing of EEG based on ECG rhythms

Figure 1 . Steps involved in timeseries to image conversion
Figure 3 . Sample images generated based on 

three algorithms

Figure 4. Structure of image folder

Figure 5. File name information
of each image

The typical filename of each image is in the format mentioned in 
Figure 5. The patient number, session ID, and session number 
fields are the same as in the original EEG file available in the EDF 
format in the TUSZ database. Using the same naming convention 
makes it easy for researchers to compare the deep learning 
algorithms with works that directly use the TUSZ data. The 
images are cropped to remove the axis information which is 
generated while implementing the algorithms. Total number of 
images generated in the current version is listed in Table 1.

Table 1. Number of images created under each class of seizure

Table 2. Training options

The values of training options 
(hyperparameters) used for 
training the Alexnet
architecture are listed in Table 
2. Similar training options 
were provided for the other 
two architectures as well. 

Figure 6. Training Progress of mutual information-based images with 
AlexNet architecture

Figure 6. Confusion Matrix

Table 3. Summary of performance parameters

accuracy of 67.01% while training and 58.85% during validation. For the 
abnormal dataset from the TUH EEG corpus, S Roy et al. applied 1D-CNN-RNN 
and could achieve an accuracy of 82.27%. Yildirim et al. proposed a 1D CNN 
model to classify the normal and abnormal EEG signal from the TUH EEG 
corpus and achieved an F1-Score of 78.92 and an accuracy of 79.34%.
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