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Abstract— Infants born prematurely are at an increased 
risk of motor development delays. Demographic measures 
such as race, level of maternal education, and access to 
prenatal care are additional indicators for elevated risk. It 
is thus especially important to provide widespread and 
easily accessible tools to monitor infant motor development 
in higher-risk groups to mitigate delays as early as possible. 
This is especially true for communities that have 
traditionally been neglected due to the racial disparities 
found with respect to healthcare access. In this paper, we 
introduce an automated system to gather infant kicking 
data and determine the developmental maturity of an 
infant’s kicking using identified kinematic features. Infant 
kicking behavior has been found to be a valid pre-marker 
that is useful for identifying potential developmental delays 
in at-risk infants. Using this system, designed for pervasive 
use in underserved communities, we then analyze the 
developmental maturity of a preterm African-American 
infant, clinically identified as at-risk, by identifying 
kinematic markers that might indicate delay as compared 
to normative infant kicking data.  Results show that the 
system can readily be deployed in the home setting to 
identify developmental maturity for at-risk underserved 
infants. 

I. INTRODUCTION 
Our research aims to develop a system to monitor infant 
motor development and detect delays through the 
extended observation of infant kicking. In this work, we 
first describe our system for the observation of infant 
motor development and determination of normative 
values. We then discuss our pilot study in which the 
system was deployed to the home of a preterm, at-risk 
African American infant. 

In the United States, approximately 10% of births are 
considered premature according to the Center for Disease 
Control and Prevention (CDC). Preterm infants, 
especially those with very low birthweight (VLBW), are 
more likely to develop neuro-developmental disorders 
and experience motor development delays than their term 
counterparts [1,2]. In addition to known risk factors like 
premature birth and VLBW, various demographic 
measures serve as indicators for elevated risk of motor 
development delays. Race, socioeconomic status, and 
level of maternal education have been associated with 
elevated risk [4]. For example, the rate of preterm birth is 
almost 50% higher for Black women than for all other 

women in the United States [26]. As a result, preterm 
birth is the leading cause of motor disability, 
developmental delay, and infant death among Black 
infants [27]. Furthermore, infants born to women who did 
not have prenatal care are also at elevated risk [5].  

Intervention therapy may be used to improve the overall 
quality of life for preterm infants with developmental 
delays if these delays can be reliably detected early in life 
[3]. However, it is oftentimes difficult for diagnostic tests 
to encompass all patients due to the variability between 
individuals [2]. As such, various efforts have been made 
to automate the diagnosis process using artificial 
intelligence [9-21]. However, many similar efforts in 
other healthcare applications, such as [23-25, 29], have 
neglected certain segments of the population and resulted 
in disparate healthcare outcomes. To help mitigate racial 
disparities in healthcare outcomes for preterm infants, an 
affordable and accessible option for monitoring infant 
motor development is needed. Having said access can 
provide improved care for preterm infants in 
communities associated with higher risk to maximize 
their overall quality of life. Our research aims to develop 
a system to monitor infant motor development and to 
detect delays through the extended observation of infant 
spontaneous kicking. We aim to make this system 
accessible and low in cost when compared to in-clinic 
human observations.  

In this work, we first describe our system for the 
observation of infant motor development in these 
underserved communities. This system is low cost, easy 
to use with minimal training, and robust to environmental 
uncertainties such as found in the home environment. 
This system has previously been used to develop a set of 
features to describe normative kicking behavior in 
typically developing infants. Secondly, we discuss our 
pilot study in which, on three separate occasions, the 
system was deployed to the home of a preterm, at-risk 
African American infant (see Figure 1). The parents used 
the system to gather kicking data from which kinematic 
markers were calculated. These markers were then 
compared to normative data to determine developmental 
maturity for the preterm infant. 

 



 

 

II. RELATED WORK 
Numerous technologies have been developed to automate 
the observation of and analyze various aspects of infant 
motor development. Multiple approaches make use of 
specialized equipment like depth cameras and motion 
tracking systems to gather infant movement data. In [9-
11], depth cameras are used to gather 3D movement data 
to analyze infant kinematic motion and for infant pose 
estimation. Other approaches use motion capture to 
gather infant pose data and track infant movement [12]. 
Furthermore, electromagnetic tracking is used in [13, 14] 
to examine infant upper and lower limb motion and to 
track fidgety movements in 3D space. The use 
specialized equipment (as in these methods) allows for 
precise spatial tracking of infant spontaneous movement. 
However, these systems are oftentimes expensive and 
require a controlled environment. Methods that use these 

systems are unsuitable for use outside of a laboratory or 
clinical setting for these reasons. 

Other approaches utilize optical devices such as video 
cameras to analyze infant motion data. Oftentimes, 
markers are placed on the infant to aid in tracking the 
infant’s movements [15]. Other approaches attempt to 
track infant motion and identify at risk infants using 
markerless video data [16-19]. These methods often rely 
on assumptions about joint positions/measurements and 
require a specific configuration between the camera and 
the infant being filmed. Additionally, these methods are 
oftentimes not robust to occlusions, making these 
approaches non-ideal for usage outside of a controlled 
environment.  

To our knowledge, none of the systems described thus far 
have been deployed in the home setting for use by the 
parents or guardians of the infant. Additionally, these 
technologies are unsuitable for deployment in under-
resourced communities due to their high cost and need 
for specialized training. In response to these concerns, 
there has been a push towards using wearable sensing 
technology like clothing embedded with sensors to gather 
infant movement data. In [21], Smith et al. embedded 
determined the daily quantity of infant leg movement 
from infant kicking data gathered over the course of a full 
day to determine the daily kicking sequence. 
Accelerometer data was used in [20] to identify motor 
milestones in infants and identify at risk infants. To our 
knowledge, these systems have not yet been deployed in 
the home setting nor have they been used to monitor the 
motor development of a preterm infant in an underserved 
community. As such, it is unclear whether these systems 
would be viable for use by the parents or guardians of the 
infants for extended observation.  

As of this work, our system has been deployed to the 
home of an infant from an underserved community for 

 

Figure 1. Set up of our system deployed to the home of a 
preterm, at-risk African American infant. Photo was taken 
during the third data collection session (38 weeks).  

Table 1. Calculation of Kinematic Features 

Metric Variables Equation 

Frequency of 
Activity 

𝑛𝐴𝑐𝑡: number of active samples 
𝑁: total number of samples 𝐹𝐴𝑖 =  𝑛𝐴𝑐𝑡

𝑁⁄  

Avg. Duration 
of Activity 

𝐾: total number of movements in a one-minute segment 
(𝑡𝑠𝑡𝑎𝑟𝑡)𝑘 : start time of the kth movement 
(𝑡𝑒𝑛𝑑)𝑘  : end time of the kth movement 

𝐴𝑣𝑔𝐾𝐷𝑢𝑟𝑖 =
1

𝐾
∑(𝑡𝑒𝑛𝑑)𝑘 − (𝑡𝑠𝑡𝑎𝑟𝑡)𝑘

𝐾

𝑘=1

 

Avg. Duration 
of Rest 

𝑅: total number of rests in a one-minute segment 
(𝑡𝑠𝑡𝑎𝑟𝑡)𝑟  : start time of the rth period of rest 
(𝑡𝑒𝑛𝑑)𝑟  : end time of the rth period of rest 

𝐴𝑣𝑔𝑅𝐷𝑢𝑟𝑖 =
1

𝑅
∑(𝑡𝑒𝑛𝑑 )𝑟 − (𝑡𝑠𝑡𝑎𝑟𝑡)𝑟

𝑅

𝑟=1

 

Peak 
Acceleration 

𝐺𝐴𝑐𝑡𝑖(𝑠): vector identifying activity for data segment i 
𝐺𝐴𝑐𝑡𝑖(𝑠) ≠ 0 for an active sample 

𝒂𝑠 : 3D vector of acceleration for sample s 
𝑃𝑒𝑎𝑘𝐴𝑐𝑐𝑒𝑙𝑖 = max(|𝒂𝑠|, ∀ 𝑠 = 1 … 𝑁 | 𝐺𝐴𝑐𝑡𝑖(𝑠) ≠ 0) 

 



 

 

data collection. The initial analysis of this infant’s data 
collected by the parents over three sessions will be 
presented in this work. 

III. SYSTEM DESCRIPTION 
Our system couples a Bluetooth-connected infant sensor 
suit with a data collection app, resident on a mobile 
device. The infant sensor suit incorporates three 6-axis 
IMU sensors (MbientLab’s MetawearC) per leg, placed 
on each limb segment [6]. When the infant is placed 
supine, 3-axis acceleration and angular rate data for each 
limb segment is gathered at a sampling rate of 100 Hz. 
Parents of the infant are provided with infant clothing, 8 
IMU sensors and batteries, and a tablet with the data 
collection app installed. Prior to the first data collection 
session, parents are instructed via remote video call on 
outfitting the infant, proper placement of the IMU 
sensors, and use of the data collection app. This training 
session was designed to take approximately 15 to 30 
minutes of interaction time, including Q&A. Finally, 
during infant testing, while the parents administer the 
data collection using the sensor suit, a researcher is 
available to answer any questions the parents may have 
while ensuring proper setup and adherence to the data 
collection protocol. The parent of the infant may also 
record video data of the infant kicking using a cell-phone 
or tablet camera to provide a visual aid to compare to data 
from the sensors. Following data collection, the data 
collected by the system is parsed through various 
algorithms to calculate key kinematic features of 
spontaneous kicking: frequency of activity, average 
duration of movement and rest, and peak acceleration 
(PA) of the dominant leg. The calculation of these 
measures for a one-minute data segment i is given in 
Table 1.  

The frequency of activity (𝐹𝐴𝑖) is a measure of how often 
a baby is actively kicking during a period.  For a one-
minute duration, the number of samples where an infant 
is actively kicking, regardless of coordination pattern, is 
recorded. This value, divided by the total number of 
samples within the segment of data, gives the frequency 
of activity. In clinical works, this feature was shown to 
decrease with age, especially as infants approach 
crawling and walking age [21]. However, for infants with 
very low birthweight (VLBW) and low gestation age 
(GA), an increase in kicking frequency was observed 
[11].  

The average duration of activity (𝐴𝑣𝑔𝐾𝐷𝑢𝑟𝑖) and the 
average duration of rest (𝐴𝑣𝑔𝑅𝐷𝑢𝑟𝑖) are measures of how 
long an infant is typically moving or resting during a 
period. For a one-minute segment, the duration for each 
period of continuous activity and continuous rest is taken. 
The average value for each of these metrics is then taken. 
The duration of overall activity has not been studied 
extensively in clinical works but is used to evaluate the 

efficacy of systems used to stimulate infant kicking 
activity [7]. 

Finally, the peak acceleration (𝑃𝑒𝑎𝑘𝐴𝑐𝑐𝑒𝑙𝑖) is an indirect 
measure of how quickly the infant is moving their legs. 
The magnitude of the foot’s acceleration is taken for each 
movement within a one-minute data segment. The peak 
magnitude for the infant’s dominant leg, the leg the infant 
moves more often, is then computed. Trujillo-Priego et. 
al. found no relationship between this metric and age 
[22]. However, this study limited its analysis to specific 
movement sequences. To our knowledge, no studies have 
examined accelerations of general leg motions as we do 
here. 

In [8], our system is used to determine normative values 
of these kinematic features at various ages using data 
from term infants. Once the kinematic features of an 
infant are computed, their features are compared to 
normative values at the same age to determine if the 
infant is developmentally delayed (i.e. the developmental 
maturity). Given the inclusion criteria and focus on at-
risk infants for deployment of the system, we anticipate 
that any preterm infants evaluated with this system will 
be at-risk for being developmentally delayed. 
Furthermore, we expect that the features of a preterm 
infant’s kicking will more closely align with normative 
values at their adjusted age (their birth age minus how 
early they were born) than with their birth age. Finally, 
we anticipate that a preterm infant’s features will more 
closely align with normative values at their birth age as 
the infant ages.  

 

Table 2. Term Infants Observed for Normative Metrics        

Identifier Sex Gestational 
Age [weeks] 

Age at Observations 
[weeks] 

B F 38 12, 18 
D F 38 8, 20, 32 

E F 39 8, 14 

H F 39 4, 20, 34 

J M 39 8, 16, 18 

K F 37 8, 14, 26 

L M 37 8, 18, 26 

M M 39 12, 22 

O M 38 12 

P M 40 12, 22 

Q F 39 6 

R F 40 12, 18 

S F 40 12 

T M 40 12 
 

 



 

 

IV. ANALYSIS OF PRETERM INFANT DATA 
Three sessions of data were gathered from a very low 
birthweight (VLBW), premature (28 weeks gestational 
age (GA)) infant. This infant was identified at additional 
risk due to her gender (female), race (black), and 
mother’s lack of prenatal care. These sessions occurred 
in the afternoon during a period when the parents 
indicated the infant was typically well rested and active. 
Data collection occurred over a 15-week time and was 
administered by the parents in the common living space, 
where play typically occurred. The parents were 
encouraged to interact with their child as they normally 
would, including introducing toys and a pacifier as 
needed. The parents were instructed to not physically 
manipulate the infant’s legs, or to move the infant during 
data collection. Finally, the parents were informed that 
they could halt data collection at any time and for any 
reason. All sessions with the preterm infant discussed 
here were completed without interruption. 

Kinematic features of the infant’s kicking were 
calculated at each visit and compared to term, typically 
developing infants of similar age as in [8]. These 

normative metrics were calculated from infants aged 2 to 
8.5 months, 6 male and 8 female for a total of 30 sessions 
of data (see Table 2). For each feature, a model (linear or 
quadratic) was fit to each metric to determine a trend with 
respect to age. The preterm infant’s developmental 
maturity was then determined by comparing their 
kinematic features with respect to each model. While the 
model could predict an exact estimation of age, we report 
a window of predictions to account for variability and 
uncertainty between data segments. Tables 3 through 5 
show the developmental maturity of the preterm infant’s 
kicking for specific kinematic features. If the predicted 
developmental maturity is computed as lower than the 
age of the preterm infant (as indicated in the table 
header), then for that metric, the individual is considered 
developmentally delayed.  

For this infant at 26 weeks, the average duration of 
activity and rest as well as the peak acceleration of the 
dominant leg were significantly delayed when compared 
to the normative values for the infant’s birth age (see 
Table 3). These features more closely resembled 
normative values associated with the infant’s adjusted 
age rather than their birth age, though they would still be 
considered slightly delayed. Interestingly, the frequency 
of activity for the infant kinematic feature was the only 
feature that did not show delay when compared to the 
normative values associated with the infant’s birth age. 
One possible explanation is that the preterm infant is 
engaging in the same exploratory behavior that term 
infants exhibit early in life resulting in a high movement 
frequency. In the preterm infant’s case, while the 
frequency of kicking is comparable to term infants of the 
same birth age, the speed and duration of these 
movements are reduced due to weaker, underdeveloped 
muscles. As a result, a preterm infant would have 
frequency measures like term infants of the same age 
while duration and acceleration measures lag. 

At 35 weeks, the average duration of activity and the peak 
acceleration of the dominant leg were still significantly 
delayed when compared to values associated with the 
birth age and slightly delayed when compared to values 
associated with the adjusted age (see Table 4). The 
average duration of rest though converged to normative 
values associated with the infant’s birth age indicating 
potential improvement in overall kicking behavior. The 
frequency of activity continued to be comparable to 
normative values associated with the infant’s birth age. 

Finally, at 41 weeks, the average duration of activity and 
the peak acceleration of the dominant leg have converged 
to normative values (see Table 5). The average duration 
of rest for this session slightly decreased compared to 
values at 35 weeks, resulting in values that were 
indicative of a slightly younger infant. Additionally, the 
frequency of activity was significantly higher than in 

Table 3. Preterm Infant’s Kicking Metrics (at 26 Weeks) 

Kinematic Feature Value Developmental 
Maturity 

Frequency of Activity 48.89% 25-30 weeks 

Avg. Duration of Activity 0.72 s *5-10 weeks  

Avg. Duration of Rest 0.76 s *5-10 weeks 
PA of Dominant Leg 0.82 g *5-10 weeks 

*delayed based on kinematic feature 
 

Table 4. Preterm Infant’s Kicking Metrics (at 35 Weeks) 

Kinematic Feature Value Developmental 
Maturity 

Frequency of Activity 23.24% 35-40 weeks 
Avg. Duration of Activity 0.93 s *10-15 weeks 

Avg. Duration of Rest 2.82 s 40+ weeks 

PA of Dominant Leg 1.03 g *10-15 weeks 
*delayed based on kinematic feature 

 

Table 5. Preterm Infant’s Kicking Metrics (at 41 Weeks) 

Kinematic Feature Value Developmental 
Maturity 

Frequency of Activity 50.28% *20-25 weeks 

Avg. Duration of Activity 1.58 s 40+ weeks 
Avg. Duration of Rest 1.76 s 35-40 weeks 

PA of Dominant Leg 2.78 g 40+ weeks 
*delayed based on kinematic feature 

 



 

 

previous sessions. As higher frequencies generally are 
associated with younger infants, this metric seems to 
indicate a delay with respect to normative values. Given 
the infant’s improvement in all other metrics, it is unclear 
why this metric seems to indicate delay. A potential 
explanation for this difference is that premature infants 
may display a different pattern in kicking frequency as 
compared to typical infants. In the early stages of 
development, premature infants tend to have less muscle 
development as compared to their term counterparts. The 
decreased muscle development results in decreased 
durations of continuous activity and peak accelerations. 
During this stage, less frequent activity may be the result 
of fatigue rather than evidence of more mature kicking 
(as with term infants). Once preterm infants have grown 
stronger, as evidenced by longer durations of continuous 
activity and larger magnitudes of acceleration, their 
kicking frequency may increase as they are less prone to 
fatigue. 

V. DISCUSSION 
Developmentally, a preterm infant is oftentimes 
evaluated with respect to their adjusted age, determined 
as the age the infant would be if they had been born on 
their due date. In this case, the preterm infant was born 
12 weeks early (i.e. at 28 weeks gestation out of a 40 
week term). So, her adjusted age would be calculated at 
each testing date by subtracting 12 weeks from her 
indicated age at testing. As expected, the developmental 
maturity of the infant’s kicking was considered delayed 
for most of the metrics we examined and more closely 
resembled the normative features at her adjusted. As the 
infant aged, the durations of activity and rest as well as 
the peak acceleration of the dominant leg converged to 
normative values.  

Interestingly, the frequency of activity for the infant’s 
kicking did not indicate developmental delay and more 
closely indicated normative values associated with the 
infant’s birth age at younger ages. However, once the 
other metrics converged to normative values, the 
frequency of activity increased, indicating values 
associated with younger infants. A potential explanation 
for these differences is due to the decreased muscle 
development of premature infants as compared to their 
term counterparts early in life. The decreased muscle 
development results in decreased durations of continuous 
activity and peak accelerations. In this case, less frequent 
activity may be the result of fatigue rather than evidence 
of more mature kicking as is the trend for term infants. 
Once preterm infants have grown stronger, as evidenced 
by longer durations of continuous activity and larger 
magnitudes of acceleration, their kicking frequency may 
increase as they are less prone to fatigue. 

Though an infant may be delayed in one or more 
individual features, further analysis is needed to quantify 

the overall maturity associated with an infant’s kicking 
movements. Additionally, ongoing observation for this 
preterm individual is needed to determine how the 
observed delays change over time, most notably if the 
delays completely go away. Finally, further work is 
needed to determine when observed delays are expected 
versus when they become problematic and in need of 
potential intervention therapy. 

VI. CONCLUSION 
Our research aims to provide an accessible and robust 
means to observe infant motor development in the home 
setting. In this study, we showed how this system 
complied with this goal and could be deployed to the 
homes of underserved and under-resourced infants as a 
more cost effective and accessible option to traditional 
clinical observation. We presented an analysis of data 
collected by the parents of a preterm infant from an 
underserved community. This data was collected by the 
parents across multiple sessions in the infant’s home after 
minimal training. From this data, developmental delays 
were detected in the preterm infant’s kicking.  

Additionally, though not presented in this work, the goal 
of this research is to provide an estimate of infant 
developmental age to determine whether an infant is 
developmentally delayed. Using the features presented in 
this work, a model to estimate developmental age will be 
created. An infant would be considered developmentally 
delayed if the estimate from this model indicated a 
developmental age younger than the birth age for a term 
infant or the adjusted age for a preterm infant. This 
estimate will be compared a clinician’s estimate of 
developmental age using current clinical evaluation 
techniques. 

Following the detection of these delays, intervention 
therapy could be provided as needed, resulting in better 
outcomes for the infant and improving their overall 
quality of life. Due to its low cost and ease of use, our 
system could be one avenue available to address and 
hopefully mitigate racial disparities found in healthcare 
outcomes for at-risk infants in Black communities. 

ACKNOWLEDGMENTS 
Early development associated with this research was 
supported in part by the Linda J. and Mark C. Smith 
Endowed Chair.  

REFERENCES 
[1] A. Herskind, G. Greisen, and J. B. Nielsen, “Early identification 

and intervention in cerebral palsy,” Developmental Medicine & 
Child Neurology, vol. 57, no. 1, pp. 29–36, 2014.  

[2] H. C. Glass, A. T. Costarino, S. A. Stayer, C. M. Brett, F. Cladis, 
and P. J. Davis, “Outcomes for extremely premature infants,” 
Anesthesia & Analgesia, vol. 120, no. 6, pp. 1337–1351, 2015.  

[3] E. Rogers, P. Polygerinos, C. Walsh, and E. Goldfield, “Smart and 
connected actuated mobile and sensing suit to encourage motion 



 

 

in developmentally delayed infants1,” Journal of Medical 
Devices, vol. 9, no. 3, 2015.  

[4] “FY15 preterm birth fact sheet - March of dimes,” March of 
Dimes, 2015. [Online]. Available: https://www.marchofdimes. 
org/FY15-Preterm-Birth-Fact-Sheet-March-2014.pdf. [Accessed: 
2020].  

[5] “Preterm labor and birth: Condition information,” Eunice 
Kennedy Shriver National Institute of Child Health and Human 
Development, Jan-2017. [Online]. Available: https://www.nichd. 
nih.gov/health/topics/preterm/conditioninfo/default. [Accessed: 
2020].  

[6] K. E. Fry, Y. P. Chen, and A. Howard, “Detection of infant motor 
activity during spontaneous kicking movements for term and 
preterm infants using inertial sensors,” 2018 40th Annual 
International Conference of the IEEE Engineering in Medicine 
and Biology Society (EMBC), 2018.  

[7] R. Jamshad, K. E. Fry, Y. P. Chen, and A. Howard, “Design of a 
robotic crib mobile to support studies in the early detection of 
cerebral palsy: A pilot study,” 2019 28th IEEE International 
Conference on Robot and Human Interactive Communication 
(RO-MAN), 2019.  

[8] K. E. Fry, Y. P. Chen, and A. Howard, “Discriminative models of 
spontaneous kicking movement patterns for term and preterm 
infants: A pilot study,” IEEE Access, vol. 7, pp. 51357–51368, 
2019.  

[9] N. Hesse, A. S. Schroder, W. Muller-Felber, C. Bodensteiner, M. 
Arens, and U. G. Hofmann, “Body pose estimation in depth 
images for infant motion analysis,” 2017 39th Annual 
International Conference of the IEEE Engineering in Medicine 
and Biology Society (EMBC), 2017.  

[10] M. M. Serrano, Y. P. Chen, A. Howard, and P. A. Vela, “Lower 
limb pose estimation for monitoring the kicking patterns of 
Infants,” 2016 38th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC), 2016.  

[11] S. F. Jeng, L. C. Chen, and K. I. T. Yau, “Kinematic analysis of 
kicking movements in preterm infants with very low birth weight 
and full-term infants,” Physical Therapy, vol. 82, no. 2, pp. 148–
159, 2002.  

[12] M. D. Olsen, A. Herskind, J. B. Nielsen, and R. R. Paulsen, 
“Using motion tracking to detect spontaneous movements in 
infants,” Image Analysis, pp. 410–417, 2015.  

[13] D. Karch, K. S. Kang, K. Wochner, H. Philippi, M. Hadders-
Algra, J. Pietz, and H. Dickhaus, “Kinematic assessment of 
stereotypy in spontaneous movements in infants,” Gait & 
Posture, vol. 36, no. 2, pp. 307–311, 2012.  

[14] P. Rahmanpour, “Features for movement based prediction of 
cerebral palsy,” M.S. thesis, Institutt for teknisk kybernetikk, 
2009. 

[15] C. B. Heriza, “Organization of leg movements in preterm infants,” 
Physical Therapy, vol. 68, no. 9, pp. 1340–1346, 1988.  

[16] H. Rahmati, O. M. Aamo, O. Stavdahl, R. Dragon, and L. Adde, 
“Video-based early cerebral palsy prediction using motion 
segmentation,” 2014 36th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society, 2014.  

[17] L. Adde, J. L. Helbostad, A. R. Jensenius, G. Taraldsen, and R. 
Støen, “Using computer-based video analysis in the study of 
Fidgety movements,” Early Human Development, vol. 85, no. 9, 
pp. 541–547, 2009.  

[18] A. Stahl, C. Schellewald, Ø. Stavdahl, O. M. Aamo, L. Adde, and 
H. Kirkerod, “An optical flow-based method to predict infantile 
cerebral palsy,” IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, vol. 20, no. 4, pp. 605–614, 2012.  

[19] D. Das, K. Fry, and A. M. Howard, “Vision-based detection of 
simultaneous kicking for identifying movement characteristics of 
infants at-risk for neuro-disorders,” 2018 17th IEEE International 
Conference on Machine Learning and Applications (ICMLA), 
2018.  

[20] D. Gravem, M. Singh, C. Chen, J. Rich, J. Vaughan, K. Goldberg, 
F. Waffarn, P. Chou, D. Cooper, D. Reinkensmeyer, and D. 
Patterson, “Assessment of infant movement with a compact 
wireless accelerometer system,” Journal of Medical Devices, vol. 
6, no. 2, 2012.  

[21] B. Smith, I. Trujillo-Priego, C. Lane, J. Finley, and F. Horak, 
“Daily quantity of infant leg movement: Wearable Sensor 
algorithm and relationship to walking onset,” Sensors, vol. 15, no. 
8, pp. 19006–19020, 2015.  

[22] I. A. Trujillo-Priego and B. A. Smith, “Kinematic characteristics 
of infant leg movements produced across a full day,” Journal of 
Rehabilitation and Assistive Technologies Engineering, vol. 4, p. 
205566831771746, 2017.  

[23] S. Vartan, “Racial bias found in a major health care risk 
algorithm,” Scientific American, Scientific American, 24-Oct-
2019. [Online]. Available: http://www.scientificamerican.com 
/article/racial-bias-found-in-a-major-health-care-risk-algorithm/. 
[Accessed: 2020].  

[24] R. McCullom, “Artificial Intelligence, Health Disparities, and 
covid-19,” Undark Magazine, Undark Magazine, 27-Oct-2020. 
[Online]. Available: https://undark.org/2020/07/27/ai-medicine-
racial-bias-covid-19/. [Accessed: 2021].  

[25] H. Ledford, “Millions of black people affected by racial bias in 
health-care algorithms,” Nature, vol. 574, no. 7780, pp. 608–609, 
2019.  

[26] “2018 Premature Birth Report Card,” Peristats, March of Dimes, 
2018. [Online]. Available: https://www.marchofdimes.org/ 
peristats/tools/reportcard.aspx. [Accessed: 14-Jun-2019].  

[27] C. A. Riddell, S. Harper, and J. S. Kaufman, “Trends in 
differences in US mortality rates between black and white 
infants,” JAMA Pediatrics, vol. 171, no. 9, p. 911, 2017.  

[28] S. A. Lorch, “Health equity and quality of Care Assessment: A 
continuing challenge,” Pediatrics, vol. 140, no. 3, 2017.  

[29] H. J. Geiger, “Racial and Ethnic Disparities in Diagnosis and 
Treatment: A Review of the Evidence and a Consideration of 
Causes,” in Unequal treatment: Confronting racial and ethnic 
disparities in health care, B. D. Smedley, A. Y. Stith, and A. R. 
Nelson, Eds. Washington (D.C.): National Academy Press, 2003, 
pp. 417–454. Available at: https://www.ncbi.nlm.nih.gov/books 
/NBK220337 

[30] C. N. and J. Taylor, “Exploring African americans' high maternal 
and infant death rates,” Center for American Progress, Feb-2018. 
[Online]. Available: https://www.americanprogress.org/issues 
/early-childhood/reports/2018/02/01/445576/exploring-african-
americans-high-maternal-infant-death-rates/. [Accessed: 2021].  

[31] K. Fry, A. Howard, and F. Yousuf, “Detection of Infant Motor 
Activity During Spontaneous Kicking Movements for Term and 
Preterm Infants Using Inertial Sensors.” Patent Application No. 
62/700,781. July, 2018. 
 
 
 


	I. Introduction
	II. Related Work
	III. System Description
	IV. Analysis of Preterm Infant Data
	V. Discussion
	VI. Conclusion
	Acknowledgments
	References

